Working document presented in the ICES Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas 7, 8 and 9 (WGACEGG). Nantes, France, 19-23 November 2018.

# Acoustic assessment and distribution of anchovy and sardine in ICES Subdivision 9a South during the *ECOCADIZ 2018-07* Spanish survey (July-August 2018) with notes on the distribution of other pelagic species.

Ву

# Fernando Ramos<sup>(1, \*)</sup>, Jorge Tornero<sup>(1)</sup>, Paz Jiménez<sup>(1)</sup>, Paz Díaz<sup>(2)</sup>, Jesús Gago<sup>(2)</sup>, Andrés de la Cruz<sup>(3)</sup>, Ricardo Sánchez-Leal<sup>(1)</sup>

(1) Instituto Español de Oceanografía (IEO), Centro Oceanográfico Costero de Cádiz.

(2) IEO, Centro Oceanográfico Costero de Vigo.

(3) Facultad de Ciencias del Mar y Ambientales. Universidad de Cádiz.

(\*)Cruise leader and corresponding author: e-mail: fernando.ramos@cd.ieo.es

#### ABSTRACT

The present working document summarises a part of the main results obtained from the Spanish (pelagic ecosystem-) acoustic survey conducted by IEO between 31<sup>st</sup> July and 13<sup>rd</sup> August 2018 in the Portuguese and Spanish shelf waters (20-200 m isobaths) off the Gulf of Cadiz onboard the R/V Miguel Oliver. The 21 foreseen acoustic transects were sampled. A total of 25 valid fishing hauls were carried out for echo-trace ground-truthing purposes. This working document only provides abundance and biomass estimates for anchovy and sardine, which are presented with age structure only for anchovy. The distribution of all the mid-sized and small pelagic fish species susceptible of being acoustically assessed is also shown from the mapping of their back-scattering energies. Chub mackerel was the most frequent species in the fishing hauls, followed by sardine, anchovy, mackerel and bogue. Trachurus spp. showed a medium relative frequency of occurrence. Pearlside, snipefish and boarfish only occurred in hauls conducted in the deepest limit of the surveyed area. Anchovy was the most abundant species in these hauls, followed by silvery lightfish, sardine and chub mackerel, with the remaining species showing negligible relative contributions. The estimate of total NASC allocated to the "pelagic fish species assemblage" has been the highest one ever recorded within the time series, denoting a high fish density during the survey. Anchovy was widely distributed over the surveyed area, although showing the highest densities in the Spanish shelf waters and in a secondary nucleus located over the western Portuguese shelf. Largest (and oldest) anchovies were distributed both in the westernmost and easternmost waters and the smallest (and youngest) ones were concentrated in the surroundings of the Guadalquivir river mouth and adjacent shallow waters, including those ones in front of the Bay of Cadiz. Anchovy acoustic estimates in summer 2018 were of 3 063 million fish and 34 908 t (i.e. the second historical biomass maximum in the time-series), well above the historical average (ca. 22 kt), but without showing any clear recent trend. Sardine recorded a very high acoustic echo-integration in summer 2018 as a consequence of the occurrence of very dense mid-water schools in the coastal fringe (20-50 m depth) comprised between Tavira and the surroundings of the Guadalquivir river mouth. The distribution pattern of acoustic densities is quite similar to the one provided by the PELAGO 18 survey in spring although the occurrence of sardine in the surveyed area was more continuous in summer. These facts resulted in summer estimates of 7 955 million fish and 114 631 t, the historical maximum record in terms of abundance and the second maximum in biomass. Spanish waters concentrated the bulk of the population. Such an increasing trend seems to be the result of a greater accessibility of the species to the survey, with the occurrence of many dense schools in the shallowest limits of the surveyed area not usually recorded in the most recent years. In any case, this behaviour should be analysed in more detail between WGACEGG experts.

#### INTRODUCTION

The ECOCADIZ surveys constitute a series of yearly acoustic surveys conducted by IEO in the Subdivision 9a South (Algarve and Gulf of Cadiz, between 20 – 200 m depth) under the "pelagic ecosystem survey" approach onboard R/V Cornide de Saavedra (until 2013, since 2014 on onboard R/V Miguel Oliver). This series started in 2004 with the BOCADEVA 0604 pilot acoustic - anchovy DEPM survey. The following surveys within this new series (named ECOCADIZ since 2006 onwards) are planned to be routinely performed on a yearly basis, although the series, because of the available ship time, has shown some gaps in those years coinciding with the conduction of the triennial anchovy DEPM survey (the true BOCADEVA series, which first survey started in 2005).

Results from the *ECOCADIZ* series are routinely reported to ICES Expert Groups on both stock assessment (formerly in WGMHSA, WGANC, WGANSA, at present in WGHANSA) and acoustic and egg surveys on anchovy and sardine (WGACEGG).

The present Working Document advances some results from the *ECOCADIZ 2018-07* survey. These results will only refer to the acoustic estimates (age-structured ones only for anchovy) and spatial distribution of anchovy and sardine and to inferences on the spatial distribution of other pelagic species from the distribution of the acoustic energy attributed to each of these species.

#### MATERIAL AND METHODS

The *ECOCADIZ 2018-07* survey was carried out between 31<sup>st</sup> July and 13<sup>rd</sup> August 2018 onboard the Spanish R/V *Miguel Oliver* covering a survey area comprising the waters of the Gulf of Cadiz, both Spanish and Portuguese, between the 20 m and 200 m isobaths. The survey design consisted in a systematic parallel grid with tracks equally spaced by 8 nm, normal to the shoreline (**Figure 1**).

Echo-integration was carried out with a *Simrad*<sup>TM</sup> *EK60* echo sounder working in the multi-frequency fashion (18, 38, 70, 120, 200 kHz). Average survey speed was about 10 knots and the acoustic signals were integrated over 1-nm intervals (ESDU). Raw acoustic data were stored for further post-processing using *Echoview*<sup>TM</sup> software package. Acoustic equipment was previously calibrated during the *MEDIAS 2018* acoustic survey, a survey conducted in the Spanish Mediterranean waters just before the *ECOCADIZ* one, following the standard procedures (Demer *et al.*, 2015).

Survey execution and abundance estimation followed the methodologies firstly adopted by the ICES *Planning Group for Acoustic Surveys in ICES Sub-Areas VIII and IX* (ICES, 1998) and the recommendations given by the *Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES areas 7, 8 and 9* (WGACEGG; ICES, 2006a,b).

Fishing stations for echo-trace ground-truthing were opportunistic, according to the echogram information, and they were carried out using a ca. 15 m-mean vertical opening pelagic trawl (*Tuneado* gear) at an average speed of 4 knots. Gear performance and geometry during the effective fishing was monitored with *Simrad™ Mesotech FS20/25* trawl sonar and a *Marport<sup>™</sup> combi TE/TS* (Trawl Eye/Trawl Speed) sensor. Trawl sonar and sensors data from each haul were recorded and stored for further analyses.

Ground-truthing haul samples provided biological data on species and they were also used to identify fish species and to allocate the back-scattering values into fish species according to the proportions found at the fishing stations (Nakken and Dommasnes, 1975).

Length frequency distributions (LFD) by 0.5-cm class were obtained for all the fish species in trawl samples (either from the total catch or from a representative random sample of 100-200 fish). Only those LFDs based on a minimum of 30 individuals and showing a normal distribution were considered for the purpose of the acoustic assessment.

Individual biological sampling (length, weight, sex, maturity stage, stomach fullness, and mesenteric fat content) was performed in each haul for anchovy, sardine (in both species with otolith extraction), mackerel and horse-mackerel species, and bogue.

The following TS/length relationship table was used for acoustic estimation of assessed species (recent IEO standards after ICES, 1998 and recommendations by ICES, 2006a,b):

| Species                                         | <b>b</b> <sub>20</sub> |
|-------------------------------------------------|------------------------|
| Sardine (Sardina pilchardus)                    | -72.6                  |
| Round sardinella (Sardinella aurita)            | -72.6                  |
| Anchovy (Engraulis encrasicolus)                | -72.6                  |
| Chub mackerel (Scomber japonicus)               | -68.7                  |
| Mackerel (S. scombrus)                          | -84.9                  |
| Horse mackerel (Trachurus trachurus)            | -68.7                  |
| Mediterranean horse-mackerel (T. mediterraneus) | -68.7                  |
| Blue jack mackerel (T. picturatus)              | -68.7                  |
| Bogue (Boops boops)                             | -67.0                  |
| Blue whiting (Micromesistius poutassou)         | -67.5                  |
| Silvery lightfish (Maurolicus muelleri)         | -72.2                  |
| Boarfish ( <i>Capros aper</i> )                 | -66.2* (-72.6)         |

\*Boarfish  $b_{20}$  estimate following to Fässler *et al.* (2013). Between parentheses the usual IEO value considered in previous surveys.

The *PESMA 2010* software (J. Miquel, unpublished) has got implemented the needed procedures and routines for the acoustic assessment following the above approach.

