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SUMMARY 

 

An objective of the AOTTP was to estimate Type-I (immediate) and Type-II (long-term) tag-

shedding rates for Atlantic yellowfin tuna from double-tagging experiments (4,518 double tags 

released with 1,061 recoveries). Accounting for the insertion point of the tag according to the 

body side of the fish, by introducing a tag-location effect in Type-1 (i.e., 1- α) and in Type-II tag-

shedding, in the constant-rate model did not improve significantly the fit. Type-I and Type-II tag 

shedding estimates (0.026 and 0.031, respectively) are close to the values obtained in the Indian 

Ocean (0.028 and 0.040, respectively). On the basis of these results, the shedding rate is about 

6% the first year at sea and reaches 17% after 5 years at sea. Preliminary results suggested that 

tag loss could differ according to the size at release but additional factors must be analysed 

before drawing a definitive conclusion. This study showed that tag shedding rate should be taken 

into account with other sources of uncertainty such as the reporting rate in order to estimate 

exploitation and mortality rates derived from tagging data. 

 

RÉSUMÉ 

 

Un objectif de l’AOTTP était d’estimer les taux de perte des marques de type I (immédiat) et de 

type II (à long terme) apposées sur l’albacore de l’Atlantique dans le cadre d’expériences de 

double marquage (4.518 marques doubles remises à l’eau avec 1.061 récupérations). En tenant 

compte du point d'insertion de la marque en fonction du côté du corps du poisson, l’introduction 

d’un effet de localisation de la marque dans le taux de perte des marques de type I (c'est-à-dire, 

1- α) et de type II, dans le modèle à taux constant n'a pas amélioré de manière significative 

l'ajustement. Les estimations de perte de marques de type I et de type II (0,026 et 0,031, 

respectivement) sont proches des valeurs obtenues dans l'océan Indien (0,028 et 0,040, 

respectivement). Sur la base de ces résultats, le taux de perte est d'environ 6% la première année 

en mer et atteint 17% après cinq ans en mer. Les résultats préliminaires suggèrent que la perte 

des marques pourrait différer en fonction de la taille à la remise à l'eau mais des facteurs 

supplémentaires doivent être analysés avant de tirer une conclusion définitive. Cette étude a 

montré que le taux de perte des marques devrait être pris en compte avec d'autres sources 

d'incertitude telles que le taux de déclaration afin d'estimer les taux d'exploitation et de mortalité 

dérivés des données de marquage. 

RESUMEN 

 

Un objetivo del AOTTP era estimar las tasas de desprendimiento de marcas Tipo I (inmediata) 

y Tipo II (a largo plazo) para el rabil del Atlántico a partir de experimentos de doble marcado 

(4.518 dobles marcas colocadas con 1.061 recuperaciones). Teniendo en cuenta el punto de 
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inserción de la marca de acuerdo con el lado del cuerpo del pez, introducir un efecto de ubicación 

de la marca en el desprendimiento de marcas del tipo I (es decir, 1- α) y del tipo II no mejoraba 

significativamente el ajuste en el modelo de tasa constante. Las estimaciones de desprendimiento 

de tipo I y tipo II (0,026 y 0,031, respectivamente) están cerca de los valores obtenidos en el 

océano Índico (0,028 y 0,040, respectivamente). Basándose en estos resultados, la tasa de 

desprendimiento es de aproximadamente el 6 % el primer año en el mar y alcanza el 17 % tras 

5 años en el mar. Los resultados preliminares sugerían que la pérdida de marcas podría diferir 

según la talla en el momento de la liberación, pero deben analizarse factores adicionales antes 

de sacar alguna conclusión definitiva. Este estudio demostró que la tasa de desprendimiento de 

marcas debería tenerse en cuenta junto con otras fuentes de incertidumbre, como la tasa de 

comunicación, para estimar las tasas de explotación y de mortalidad derivadas de los datos de 

marcado. 
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1. Introduction 

 

The 5-years Atlantic Tuna Tagging Programme (AOTTP), funded mainly by the DG Devco of the European 

Commission and by other ICCAT CPC and partners, has been design to improve the estimates of the key 

parameters commonly used as inputs in the stock assessments of the 3 main species of tropical tunas (skipjack, 

yellowfin and bigeye tunas). To date, more than 60,000 tropical tunas have been marked and released in different 

places in the Eastern Atlantic (e.g., Azores, Madeira, Canary Islands, Senegal, Gulf of Guinea, South Africa) and 

in the Southwest Atlantic (Brazil) and approximately 20% of the released fish have been recaptured (Beare et al, 

2018).  