A Continuous Underway Fish Egg Sampler (CUFES, 151 stations), a Sea-bird Electronics<sup>TM</sup> SBE 21 SEACAT thermosalinograph and a Turner<sup>TM</sup> 10 AU 005 CE Field fluorometer were used during the acoustic tracking to continuously monitor some hydrographical variables (sub-surface sea temperature, salinity, and *in vivo* fluorescence). Vertical profiles of hydrographical variables were also recorded by night from 161 CTD casts by using Sea-bird Electronics<sup>TM</sup> SBE 911+ SEACAT (with coupled Datasonics altimeter, SBE 43 oximeter, WetLabs ECO-FL-NTU fluorimeter and WetLabs C-Star 25 cm transmissometer sensors) and LADCP T-RDI WHS 300 kHz profilers (Figure 2). VMADCP RDI 150 kHz records were also continuously recorded by night between CTD stations.

Twenty two (22) *Manta trawl* hauls were also carried out to characterize the distribution pattern of micro-plastics over the shelf (**Figure 3**). These hauls did not follow a pre-established sampling scheme although the main goal was to have samples well distributed both in the coastal and oceanic areas of the shelf. Consequently, the hauls were opportunistically carried out taking the advantage of the conduction of fishing hauls, the start or end of an acoustic transect or whatever discrete station devoted to the sampling of either hydrographical or biological variables which were close to the preferred depths.

Information on presence and abundance of sea birds, turtles and mammals was also recorded during the acoustic sampling by one onboard observer.

#### RESULTS

#### Acoustic sampling

The acoustic sampling started on 01<sup>st</sup> August in the coastal end of the transect RA01 and finalized on 11<sup>th</sup> August in the oceanic end of the transect RA21 (**Table 1, Figure 1**). Transects were acoustically sampled in the E-W direction. The whole 21-transect sampling grid was sampled. The acoustic sampling usually started at 06:00 UTC although this time might vary depending on the duration of the works related with the hydrographic sampling. The foreseen start of transects RA14 and RA15 by the coastal end had to be displaced into deeper waters in order to avoid the occurrence of open-sea fish farming/fattening cages.

#### **Groundtruthing hauls**

Twenty five (25) fishing operations, all of them being considered as valid ones according to a correct gear performance and resulting catches, were carried out (**Table 2**, **Figure 4**).

As usual in previous surveys, some fishing hauls were attempted by fishing over an isobath crossing the acoustic transect as close as possible to the depths where the fishing situation of interest was detected over that transect. In this way the mixing of different size compositions (*i.e.*, bi-, multi-modality of length frequency distributions) was avoided as well as a direct interaction with fixed gears. The mixing of sizes is more probable close to nursery-recruitment areas and in regions with a very narrow continental shelf. This type of hauls is also conducted in depths showing hard and/or very irregular bottoms. Given that all of these situations were not very uncommon in the sampled area, 40% of valid hauls (10 hauls) were conducted over isobath.

Because of many echo-traces usually occurred close to the bottom, all the pelagic hauls were carried out like a bottom-trawl haul, with the ground rope working over or very close to the bottom. According to the above, the sampled depth range in the valid hauls oscillated between 41-185 m.

During the survey were captured 1 Chondrichthyan, 29 Osteichthyes, 5 Cephalopod and 3 Crustacean species. The percentage of occurrence of the more frequent species in the trawl hauls is shown in the enclosed **text table below** (see also **Figure 5**). The pelagic ichthyofauna was the most frequently captured species set and the one composing the bulk of the overall yields of the catches. Within this pelagic fish species set, chub mackerel was the most frequent captured species in the valid hauls (24 hauls, 96% presence index) followed by sardine, anchovy, mackerel and bogue (with relative occurrences between 60-92%). *Trachurus* spp. showed a medium relative frequency of occurrence (ca. 20-48%), whereas silver lightfish (*Maurolicus muelleri*, 16%), snipefish (*Macrorhamphosus scolopax*, 8%) and boarfish (*Capros aper*, 4%) showed either a low or very low occurrence in the whole surveyed area. Round sardinella and blue whiting were absent in the hauls of the present survey.

For the purposes of the acoustic assessment, anchovy, sardine, mackerel species, horse & jack mackerel species, bogue, silver lightfish and boarfish were initially considered as the survey target species. All of the invertebrates, and both bentho-pelagic (*e.g.*, manta rays) and benthic fish species (*e.g.*, flatfish, gurnards, etc.) were excluded from the computation of the total catches in weight and in number from those fishing stations where they occurred. Catches of the remaining non-target species were included in an operational category termed as "*Others*".

According to the above premises, during the survey were captured a total of 20.5 tonnes and 954 thousand fish (**Table 3**). 38% of this fished biomass corresponded to chub mackerel, 31% to sardine, 26% to anchovy, and contributions lower than 1% to the remaining species. The most abundant species in ground-truthing trawl hauls was anchovy (39%) followed by silver light fish (27%), sardine (19%) and chub mackerel (15%), with the remaining species showing lower contributions than 0.1%.

| Species                 | # of fishing stations | Occurrence (%) | Total weight (kg) | Total number |
|-------------------------|-----------------------|----------------|-------------------|--------------|
| Scomber colias          | 24                    | 96             | 7878,981          | 142227       |
| Sardina pilchardus      | 23                    | 92             | 6425,485          | 183976       |
| Merluccius merluccius   | 23                    | 92             | 101,66            | 874          |
| Engraulis encrasicolus  | 22                    | 88             | 5323,439          | 369728       |
| Scomber scombrus        | 20                    | 80             | 84,958            | 452          |
| Boops boops             | 15                    | 60             | 82,441            | 654          |
| Loligo subulata         | 15                    | 60             | 1,606             | 532          |
| Spondyliosoma cantharus | 13                    | 52             | 51,951            | 356          |
| Loligo media            | 13                    | 52             | 1,696             | 583          |
| Trachurus trachurus     | 12                    | 48             | 74,959            | 703          |
| Trachurus picturatus    | 12                    | 48             | 5,301             | 76           |
| Loligo vulgaris         | 9                     | 36             | 1,427             | 37           |
| Pagellus erythrinus     | 8                     | 32             | 87,247            | 530          |
| Diplodus bellottii      | 6                     | 24             | 9,114             | 149          |
| Diplodus vulgaris       | 6                     | 24             | 47,125            | 296          |
| Aphia minuta            | 6                     | 24             | 0,119             | 203          |
| Trachurus mediterraneus | 5                     | 20             | 48,755            | 275          |
| Diplodus annularis      | 5                     | 20             | 3,374             | 55           |
| Spicara flexuosa        | 5                     | 20             | 2,381             | 33           |
| Alosa fallax            | 4                     | 16             | 1,583             | 6            |
| Pagellus acarne         | 4                     | 16             | 6,491             | 33           |
| Trachinus draco         | 4                     | 16             | 0,518             | 4            |
| Maurolicus muelleri     | 4                     | 16             | 148,71            | 253722       |
| Pagellus bellottii      | 3                     | 12             | 5,815             | 31           |
| Mola mola               | 2                     | 8              | 13,5              | 4            |
| Illex coindetii         | 2                     | 8              | 0,134             | 4            |
| Macroramphosus scolopax | 2                     | 8              | 0,056             | 16           |
| Capros aper             | 1                     | 4              | 1,375             | 304          |

The species composition, in terms of percentages in number, in each valid fish station is shown in **Figure 5**. A first impression of the distribution pattern of the main species may be derived from the above figure. Thus, anchovy showed a relatively wide distribution over the surveyed area, although the highest yields were recorded in the Spanish waters. The size composition of anchovy catches confirms the usual pattern exhibited by the species in the area during the survey season, with the largest fish inhabiting the westernmost waters and the smallest ones concentrated in the surroundings of the Guadalquivir river mouth and adjacent shallow waters (**Figure 6**). Sardine was also widely distributed in the surveyed area. Juvenile sardines were mainly captured in the shallowest hauls conducted in the coastal fringe between Tinto-Odiel river mouth and the Bay of Cadiz, with a secondary nucleus of occurrence in the surroundings of Cape Santa Maria (**Figure 7**). Chub mackerel, horse mackerel, blue jack mackerel and bogue, although they occurred in a great part of the study area, only showed relatively high yields in the Portuguese waters. Mediterranean horse mackerel was restricted to the easternmost Spanish waters. The size composition of these last species in fishing hauls is shown in **Figure 8** to **15**.

#### Back-scattering energy attributed to the "pelagic assemblage" and individual species

A total of 335 nmi (ESDU) from 21 transects has been acoustically sampled by echo-integration for assessment purposes. From this total, 218 nmi (11 transects) were sampled in Spanish waters, and 117 nmi

(10 transects) in the Portuguese waters. The enclosed text table below provides the nautical area-scattering coefficients attributed to each of the selected target species and for the whole "pelagic fish assemblage".

| S <sub>A</sub><br>2 -2<br>(m nmi ) | Total<br>spp.     | PIL              | ANE             | MAC          | MAS             | ном          | нмм           | JAA          | BOG           | BOC          | MAV            |
|------------------------------------|-------------------|------------------|-----------------|--------------|-----------------|--------------|---------------|--------------|---------------|--------------|----------------|
| Total<br>Area<br>(%)               | 241648<br>(100,0) | 117882<br>(48,8) | 44153<br>(18,3) | 27<br>(0,01) | 51973<br>(21,5) | 472<br>(0,2) | 1585<br>(0,7) | 41<br>(0,02) | 3585<br>(1,5) | 9<br>(0,004) | 21920<br>(9,1) |
| Portugal                           | 65910             | 20194            | 4336            | 5            | 36521           | 436          | 0             | 34           | 1276          | 9            | 3100           |
| (%)                                | (27,3)            | (17,1)           | (9,8)           | (19,1)       | (70,3)          | (92,3)       | (0,0)         | (83,3)       | (35,6)        | (100,0)      | (14,1)         |
| Spain                              | 182864            | 97688            | 39817           | 22           | 15453           | 36           | 1585          | 7            | 2309          | 0            | 18819          |
| (%)                                | (72,7)            | (82,9)           | (90,2)          | (80,9)       | (29,7)          | (7,7)        | (100,0)       | (16,7)       | (64,4)        | (0,0)        | (85,9)         |

For this "pelagic fish assemblage" has been estimated a total of 241 648 m<sup>2</sup> nmi<sup>-2</sup>, the highest estimate ever recorded within the time-series (**Figure 16**). Portuguese waters accounted for 27% of this total back-scattering energy and the Spanish waters the remaining 73%. However, given that the Portuguese sampled ESDUs were almost the half of the Spanish ones, the (weighted-) relative importance of the Portuguese area (*i.e.*, its density of "pelagic fish") is actually much higher. The mapping of the total back-scattering energy is shown in **Figure 16**. By species, sardine (49%), chub mackerel (22%) and anchovy (18%) were the most important species in terms of their contributions to the total back-scattering energy. Silvery lightfish (9%), bogue (1.5%) and Mediterranean horse mackerel (1%) were the following species in importance. The remaining species contributed with less than 0.2% only.

Some inferences on the species' distribution may be carried out from regional contributions to the total energy attributed to each species: Mediterranean horse mackerel, anchovy, silvery lightfish, sardine, mackerel and bogue seemed to show greater densities in the Spanish waters, whereas chub mackerel, blue jack mackerel, horse mackerel and boarfish could be considered as typically "Portuguese species" in this survey.

According to the resulting values of integrated acoustic energy, the species acoustically assessed in the present survey finally were anchovy, sardine, mackerel, chub mackerel, blue jack mackerel, horse mackerel, Mediterranean horse mackerel, bogue.

#### Spatial distribution and abundance/biomass estimates

#### Anchovy

Parameters of the survey's length-weight relationship for anchovy are given in **Table 4**. The backscattering energy attributed to this species and the coherent strata considered for the acoustic estimation are shown in **Figure 17**. The estimated abundance and biomass by size and age class are given in **Tables 5** and **6**, and **Figures 18** and **19**.

Anchovy was widely distributed over the surveyed area, although showing the highest densities in the Spanish shelf waters between El Rompido (RA10) and Bay of Cadiz (RA03), and in a secondary nucleus located over the Portuguese shelf, between Alfanzina (RA18) and Cape of Santa Maria (RA15) (Figure 17). This distribution pattern differed from the exhibited one during the *PELAGO* spring survey, when anchovy was restricted to a zone comprised between Vila Real Sto. Antonio (easternmost Portuguese waters) and the Bay of Cadiz.

Twelve (12) coherent post-strata have been differentiated according to the S<sub>A</sub> value distribution and the size composition in the fishing stations (**Figure 17**). The acoustic estimates by homogeneous post-stratum and total area are shown in **Tables 5** and **6** and **Figures 18** and **19**. Overall acoustic estimates in summer 2018 were of 3 063 million fish and 34 908 tonnes. By geographical strata, the Spanish waters yielded 93%

(2 839 million) and 88% (30 683 t) of the total estimated abundance and biomass in the Gulf, confirming the importance of these waters in the species' distribution. The estimates for the Portuguese waters were 224 million and 4 225 t. The current biomass estimate (34 908 t) becomes in the second historical maximum within the time-series (2006: 35 539 t; 2016: 34 184 t; see **Figure 31**). The *PELAGO 18* spring Portuguese survey previously estimated for this same area 23 473 t (2 157 million): 4 328 t (300 million) in Portuguese waters and 19 145 t (1 857 million) in Spanish waters.

The size class range of the assessed population varied between the 9.0 and 17.0 cm size classes, with one main modal class at 12.0 cm. The size composition of anchovy by coherent post-strata confirms the usual pattern exhibited by the species in the area during the spawning season, with the largest (and oldest) fish being distributed both in the westernmost and easternmost waters and the smallest (and youngest) ones concentrated in the surroundings of the Guadalquivir river mouth and adjacent shallow waters, including those ones in front of the Bay of Cadiz (**Table 5; Figures 18** and **19;** see also **Figure 6**).

The population was composed by fishes not older than 2 years. As it has been happening in the last years, during the 2018 survey some recruitment (age 0 fish) has also been recorded, probably as a consequence of the delayed survey dates. In fact, age 0 fish accounted for 46 and 35% of the total estimated abundance and biomass, respectively. Age 1 fish represented 53% and 62% of the total abundance and biomass (**Table 6**; **Figure 19**).

The Gulf of Cadiz anchovy egg distribution from CUFES sampling is shown in **Figure 20**. Anchovy egg distribution and densities in summer 2018 are quite coincident with that of adults. The estimated total egg density is at the same magnitude than the observed in the most recent years but such estimates are lower than the historical average. Notwithstanding the above, the extension of the spawning area was among the highest one ever recorded (the second historical peak in the series).

## Sardine

Parameters of the survey's size-weight relationship for sardine are shown in **Table 4**. The back-scattering energy attributed to this species and the coherent strata considered for the acoustic estimation are shown in **Figure 21**. Estimated abundance and biomass by size and age class are given in **Tables 7** and **8** and **Figures 22** and **23**.

Sardine recorded a very high acoustic echo-integration in summer 2018 as a consequence of the occurrence of very dense mid-water schools in the coastal fringe (20-50 m depth) comprised between Tavira (RA13) and the surroundings of the Guadalquivir river mouth (RA05; see **Annex** figures). The distribution pattern of acoustic densities is quite similar to the one provided by the *PELAGO* survey in spring although the occurrence of sardine in the surveyed area was more continuous in summer (**Figure 21**).

Fourteen (14) size-based homogeneous sectors were delimited for the acoustic assessment (**Figure 21**). The estimates of Gulf of Cadiz sardine abundance and biomass in summer 2018 were 7 955 million fish and 114 631 t, the historical maximum record in terms of abundance and the second maximum in biomass (the historical maximum was reached in 2006: 123 849 t; see **Figure 31**). Spanish waters concentrated the bulk of the population (7 239 million and 90 214 t). The estimates for the Portuguese waters were 716 million and 24 417 t. The *PELAGO 18* spring Portuguese survey previously estimated for this same area 58 561 t (6 680 million): 22 627 t (1 097 million) in Portuguese waters and 35 934 t (5 583 million) in Spanish waters.

Sizes of the assessed population ranged between 8.0 and 20.5 cm size classes. The length frequency distribution of the population was clearly bimodal, with one main mode at 11.5 cm size class and a secondary one at 17.0 cm (**Table 7**; **Figure 22**). The 2018 summer estimate of mean size (122 mm) is among the lowest estimates within the series. This fact might be explained by the relative importance of the juvenile fraction in the estimated population ( $\leq$ 11.5 cm), which was mainly located in relatively shallow waters in front of the Cape Santa Maria and along the coastal fringe comprised between the Guadiana and Guadalquivir river mouths and the Bay of Cadiz (**Table 7**; **Figure 22**; see also **Figure 7**). Such a decrease in mean size was coupled with a similar decreasing trend in the mean weight (14.4 g), which was well below the historical average. The contribution in biomass of the adult fraction in the assessed population (around at a main modal size class at 17.5 cm) may be not enough to compensate the greater relative contribution of juveniles.

#### Mackerel

Parameters of the survey's length-weight relationship are shown in **Table 4**. The distribution of the back-scattering energy attributed to this species is shown in **Figure 23**.

Atlantic mackerel showed very low acoustic records during the 2018 survey, which were mainly observed all over the shelf located in the central part of the Gulf of Cadiz (Figure 23).

#### **Chub mackerel**

Parameters of the survey's length-weight relationship are shown in **Table 4**. The distribution of the backscattering energy attributed to this species is shown in **Figure 24**.

Contrarily to the pattern described for the Atlantic mackerel, the acoustic energy allocated to its close relative, Chub mackerel, accounted for 21.5% of the total acoustic energy attributed to fish in the survey. The population was mainly concentrated in the westernmost waters of the Gulf, between Cape San Vicente and Cape Santa Maria, with a secondary nucleus of fish density in the easternmost waters, from the Bay of Cadiz to the Strait of Gibraltar (**Figure 24**).

#### Blue jack-mackerel

The survey's length-weight relationship for this species is given in **Table 4**. The distribution of the backscattering energy attributed to this species is illustrated in **Figure 25**.

The distribution pattern of the very low acoustic densities attributed to Blue jack mackerel closely resembled to the described one for horse mackerel (Figure 25).