 

Tag-return models are commonly used when the focus of the study is on estimating mortality rates. Integral to the 

use of tagging data are standardization models, such as tag-attrition models for single release events (Kleiber et 

al., 1987; Hampton, 1997) or Brownie models (derived from bird-banding studies) for multiyear studies (Brownie 

et al., 1985; Hoenig et al., 1998; Polacheck et al., 2010). The results of tagging studies can, however, be 

compromised if tags or data are lost (i.e., through tag shedding and non-reporting). Both occurrences can lead to 

underestimations in tag-return rates, which create a negative bias in fishing mortality estimates, rates of fishery 

interactions, and tuna movements (Gaertner and Hallier, 2015). Ultimately, this leads to biased estimates of stock 

status. Thus, the objective of this paper is to use AOTTP double-tagging experiments (i.e., experiments in which 

a fish is tagged with two tags simultaneously) to conduct a preliminary estimate of tag-shedding rates for yellowfin 

tuna in the Eastern Atlantic Ocean.  

 

There are two types of tag losses (Wetherall, 1982; Hampton and Kirkwood, 1990): Type-I losses, which reduce 

the number of tags initially put out (immediate tag shedding, immediate tagging mortality, and non-reporting), and 

Type-II losses which occur steadily over time (natural mortality, fishing mortality, permanent emigration, and 

long-term tag shedding). The current paper is only estimating the Type I and II tag shedding components of total 

losses.  

 

 

2. Material and Methods 

 

Data 

 

The data set analysed in this paper was cleaned by the AOTTP staff and after omitting dubious data included a 

total of 4,518 double-tagged release records from which 1061 were recaptured (21.9%), which includes 1.54% of 

fish that have lost one of their tags (Table 1).  

 

Method 

 

Calculations to estimate tag-shedding rates from double-tagging experiments make the assumption that the first 

and second tags are shed at the same rate, independently of one another (e.g., Kirkwood, 1981; Wetherall, 1982; 

Kirkwood and Walker, 1984).  
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The most appropriate approach to model the tag-shedding process is using individual exact times-at-liberty that 

account for differences in the reporting rates of double and single tags (including differences in detection rates). 

This approach also accounts for differences in tag loss driven by the choice of insertion point (i.e., left side or right 

side) of each double tag (e.g., Barrowman and Myers, 1996; Xiao, 1996; Lenarz and Shaw, 1997; Cadigan and 

Brattey, 2006; Smith et al., 2009). Exact time-at-liberty tag-shedding models are formulated by constant-rate 

model as follows. Assume that the probability QA(t) of a tag-type A being retained at time t after release can be 

expressed as: 

 eQ t
AA

LAt )()( −= (Hampton, 1997; Adam and Kirkwood, 2001), 

where α is the retention probability of the immediate Type-I shedding rate, L is the continuous Type-II shedding 

rate. Given this assumption, the probability of observing a tagged fish at time t after release is a combination of 

the reporting rate γ, and the probability of tag Q(t) being retained, which can be expressed as:  

 

)()( tt QP AA
A
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A similar expression can be used to determine differences in the proportion of tags returned over time for fish that 

have been tagged with a different type of tag or at a different insertion position. For non-permanent double-tagging 

experiments, the only recapture information available is whether a fish has retained one or both its tags. If reporting 

rates for double- and single-tagged fish are assumed to be equal the possible tag combinations at recapture are two 

tags (RL), right-tag only (R), and left-tag only (L), which can be expressed as the following outcomes: 
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The probability of observing the outcome i, for a fish captured at time t, for each of these three possible outcomes 

is given by: 
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Estimates of the model parameters are obtained by minimizing the negative log-likelihood of the data conditional 

on recapture times (Barrowman and Myers, 1996): 
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The Bayesian information criterion (BIC) was used to objectively select a model from the set of candidate models 

considered. Each model had different explanatory variables; some, but not all, assumed a constant precision 

parameter.  

( )  )(logˆ,ˆlog2 nKdataLBIC +−=   

where n is the number of observations, K is the number of model parameters, and  is the value 

of the maximized log-likelihood over the unknown parameters, given by the data and the model. The lowest BIC 

value identifies a posteriori which is the most probable model. 

 

However, it is problematic to choose the most probable model when the BIC values are nearly equal. To account 

for any uncertainty associated with model selection, a Bayesian posterior model probability (Pri) was calculated 

for each candidate model i as:  

 

( )dataL /ˆ,ˆ 
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where  

BICBICBIC ii min−=  (Burnham and Anderson, 2002). 

It is noteworthy that the inferential model weights from the BIC selection have the same formula as the Akaike 

weights, but may be interpreted as probabilities of the model (given the data, model set, and prior model 

probabilities of each model). Therefore, the model with the largest Pri is the one with the highest probability of 

being the best model for the data set. 

 

 

3. Results 

 

To investigate the effects of tag position on the tag-shedding rate for yellowfin tuna, we assessed four different 

models in which tag-retention parameters were varied according to the position of the tag.  

 

- Model 1 (A1) assumed that tag position had no effect on tag loss;  

- Model 2 (A2; three model parameters) allowed both LR and LL to vary as a descriptor of position effect 

in the instantaneous rate of long-term tag loss (α is assumed unique);  

- Model 3 (A3; three model parameters) assumed a position effect in the probability that a fish retained its 

tag immediately after tagging (αR and αL can differ, but L is assumed to be independent of the insertion 

point(s));  

- Model 4 (A4) assumed a specific position estimate for all four parameters (αR, αL, LR, and LL).  