#### Horse mackerel

The survey's length-weight relationship for horse mackerel is shown in **Table 4**. The back-scattering energy attributed to this species is shown in **Figure 26** 

Horse mackerel showed very low acoustic densities in the surveyed area, with the species being almost absent in the easternmost shelf and showing relatively higher densities in the shelf area comprised between Cape San Vicente and Cape Santa Maria (Figure 26).

#### Mediterranean horse-mackerel

The survey's length-weight relationship for this species is shown in **Table 4**. Back-scattering energy attributed to the species is represented in **Figure 27**.

Mediterranean horse mackerel was restricted, as usual, to the Spanish waters, with the highest densities being recorded in the inner shelf waters of the central part of the Gulf (Figure 27).

#### Bogue

Parameters of the survey's length-weight relationship for bogue are shown in **Table 4**. Back-scattering energy attributed to bogue is shown in **Figure 28**.

Bogue was distributed practically all over the shelf of the surveyed area, although showed its highest densities over the inner shelf of both the central and westernmost waters of the Gulf (Figure 28).

#### Boarfish

The survey's length-weight relationship for this species is shown in **Table 4**. Back-scattering energy attributed to the species is represented in **Figure 29**.

Boarfish showed an incidental occurrence restricted to the outer shelf waters jus to the west of Cape of Santa Maria (Figure 29).

#### Pearlside

The survey's length-weight relationship for this species is shown in **Table 4**. Back-scattering energy attributed to the species is represented in **Figure 30**.

The constant occurrence of pearlside in somewhat shallower waters than usual in the 2018 survey has resulted in its acoustic detection in the surveyed area (9% of the total acoustic energy), just in the transition between outer shelf and upper slope waters. Higher densities were recorded in the Spanish outer shelf (**Figure 30**).

## (SHORT) DISCUSSION

The total NASC estimated in this survey for "pelagic fish assemblage", 241 648 m<sup>2</sup> nmi<sup>-2</sup>, is the highest estimate ever recorded within the time-series (**Figure 16**). Such a sharp increase in acoustic energy may be the result of the combination of several facts, namely, a very high NASC allocated to sardine because the occurrence during this survey of very dense schools in coastal (20-40 m) waters in the central part of the Gulf (see **Annex** figures); a very high NASC allocated to anchovy (mainly in Spanish waters) and chub mackerel (in Portuguese ones); and the high acoustic detection of pearlside in the shelf break, not detected in previous surveys, when its occurrence was occasional and detected in the shallow waters of the upper slope, but not penetrating in the deepest survey limit at 200 m depth.

The current anchovy biomass estimate (34 908 t) becomes in the second historical maximum within the time-series (2006: 35 539 t; 2016: 34 184 t; see **Figure 31**) and denotes a strong increase in relation to the previous year, up to levels well above the historical average (ca. 22 kt), but without showing any clear recent trend. Although the spring *PELAGO 18* survey also estimated increased population levels, such increase was not so pronounced as the estimated by its summer counterpart.

The estimates of Gulf of Cadiz sardine abundance and biomass in summer 2018 were 7 955 million fish and 114 631 t, the historical maximum record in terms of abundance and the second maximum in biomass (the historical maximum was reached in 2006: 123 849 t; see **Figure 31**). As described above, such an increasing trend seems to be the result of a greater availability of the species to the survey, with the occurrence of many dense schools in the shallowest limits of the surveyed area not usually recorded in the most recent years. In any case, these estimates should be analysed in more depth and compared with those ones provided by the Portuguese spring *PELAGO* survey in a standardisation exercise of echograms scrutiny.

## ACKNOWLEDGMENTS

We are very grateful to the crew of the R/V *Miguel Oliver* and to all the scientific and technical staff participating in the present survey.



This survey has been funded by the EU through the European Maritime and Fisheries Fund (EMFF) within the National Program of collection, management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries Policy.

## REFERENCES

Demer, D.A., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos, R., *et al.* 2015. Calibration of acoustic instruments. *ICES Coop. Res. Rep*, 326, 133 pp.

Fässler, S.M.M., O'Donnell, C., Jech, J.M, 2013. Boarfish (*Capros aper*) target strength modelled from magnetic resonance imaging (MRI) scans of its swimbladder. *ICES Journal of Marine Science*, 70: 1451–1459.

ICES, 1998. Report of the Planning Group for Acoustic Surveys in ICES Sub-Areas VIII and IX. A Coruña, 30-31 January 1998. *ICES CM 1998/G:2*.

ICES, 2006a. Report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES areas VIII and IX (WGACEGG), 24-28 October 2005, Vigo, Spain. *ICES, C.M. 2006/LRC: 01.* 126 pp.

ICES, 2006b. Report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas VIII and IX (WGACEGG), 27 November-1 December 2006, Lisbon, Portugal. *ICES C.M. 2006/LRC:18*. 169 pp.

Jiménez, M.P., Tornero, J., González, C., Ramos, F., Sánchez-Leal, R.F. 2017. Anchovy spawning stock biomass of the Gulf of Cadiz in 2017 by the DEPM. Working document presented to the ICES Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas 7, 8 and 9. Cádiz (Spain), 13 – 17 November 2017.

Nakken, O., Dommasnes, A, 1975. The application for an echo integration system in investigations on the stock strength of the Barents Sea capelin (*Mallotus villosus*, Müller) 1971-74. *ICES CM 1975/B:25*.

Torres, M.A., Ramos, F., Sobrino, I., 2012. Length–weight relationships of 76 fish species from the Gulf of Cadiz (SW Spain). *Fish. Res.* (127-128): 171-175.

|                   |                      |          |               | Start         |          |                |               | End           |          |                |
|-------------------|----------------------|----------|---------------|---------------|----------|----------------|---------------|---------------|----------|----------------|
| Acoustic<br>Track | Location             | Date     | Latitude      | Longitude     | UTC time | Mean depth (m) | Latitude      | Longitude     | UTC time | Mean depth (m) |
| R01               | Trafalgar            | 01/08/18 | 36º 12,968' N | 06º 08,805' W | 06:22    | 24             | 36º 02,075' N | 06º 28,864' W | 08:29    | 240            |
| R02               | Sancti-Petri         | 01/08/18 | 36º 08,505' N | 06º 34,300' W | 09:25    | 210            | 36º 19,420' N | 06º 14,410' W | 16:14    | 28             |
| R03               | Cádiz                | 02/08/18 | 36º 27,223' N | 06º 19,149' W | 06:03    | 26             | 36º 17,589' N | 06º 36,655' W | 09:31    | 222            |
| R04               | Rota                 | 02/08/18 | 36º 23,300' N | 06º 42,290' W | 10:31    | 240            | 36º 34,510' N | 06º 23,110' W | 16:24    | 23             |
| R05               | Chipiona             | 03/08/18 | 36º 40,194' N | 06º 29,819' W | 06:00    | 24             | 36º 31,311' N | 06º 46,083' W | 09:34    | 188            |
| R06               | Doñana               | 03/08/18 | 36º 37,740' N | 06º 51,950' W | 10:37    | 177            | 36º 47,050' N | 06º 34,916' W | 14:02    | 19             |
| R07               | Matalascañas         | 04/08/18 | 36º 53,839' N | 06º 40,548' W | 06:01    | 22             | 36º 44,078' N | 06º 58,368' W | 09:43    | 200            |
| R08               | Mazagón              | 04/08/18 | 36º 48,740' N | 07º 07,181' W | 13:44    | 228            | 37º 01,260' N | 06º 44,189' W | 17:18    | 21             |
| R09               | Punta Umbría         | 05/08/18 | 37º 03,767' N | 06º 56,501' W | 06:01    | 29             | 36º 49,549' N | 07º 06,669' W | 09:58    | 210            |
| R10               | El Rompido           | 05/08/18 | 36º 50,130' N | 07º 07,250' W | 12:06    | 165            | 37º 07,233' N | 07º 07,255' W | 17:31    | 21             |
| R11               | Isla Cristina        | 06/08/18 | 37º 07,169' N | 07º 16,685' W | 06:07    | 23             | 36º 53,349' N | 07º 16,699' W | 08:58    | 234            |
| R12               | V.R. do Sto. Antonio | 06/08/18 | 36º 56,200' N | 07º 26,500' W | 13:39    | 135            | 37º 06,350' N | 07º 26,540' W | 16:25    | 19             |
| R13               | Tavira               | 07/08/18 | 37º 04,820' N | 07º 36,049' W | 05:59    | 21             | 36º 56,959' N | 07º 36,100' W | 08:17    | 216            |
| R14               | Fuzeta               | 07/08/18 | 36º 55,881' N | 07º 45,985' W | 15:34    | 161            | 36º 59,267' N | 07º 46,044' W | 15:54    | 60             |
| R15               | Cabo Sta. María      | 08/08/18 | 36º 55,129' N | 07º 55,978' W | 06:00    | 70             | 36º 52,015' N | 07º 55,999' W | 06:18    | 178            |
| R16               | Cuarteira            | 08/08/18 | 36º 50,130' N | 08º 05,910' W | 11:29    | 202            | 37º 01,389' N | 08º 05,842' W | 14:28    | 20             |
| R17               | Albufeira            | 09/08/18 | 37º 02,494' N | 08º 15,452' W | 06:12    | 29             | 36º 49,338' N | 08º 15,499' W | 09:33    | 204            |
| R18               | Alfanzina            | 09/08/18 | 36º 50,370' N | 08º 25,300' W | 11:43    | 202            | 37º 03,750' N | 08º 25,279' W | 14:49    | 29             |
| R19               | Portimao             | 10/08/18 | 37º 05,785' N | 08º 35,372' W | 06:04    | 27             | 36º 50.381' N | 08º 35,398' W | 09:40    | 202            |
| R20               | Burgau               | 10/08/18 | 36º 52,340' N | 08º 45,002' W | 12:03    | 111            | 37º 03,200' N | 08º 45,000' W | 13:08    | 20             |
| R21               | Ponta de Sagres      | 11/08/18 | 37º 00,038' N | 08º 54,980' W | 06:01    | 23             | 36º 50,790' N | 08º 55,000' W | 08:12    | 202            |

**Table 1.** ECOCADIZ 2018-07 survey. Descriptive characteristics of the acoustic tracks.

|                    |            |               |              | POS    | TION          |              |        |       |       | TIMING    |           |                              |                      |                            |
|--------------------|------------|---------------|--------------|--------|---------------|--------------|--------|-------|-------|-----------|-----------|------------------------------|----------------------|----------------------------|
| FISHING<br>STATION | DATE       |               | START        |        |               | END          |        | START | END   | EFFECTIVE |           | TRAWLED<br>DISTANCE<br>(nmi) | ACOUSTIC<br>TRANSECT | ZONE/LANDMARK              |
|                    |            | LAT.          | LON.         | PROF.  | LAT.          | LON.         | PROF.  | UTC   | UTC   | TRAVULING | WANEOUVRE | , ,                          |                      |                            |
| PE01               | 01-08-2018 | 36º 16.5388 N | 6º 19.5235 W | 43,4   | 36º 15.1167 N | 6º 22.2324 W | 49,85  | 11:13 | 11:50 | 0:37      | 1:00      | 2,611                        | R02                  | Sancti-Petri               |
| PE02               | 01-08-2018 | 36º 12.8734 N | 6º 26.3475 W | 81,22  | 36º 11.1748 N | 6º 29.4739 W | 109,27 | 13:20 | 14:03 | 0:42      | 1:11      | 3,046                        | R02                  | Sancti-Petri               |
| PE03               | 02-08-2018 | 36º 23.8087 N | 6º 25.3450 W | 56,12  | 36º 25.5262 N | 6º 22.1794 W | 45,31  | 07:05 | 07:49 | 0:44      | 1:05      | 3,077                        | R03                  | Cádiz                      |
| PE04               | 02-08-2018 | 36º 23.6157 N | 6º 39.5761 W | 185,48 | 36º 24.7228 N | 6º 40.0975 W | 178,73 | 11:56 | 12:13 | 0:17      | 0:46      | 1,183                        | R04                  | Rota                       |
| PE05               | 02-08-2018 | 36º 29.9443 N | 6º 31.0648 W | 61,33  | 36º 27.5509 N | 6º 35.1775 W | 91,93  | 13:54 | 14:51 | 0:57      | 1:21      | 4,088                        | R04                  | Rota                       |
| PE06               | 03-08-2018 | 36º 33.4984 N | 6º 41.9919 W | 103,93 | 36º 35.0322 N | 6º 39.2943 W | 77,67  | 07:53 | 08:31 | 0:37      | 1:07      | 2,659                        | R05                  | Chipiona                   |
| PE07               | 03-08-2018 | 36º 40.7883 N | 6º 46.3366 W | 93,12  | 36º 39.2739 N | 6º 49.1025 W | 115,33 | 11:37 | 12:15 | 0:37      | 1:02      | 2,69                         | R06                  | Doñana                     |
| PE08               | 03-08-2018 | 36º 43.6651 N | 6º 41.0337 W | 42,56  | 36º 42.1558 N | 6º 43.8061 W | 68,46  | 14:44 | 15:23 | 0:38      | 1:00      | 2,691                        | R06                  | Doñana                     |
| PE09               | 04-08-2018 | 36º 45.7464 N | 6º 55.4163 W | 115,32 | 36º 47.5804 N | 6º 51.7888 W | 89,78  | 07:54 | 8:42  | 0:47      | 1:14      | 3,442                        | R07                  | Matalascañas               |
| PE10               | 04-08-2018 | 36º 45.3789 N | 6º 56.0539 W | 119,9  | 36º 47.1727 N | 6º 52.6827 W | 95,67  | 11:23 | 12:08 | 0:45      | 1:07      | 3,247                        | R07                  | Matalascañas               |
| PE11               | 04-08-2018 | 36º 55.9969 N | 6º 50.1088 W | 43,19  | 36º 57.4765 N | 6º 51.7540 W | 43,34  | 15:40 | 16:08 | 0:27      | 0:47      | 1,981                        | R08                  | Mazagón                    |
| PE12               | 05-08-2018 | 36º 57.3658 N | 6º 58.5016 W | 61,49  | 36º 58.9450 N | 7º 01.6909 W | 60,04  | 07:52 | 08:34 | 0:42      | 1:03      | 3,003                        | S/D                  | Sin Datos                  |
| PE13               | 05-08-2018 | 36º 55.4889 N | 7º 07.2582 W | 99,23  | 36º 52.2136 N | 7º 07.2657 W | 128,88 | 13:03 | 13:49 | 0:45      | 1:12      | 3,271                        | R10                  | El Rompido                 |
| PE14               | 05-08-2018 | 36º 57.6004 N | 7º 05.9353 W | 82,83  | 36º 58.5603 N | 7º 08.7571 W | 80,93  | 15:41 | 16:16 | 0:34      | 1:00      | 2,456                        | R10                  | El Rompido                 |
| PE15               | 06-08-2018 | 37º 02.2915 N | 7º 14.7397 W | 54,41  | 37º 02.3526 N | 7º 16.8729 W | 53,8   | 07:18 | 07:41 | 0:23      | 0:47      | 1,709                        | R11                  | Isla Cristina              |
| PE16               | 06-08-2018 | 36º 59.6457 N | 7º 26.5813 W | 99,83  | 36º 56.9236 N | 7º 26.4835 W | 131,28 | 14:29 | 15:07 | 0:38      | 1:01      | 2,72                         | R12                  | Vila Real do Santo Antonio |
| PE17               | 07-08-2018 | 37º 03.3214 N | 7º 34.7989 W | 52,5   | 37º 02.6311 N | 7º 36.4885 W | 53,06  | 06:55 | 07:16 | 0:21      | 0:50      | 1,518                        | R13                  | Tavira                     |
| PE18               | 07-08-2018 | 36º 57.8928 N | 7º 36.0870 W | 126,24 | 36º 59.0218 N | 7º 36.0957 W | 109,91 | 08:53 | 09:09 | 0:15      | 2:03      | 1,128                        | R13                  | Tavira                     |
| PE19               | 08-08-2018 | 36º 54.7846 N | 7º 56.5828 W | 73,27  | 36º 55.2130 N | 7º 54.2592 W | 77,05  | 07:14 | 07:41 | 0:27      | 0:49      | 1,912                        | R15                  | Cabo de Santa María        |
| PE20               | 08-08-2018 | 36º 53.4466 N | 8º 05.8354 W | 96,92  | 36º 50.6529 N | 8º 05.8903 W | 123,2  | 12:24 | 13:03 | 0:39      | 1:10      | 2,791                        | R16                  | Cuarteira                  |
| PE21               | 08-08-2018 | 36º 58.7931 N | 8º 06.8914 W | 41,79  | 36º 58.2543 N | 8º 04.7586 W | 41,45  | 15:19 | 15:44 | 0:25      | 0:42      | 1,792                        | R16                  | Cuarteira                  |
| PE22               | 09-08-2018 | 36º 54.9072 N | 8º 15.7515 W | 91,9   | 36º 54.3112 N | 8º 13.7479 W | 91,7   | 08:13 | 08:37 | 0:24      | 0:45      | 1,713                        | R17                  | Albufeira                  |
| PE23               | 09-08-2018 | 36º 54.1354 N | 8º 25.2601 W | 120    | 36º 51.6123 N | 8º 25.2973 W | 135,35 | 12:36 | 13:12 | 0:36      | 1:02      | 2,52                         | R18                  | Alfanzina                  |
| PE24               | 09-08-2018 | 36º 59.8305 N | 8º 24.4468 W | 43,17  | 37º 00.1414 N | 8º 26.8555 W | 46,94  | 15:50 | 16:18 | 0:27      | 0:50      | 1,954                        | R18                  | Alfanzina                  |
| PE25               | 10-08-2018 | 36º 54.4809 N | 8º 35.3532 W | 104,35 | 36º 56.5975 N | 8º 35.3839 W | 78,75  | 08:15 | 08:44 | 0:28      | 1:00      | 2,114                        | R19                  | Portimao                   |