 

To reflect the uncertainty associated with ranking and selecting the most plausible model to depict the probability 

of observing the various combinations of right- and left-tagged releases possible, we used both the Akaike 

information criterion corrected for small sample sizes (AICc) and BIC.  

 

Although the AIC and BIC are both penalized-likelihood criteria, they reflect subtle theoretical differences: AIC 

focuses on the best variance-bias tradeoff in a set of candidate models (i.e., the parsimonious model in terms of a 

frequentist approach), while the BIC identifies the “quasi-true” model. Consequently, the type of criteria used can 

drive some differences in which model is selected. In this analysis, the BIC-selected model (A1) suggests that tag 

position did not affect tag-shedding. For the AICc, except for the full model which has the less evidence, neither 

model dominate the others (Table 2). It should be noted that the study conducted in the Indian Ocean showed that 

the tag position affected Type-1 shedding for bigeye and yellowfin (Gaertner and Hallier, 2015). Accounting for 

this aspect can be relevant as in single-tagging experiments, tags are most-commonly inserted into the right side 

of the fish.  

 

The estimates of the Type-I (0.026) and Type-II tag shedding (L (per year) = 0.031) are very close to the values 

obtained from the Indian Ocean Tuna Tagging Program (0.028 and 0.040, respectively). By way of comparison, 

the estimates of α and L from AOTTP double tagging data for the Atlantic bigeye tuna were 0.989 and 0.044 (per 

year), respectively (Gaertner et al, 2018). On the basis of these results, the Atlantic yellowfin shedding rate is 

about 6% the first year at sea and reaches 17% after 5 years at sea (Table 3).  

 

With the aim to assess potential differences in terms of tag-shedding according to the size (FL) at release, the 

double tagging dataset was divided in 3 size categories: yellowfin at release <= 45 cm, > 45 cm and <= 65 cm and 

> 65 cm. Preliminary results presented in Table 4, suggests than Type-I decreases for larger fish at-release (from 

0.037 to 0.019) while the opposite trend is observed for Type II (from 0.01 to 0.07 per year). The combination of 

both types of shedding could have a large impact on larger individuals (31% of tag loss after 5 years). However, 

special attention should be paid before drawing definitive conclusions such as additional factors, e.g. the effect of 

different release teams and tagging experiments conditions, have not been taken into account in the analysis. 

 

This study suggests that tag shedding rate should be taken into account with other sources of uncertainty such as 

the reporting rate in order to estimate exploitation and mortality rates derived from tagging data. 
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Table 1. Number of double-tagged yellowfins by the AOTTP and the percentages of recaptures made with two 

tags (Both) and one tag (Tag 1, assumed to be Left or Tag 2 assumed to be Right).  

_________________________      

Released   

 4,518    

_________________________ 

 Recaptured  

Total (%)   

 Both Right Left  

1,061 21.93 0.71 0.84  

_________________________ 

 

 

 

Table 2. The different parameterizations of the constant-rate shedding model (A1, A2, A3, and A4) considered to 

determine how tag position (Tag1 and Tag2, assumed to be inserted in the left or right side of the fish, respectively) 

differentially affects shedding rates, where K is the number of model parameters; nll is the negative log-likelihood; 

BIC is the Bayesian information criterion; Pri is the Bayesian posterior model probability, AICc is the small-

sample-size corrected version of Akaike information criterion, and Wi is the AICc weight. 

 
 Model α α R α L  L L R  L L  K    nll BIC  Prj  AICc Wj 

 

 A1 0.974    NA    NA  0.031   NA  NA 2  304.382 622.699 0.929 612.776   0.482 

 A2 0.974    NA    NA    NA 0.037 0.026 3  304.306 629.513 0.031 614.635   0.190 

 A3  NA  0.971  0.977  0.031   NA  NA 3  304.081 629.063 0.039 614.184   0.239 

 A4  NA  0.970  0.977   NA 0.027 0.033 4  304.065  635.997 0.001  616.167   0.089 

 

 

 

Table 3. Yearly estimated breakdown of proportions of the Atlantic yellowfin in tags lost, beginning immediately 

post-tagging until five years-at-liberty, by the constant-rate shedding model. 

  

Year after release     0 1 2 3 4 5  

Proportion Lost 0.026 0.056 0.085 0.112 0.140 0.166 

 

 

 

Table 4. Yearly estimated breakdown of proportions of the Atlantic yellowfin in tags lost for 3 size categories at 

release, beginning immediately post-tagging until five years-at-liberty, by the constant-rate shedding model. 

  

Size categories Year after release     0 1 2 3 4 5  

at release Proportion Lost   

<= 45 cm  0.037 0.047 0.056 0.065 0.075 0.084  

>45 and <=65 cm  0.027 0.049 0.071 0.092 0.113 0.133 

> 65 cm  0.019 0.085 0.147 0.205 0.259 0.309 