**Table 2.** ECOCADIZ 2018-07 survey. Descriptive characteristics of the fishing stations.

|                 |        |        |        |     | Α   | BUND | ANCE (n | ₽)  |     |        |     |               |        |
|-----------------|--------|--------|--------|-----|-----|------|---------|-----|-----|--------|-----|---------------|--------|
| Fishing station | ANE    | PIL    | MAS    | мас | ном | JAA  | нмм     | BOG | вос | MAV    | SNS | OTHERS<br>SPP | TOTAL  |
| 01              | 27     | 490    | 25920  | 0   | 0   | 0    | 119     | 6   | 0   | 0      | 0   | 185           | 26747  |
| 02              | 19266  | 0      | 9887   | 2   | 0   | 0    | 0       | 0   | 0   | 0      | 0   | 36            | 29191  |
| 03              | 15273  | 8419   | 408    | 1   | 0   | 0    | 25      | 13  | 0   | 0      | 0   | 230           | 24369  |
| 04              | 0      | 0      | 4      | 26  | 0   | 0    | 0       | 0   | 0   | 253693 | 0   | 46            | 253769 |
| 05              | 36523  | 23     | 15335  | 10  | 0   | 0    | 23      | 11  | 0   | 0      | 0   | 117           | 52042  |
| 06              | 29669  | 718    | 8      | 11  | 2   | 8    | 0       | 0   | 0   | 0      | 0   | 116           | 30532  |
| 07              | 48902  | 8105   | 117    | 32  | 5   | 2    | 0       | 0   | 0   | 4      | 0   | 21            | 57188  |
| 08              | 21463  | 228    | 5      | 9   | 0   | 0    | 59      | 7   | 0   | 0      | 0   | 37            | 21808  |
| 09              | 25261  | 4028   | 189    | 21  | 0   | 1    | 0       | 0   | 0   | 6      | 0   | 31            | 29537  |
| 10              | 32494  | 3985   | 452    | 1   | 0   | 0    | 0       | 0   | 0   | 0      | 0   | 1             | 36933  |
| 11              | 9200   | 4455   | 1      | 23  | 1   | 0    | 49      | 109 | 0   | 0      | 0   | 273           | 14111  |
| 12              | 7699   | 56273  | 5864   | 112 | 0   | 0    | 0       | 11  | 0   | 0      | 0   | 4             | 69963  |
| 13              | 68793  | 4563   | 1140   | 45  | 0   | 1    | 0       | 0   | 0   | 0      | 0   | 36            | 74578  |
| 14              | 1308   | 318    | 1      | 15  | 11  | 1    | 0       | 0   | 0   | 0      | 0   | 47            | 1701   |
| 15              | 20     | 46472  | 9536   | 15  | 0   | 0    | 0       | 23  | 0   | 0      | 0   | 20            | 56086  |
| 16              | 4576   | 82     | 151    | 22  | 0   | 0    | 0       | 0   | 0   | 19     | 0   | 137           | 4987   |
| 17              | 272    | 39164  | 1100   | 68  | 21  | 1    | 0       | 112 | 0   | 0      | 0   | 72            | 40810  |
| 18              | 2427   | 25     | 228    | 0   | 0   | 12   | 0       | 0   | 0   | 0      | 0   | 31            | 2723   |
| 19              | 410    | 160    | 0      | 0   | 2   | 0    | 0       | 9   | 0   | 0      | 0   | 62            | 643    |
| 20              | 11413  | 65     | 302    | 14  | 160 | 7    | 0       | 67  | 304 | 0      | 15  | 71            | 12418  |
| 21              | 0      | 3000   | 2137   | 0   | 52  | 8    | 0       | 202 | 0   | 0      | 0   | 704           | 6103   |
| 22              | 13629  | 472    | 2673   | 17  | 48  | 3    | 0       | 8   | 0   | 0      | 0   | 41            | 16891  |
| 23              | 21065  | 57     | 578    | 5   | 42  | 6    | 0       | 19  | 0   | 0      | 1   | 29            | 21802  |
| 24              | 0      | 1591   | 3258   | 0   | 8   | 0    | 0       | 48  | 0   | 0      | 0   | 17            | 4922   |
| 25              | 38     | 1283   | 62933  | 3   | 351 | 26   | 0       | 9   | 0   | 0      | 0   | 9             | 64652  |
| TOTAL           | 369728 | 183976 | 142227 | 452 | 703 | 76   | 275     | 654 | 304 | 253722 | 16  | 2373          | 954506 |

**Table 3.** ECOCADIZ 2018-07 survey. Catches by species in number (upper panel) and weight (in kg, lower panel) from valid fishing stations.

|                 |          |          |          |        |        | BIOMA | ASS (kg) |        |       |         |       |               |           |
|-----------------|----------|----------|----------|--------|--------|-------|----------|--------|-------|---------|-------|---------------|-----------|
| Fishing station | ANE      | PIL      | MAS      | MAC    | ном    | JAA   | нмм      | BOG    | вос   | MAV     | SNS   | OTHERS<br>SPP | TOTAL     |
| 01              | 0,449    | 23,950   | 1386,650 | 0,000  | 0,000  | 0,000 | 20,600   | 0,761  | 0,000 | 0,000   | 0,000 | 29,882        | 1462,292  |
| 02              | 344,300  | 0,000    | 549,900  | 0,282  | 0,000  | 0,000 | 0,000    | 0,000  | 0,000 | 0,000   | 0,000 | 3,809         | 898,291   |
| 03              | 173,727  | 117,273  | 19,590   | 0,334  | 0,000  | 0,000 | 5,086    | 2,296  | 0,000 | 0,000   | 0,000 | 32,878        | 351,184   |
| 04              | 0,000    | 0,000    | 0,269    | 3,140  | 0,000  | 0,000 | 0,000    | 0,000  | 0,000 | 148,661 | 0,000 | 4,746         | 156,816   |
| 05              | 584,022  | 0,302    | 646,427  | 1,703  | 0,000  | 0,000 | 4,285    | 2,144  | 0,000 | 0,000   | 0,000 | 108,574       | 1347,457  |
| 06              | 296,350  | 7,200    | 0,345    | 1,514  | 0,040  | 0,225 | 0,000    | 0,000  | 0,000 | 0,000   | 0,000 | 12,597        | 318,271   |
| 07              | 595,072  | 97,677   | 9,850    | 4,476  | 0,088  | 0,061 | 0,000    | 0,000  | 0,000 | 0,009   | 0,000 | 1,633         | 708,866   |
| 08              | 144,720  | 21,250   | 0,540    | 1,558  | 0,000  | 0,000 | 10,284   | 1,475  | 0,000 | 0,000   | 0,000 | 3,337         | 183,164   |
| 09              | 314,500  | 47,514   | 13,550   | 3,730  | 0,000  | 0,027 | 0,000    | 0,000  | 0,000 | 0,010   | 0,000 | 3,444         | 382,775   |
| 10              | 431,200  | 48,700   | 21,350   | 0,114  | 0,000  | 0,000 | 0,000    | 0,000  | 0,000 | 0,000   | 0,000 | 4,000         | 505,364   |
| 11              | 87,450   | 50,870   | 0,044    | 3,838  | 0,027  | 0,000 | 8,500    | 18,100 | 0,000 | 0,000   | 0,000 | 33,309        | 202,138   |
| 12              | 96,991   | 1793,266 | 265,111  | 20,200 | 0,000  | 0,000 | 0,000    | 1,934  | 0,000 | 0,000   | 0,000 | 1,052         | 2178,554  |
| 13              | 1090,220 | 63,131   | 60,710   | 8,012  | 0,000  | 0,026 | 0,000    | 0,000  | 0,000 | 0,000   | 0,000 | 13,210        | 1235,309  |
| 14              | 17,700   | 6,630    | 0,040    | 3,328  | 0,213  | 0,039 | 0,000    | 0,000  | 0,000 | 0,000   | 0,000 | 6,531         | 34,481    |
| 15              | 0,246    | 1860,916 | 473,984  | 3,360  | 0,000  | 0,000 | 0,000    | 3,150  | 0,000 | 0,000   | 0,000 | 1,795         | 2343,451  |
| 16              | 56,300   | 1,140    | 12,400   | 3,466  | 0,000  | 0,000 | 0,000    | 0,000  | 0,000 | 0,030   | 0,000 | 15,950        | 89,286    |
| 17              | 3,572    | 2012,077 | 84,041   | 18,100 | 2,212  | 0,156 | 0,000    | 15,150 | 0,000 | 0,000   | 0,000 | 13,142        | 2148,45   |
| 18              | 34,700   | 0,582    | 17,900   | 0,000  | 0,000  | 0,353 | 0,000    | 0,000  | 0,000 | 0,000   | 0,000 | 5,200         | 58,735    |
| 19              | 5,610    | 2,492    | 0,000    | 0,000  | 0,236  | 0,000 | 0,000    | 1,250  | 0,000 | 0,000   | 0,000 | 10,625        | 20,213    |
| 20              | 187,750  | 1,143    | 24,850   | 2,223  | 23,312 | 0,887 | 0,000    | 8,700  | 1,375 | 0,000   | 0,052 | 7,264         | 257,556   |
| 21              | 0,000    | 119,350  | 136,850  | 0,000  | 4,340  | 0,225 | 0,000    | 19,150 | 0,000 | 0,000   | 0,000 | 102,678       | 382,593   |
| 22              | 306,100  | 9,650    | 166,800  | 3,966  | 6,218  | 0,073 | 0,000    | 0,836  | 0,000 | 0,000   | 0,000 | 5,085         | 498,728   |
| 23              | 551,600  | 1,439    | 51,650   | 0,836  | 4,967  | 0,506 | 0,000    | 2,632  | 0,000 | 0,000   | 0,004 | 3,634         | 617,268   |
| 24              | 0,000    | 77,850   | 145,100  | 0,000  | 0,625  | 0,000 | 0,000    | 4,007  | 0,000 | 0,000   | 0,000 | 1,279         | 228,861   |
| 25              | 0,860    | 61,083   | 3791,030 | 0,778  | 32,681 | 2,723 | 0,000    | 0,856  | 0,000 | 0,000   | 0,000 | 0,856         | 3890,867  |
| TOTAL           | 5323,439 | 6425,485 | 7878,981 | 84,958 | 74,959 | 5,301 | 48,755   | 82,441 | 1,375 | 148,710 | 0,056 | 426,510       | 20500,970 |

Table 3. ECOCADIZ 2018-07 survey. Cont'd.

**Table 4.** *ECOCADIZ 2018-07* survey. Parameters of the size-weight relationships for survey's target species. FAO codes for the species: ANE: *Engraulis encrasicolus*; PIL: *Sardina pilchardus*; MAS: *Scomber colias*; MAC: *Scomber scombrus*; HOM: *Trachurus trachurus*; JAA: *Trachurus picturatus*; HMM: *Trachurus mediterraneus*; BOG: *Boops boops*; BOC: *Capros aper*; SNS: *Macrorhamphosus scolopax*; MAV: *Maurolicus muelleri*.

| PARAMETER       | ANE      | PIL      | MAS      | MAC      | ном      | JAA      | нмм      | BOG      | BOC      | SNS      | MAV      |
|-----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Size range (mm) | 93-182   | 98-198   | 157-283  | 247-355  | 111-267  | 115-277  | 224-366  | 181-313  | 47-70    | 78-99    | 35-66    |
| n               | 1028     | 1223     | 970      | 402      | 283      | 58       | 189      | 358      | 110      | 15       | 238      |
| а               | 0,002053 | 0,001571 | 0,001545 | 0,000313 | 0,005194 | 0,002359 | 0,044915 | 0,009061 | 0,018507 | 0,002166 | 0,006447 |
| b               | 3,447416 | 3,608874 | 3,515858 | 3,943451 | 3,169538 | 3,423360 | 2,468256 | 3,010727 | 3,068089 | 3,410636 | 3,090835 |
| r <sup>2</sup>  | 0,97     | 0,98     | 0,97     | 0,93     | 0,99     | 0,99     | 0,93     | 0,95     | 0,93     | 0,87     | 0,97     |

**Table 5.** ECOCADIZ 2018-07 survey. Anchovy (E. encrasicolus). Estimated abundance (absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons (i.e., coherent or homogeneous post-strata) numbered as in Figure 17.

|            |          |          |          |          |          | ECOCA    | DIZ 2018-07 . I | Engraulis encra | sicolus . ABUN | DANCE (in num | bers and millio | on fish)  |           |            |            |          | -        |       |
|------------|----------|----------|----------|----------|----------|----------|-----------------|-----------------|----------------|---------------|-----------------|-----------|-----------|------------|------------|----------|----------|-------|
| Size class | POL01    | POLO2    |          |          | POLO5    | POLOS    |                 |                 |                |               |                 | POI 12    |           | n          |            |          | Millions |       |
| 5120 01855 | FOLDI    | F 0102   | F 0105   | F 0104   | FOLOS    | FOLOO    | FOLO/           | FOLOS           | FOLOS          | FOLIO         | FULII           | FULIZ     | PORTUGAL  | SPAIN      | TOTAL      | PORTUGAL | SPAIN    | TOTAL |
| 6          | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 0             | 0               | C         | 0 0       | 0          | C          | 0        | 0        | 0     |
| 6,5        | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 0             | 0               | C         | 0 0       | 0          | C          | 0        | 0        | 0     |
| 7          | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 0             | 0               | 0         | 0 0       | 0          | 0          | 0        | 0        | 0     |
| 7,5        | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 0             | 0               | C         | 0 0       | 0          | C          | 0        | 0        | 0     |
| 8          | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 0             | 0               | C         | 0 0       | 0          | C          | 0        | 0        | 0     |
| 8,5        | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 0             | 0               | 0         | 0 0       | 0          | 0          | 0        | 0        | 0     |
| 9          | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 3092703       | 0               | C         | 0 0       | 3092703    | 3092703    | 0        | 3        | 3     |
| 9,5        | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 24643444      | 0               | C         | 0 0       | 24643444   | 24643444   | 0        | 25       | 25    |
| 10         | 0        | 0        | 0        | 0        | 0        | 0        | 805120          | 0               | 7495873        | 248690533     | 0               | C         | 0 0       | 256991526  | 256991526  | 0        | 257      | 257   |
| 10,5       | 0        | 0        | 0        | 279874   | 0        | 0        | 4842219         | 273907          | 18776791       | 238778047     | 2845438         | 1142264   | 279874    | 266658666  | 266938540  | 0,3      | 267      | 267   |
| 11         | 0        | 0        | 0        | 0        | 1695995  | 1425718  | 23197540        | 3933829         | 142570020      | 287493489     | 59691670        | 5032808   | 3121713   | 521919356  | 525041069  | 3        | 522      | 525   |
| 11,5       | 0        | 0        | 0        | 373165   | 3502507  | 6790532  | 43635623        | 11221744        | 210107094      | 137739025     | 162033647       | 7426674   | 10666204  | 572163807  | 582830011  | 11       | 572      | 583   |
| 12         | 0        | 0        | 0        | 2636920  | 5649342  | 16094442 | 88777424        | 28770876        | 232594712      | 88787017      | 142115578       | 22451378  | 24380704  | 603496985  | 627877689  | 24       | 603      | 628   |
| 12,5       | 0        | 86228    | 0        | 8144470  | 2838486  | 19680783 | 42357980        | 18970712        | 48760283       | 15288697      | 56846231        | 17624068  | 30749967  | 199847971  | 230597938  | 31       | 200      | 231   |
| 13         | 0        | 1976512  | 0        | 14875864 | 836649   | 15021479 | 40522176        | 15532654        | 14991746       | 6129396       | 45495746        | 52734027  | 32710504  | 175405745  | 208116249  | 33       | 175      | 208   |
| 13,5       | 309445   | 4381698  | 506320   | 7101674  | 167695   | 4644606  | 28152542        | 7475060         | 7495873        | 0             | 5690877         | 33297682  | 17111438  | 82112034   | 99223472   | 17       | 82       | 99    |
| 14         | 1856669  | 10049423 | 3037919  | 3130785  | 389462   | 2866133  | 12482417        | 6943991         | 0              | 0             | 2845438         | 38401012  | 21330391  | 60672858   | 82003249   | 21       | 61       | 82    |
| 14,5       | 5413390  | 5061003  | 8857496  | 466938   | 0        | 352755   | 4111361         | 4889397         | 0              | 3036693       | 0               | 25449273  | 20151582  | 37486724   | 57638306   | 20       | 37       | 58    |
| 15         | 8043039  | 8249726  | 13160181 | 746812   | 0        | 352755   | 1648760         | 1191053         | 0              | 0             | 0               | 9750018   | 30552513  | 12589831   | 43142344   | 31       | 13       | 43    |
| 15,5       | 5259299  | 2491415  | 8605370  | 351044   | 0        | 0        | 0               | 730000          | 0              | 0             | 0               | 5190226   | 16707128  | 5920226    | 22627354   | 17       | 6        | 23    |
| 16         | 4021520  | 771123   | 6580091  | 117574   | 0        | 0        | 0               | 499474          | 0              | 0             | 0               | 8472777   | 11490308  | 8972251    | 20462559   | 11       | 9        | 20    |
| 16,5       | 928334   | 428675   | 1518959  | 0        | 0        | 0        | 0               | 0               | 0              | 0             | 0               | 3378713   | 2875968   | 3378713    | 6254681    | 3        | 3        | 6     |
| 17         | 772981   | 86228    | 1264766  | 117574   | 0        | 0        | 0               | 0               | 0              | 0             | 0               | 3378713   | 2241549   | 3378713    | 5620262    | 2        | 3        | 6     |
| 17,5       | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 0             | 0               | C         | 0 0       | 0          | 0          | 0        | 0        | 0     |
| 18         | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 0             | 0               | C         | 0         | 0          | C          | 0        | 0        | 0     |
| 18,5       | 0        | 0        | 0        | 0        | 0        | 0        | 0               | 0               | 0              | 0             | 0               | C         | 0         | 0          | C          | 0        | 0        | 0     |
| TOTAL n    | 26604677 | 33582031 | 43531102 | 38342694 | 15080136 | 67229203 | 290533162       | 100432697       | 682792392      | 1053679044    | 477564625       | 233729633 | 224369843 | 2838731553 | 3063101396 | 224      | 2839     | 3063  |
| Millions   | 27       | 34       | 44       | 38       | 15       | 67       | 291             | 100             | 683            | 1054          | 478             | 234       | ŀ         |            |            | 224      | 2005     | 5005  |

 Table 5. ECOCADIZ 2018-07 survey. Anchovy (E. encrasicolus). Cont'd.

|            |         |         |          |         |         | ECOCADIZ 201 | 8-07 . Engraul | is encrasicolus | . BIOMASS (t) |          |          |          |          |           |           |
|------------|---------|---------|----------|---------|---------|--------------|----------------|-----------------|---------------|----------|----------|----------|----------|-----------|-----------|
| Size class | POL01   | POL02   | POL03    | POL04   | POL05   | POL06        | POL07          | POL08           | POL09         | POL10    | POL11    | POL12    | PORTUGAL | SPAIN     | TOTAL     |
| 6          | 0       | 0       | 0        | 0       | 0       | 0            | 0              | 0               | 0             | 0        | 0        | 0        | 0        | 0         | 0         |
| 6,5        | 0       | 0       | 0        | 0       | 0       | 0            | 0              | 0               | 0             | 0        | 0        | 0        | 0        | 0         | 0         |
| 7          | 0       | 0       | 0        | 0       | 0       | 0            | 0              | 0               | 0             | 0        | 0        | 0        | 0        | 0         | 0         |
| 7,5        | 0       | 0       | 0        | 0       | 0       | 0            | 0              | 0               | 0             | 0        | 0        | 0        | 0        | 0         | 0         |
| 8          | 0       | 0       | 0        | 0       | 0       | 0            | 0              | 0               | 0             | 0        | 0        | 0        | 0        | 0         | 0         |
| 8,5        | 0       | 0       | 0        | 0       | 0       | 0            | 0              | 0               | 0             | 0        | 0        | 0        | 0        | 0         | 0         |
| 9          | 0       | 0       | 0        | 0       | 0       | 0            | 0              | 0               | 0             | 13,596   | 0        | 0        | 0        | 13,596    | 13,596    |
| 9,5        | 0       | 0       | 0        | 0       | 0       | 0            | 0              | 0               | 0             | 129,897  | 0        | 0        | 0        | 129,897   | 129,897   |
| 10         | 0       | 0       | 0        | 0       | 0       | 0            | 5,042          | 0               | 46,946        | 1557,512 | 0        | 0        | 0        | 1609,500  | 1609,500  |
| 10,5       | 0       | 0       | 0        | 2,066   | 0       | 0            | 35,738         | 2,022           | 138,58        | 1762,28  | 21,000   | 8,430    | 2,066    | 1968,050  | 1970,116  |
| 11         | 0       | 0       | 0        | 0       | 14,641  | 12,308       | 200,257        | 33,96           | 1230,764      | 2481,844 | 515,300  | 43,447   | 26,949   | 4505,572  | 4532,521  |
| 11,5       | 0       | 0       | 0        | 3,742   | 35,126  | 68,101       | 437,616        | 112,541         | 2107,137      | 1381,367 | 1625,015 | 74,481   | 106,969  | 5738,157  | 5845,126  |
| 12         | 0       | 0       | 0        | 30,531  | 65,410  | 186,346      | 1027,89        | 333,117         | 2693,047      | 1028,001 | 1645,454 | 259,948  | 282,287  | 6987,457  | 7269,744  |
| 12,5       | 0       | 1,146   | 0        | 108,244 | 37,725  | 261,567      | 562,957        | 252,129         | 648,046       | 203,194  | 755,512  | 234,232  | 408,682  | 2656,070  | 3064,752  |
| 13         | 0       | 29,994  | 0        | 225,743 | 12,696  | 227,952      | 614,928        | 235,709         | 227,501       | 93,014   | 690,402  | 800,244  | 496,385  | 2661,798  | 3158,183  |
| 13,5       | 5,335   | 75,550  | 8,730    | 122,448 | 2,891   | 80,083       | 485,408        | 128,885         | 129,244       | 0        | 98,122   | 574,121  | 295,037  | 1415,780  | 1710,817  |
| 14         | 36,208  | 195,978 | 59,244   | 61,055  | 7,595   | 55,894       | 243,425        | 135,418         | 0             | 0        | 55,490   | 748,874  | 415,974  | 1183,207  | 1599,181  |
| 14,5       | 118,896 | 111,157 | 194,540  | 10,256  | 0       | 7,748        | 90,299         | 107,388         | 0             | 66,696   | 0        | 558,951  | 442,597  | 823,334   | 1265,931  |
| 15         | 198,166 | 203,259 | 324,244  | 18,40   | 0       | 8,691        | 40,623         | 29,345          | 0             | 0        | 0        | 240,223  | 752,760  | 310,191   | 1062,951  |
| 15,5       | 144,823 | 68,605  | 236,963  | 9,667   | 0       | 0            | 0              | 20,102          | 0             | 0        | 0        | 142,921  | 460,058  | 163,023   | 623,081   |
| 16         | 123,337 | 23,650  | 201,806  | 3,606   | 0       | 0            | 0              | 15,318          | 0             | 0        | 0        | 259,853  | 352,399  | 275,171   | 627,570   |
| 16,5       | 31,607  | 14,595  | 51,715   | 0       | 0       | 0            | 0              | 0               | 0             | 0        | 0        | 115,034  | 97,917   | 115,034   | 212,951   |
| 17         | 29,126  | 3,249   | 47,657   | 4,430   | 0       | 0            | 0              | 0               | 0             | 0        | 0        | 127,310  | 84,462   | 127,310   | 211,772   |
| 17,5       |         |         |          |         |         |              |                |                 |               |          |          |          | 0        | 0         | 0         |
| 18         |         |         |          |         |         |              |                |                 |               |          |          |          | 0        | 0         | 0         |
| 18,5       |         |         |          |         |         |              |                |                 |               |          |          |          | 0        | 0         | 0         |
| TOTAL      | 687,498 | 727,183 | 1124,899 | 600,188 | 176,084 | 908,690      | 3744,183       | 1405,934        | 7221,265      | 8717,401 | 5406,295 | 4188,069 | 4224,542 | 30683,147 | 34907,689 |

**Table 6.** *ECOCADIZ 2018-07* survey. Anchovy (*E. encrasicolus*). Estimated abundance (thousands of individuals) and biomass (tonnes) by age group. Polygons (*i.e.*, coherent or homogeneous post-strata) numbered as in **Figure 17** and ordered from west to east.

|           | POL01 | POL02 | POL03 | POL04 | POL05 | POL06 | POL07  | POL08  | POL09  | POL10   | POL11  | POL12  | PT     | ES      | TOTAL   |
|-----------|-------|-------|-------|-------|-------|-------|--------|--------|--------|---------|--------|--------|--------|---------|---------|
| Age class | Ν     | Ν     | Ν     | N     | Ν     | Ν     | Nr     | Ν      | Ν      | N       | Ν      | Ν      | Ν      | N       | N       |
| 0         | 135   | 705   | 221   | 4185  | 4686  | 12540 | 75088  | 19756  | 292222 | 804922  | 169500 | 24026  | 22472  | 1385513 | 1407986 |
| 1         | 21702 | 30463 | 35509 | 33232 | 10272 | 53845 | 211646 | 78746  | 386744 | 247267  | 304962 | 194840 | 185024 | 1424206 | 1609230 |
| н         | 4767  | 2414  | 7801  | 926   | 122   | 844   | 3800   | 1931   | 3826   | 1490    | 3102   | 14863  | 16874  | 29012   | 45886   |
| ш         | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0       | 0       |
| TOTAL     | 26605 | 33582 | 43531 | 38343 | 15080 | 67229 | 290533 | 100433 | 682792 | 1053679 | 477565 | 233730 | 224370 | 2838732 | 3063101 |

|           | POL01 | POL02 | POL03 | POL04 | POL05 | POL06 | POL07 | POL08 | POL09 | POL10 | POL11 | POL12 | РТ   | ES    | TOTAL |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|
| Age class | В     | В     | В     | В     | В     | В     | В     | В     | В     | В     | В     | В     | В    | В     | В     |
| 0         | 3     | 12    | 5     | 57    | 49    | 149   | 800   | 225   | 2818  | 6150  | 1731  | 301   | 276  | 12024 | 12299 |
| I         | 542   | 653   | 887   | 524   | 125   | 746   | 2885  | 1143  | 4356  | 2549  | 3635  | 3479  | 3479 | 18047 | 21526 |
| Ш         | 142   | 62    | 233   | 19    | 2     | 13    | 60    | 37    | 47    | 19    | 41    | 409   | 470  | 613   | 1083  |
| ш         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0     | 0     |
| TOTAL     | 688   | 727   | 1125  | 600   | 176   | 909   | 3744  | 1406  | 7221  | 8717  | 5406  | 4188  | 4225 | 30683 | 34908 |

**Table 7.** *ECOCADIZ 2018-07* survey. Sardine (*S. pilchardus*). Estimated abundance (absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons (*i.e.*, coherent or homogeneous post-strata) numbered as in **Figure 21**.

| ECOCADIZ 2018-07 . Sardina pilchardus . ABUNDANCE (in numbers and million fish) |       |           |           |        |        |           |           |          |           |          |          |            |            |         |           |            |            |          |       |       |
|---------------------------------------------------------------------------------|-------|-----------|-----------|--------|--------|-----------|-----------|----------|-----------|----------|----------|------------|------------|---------|-----------|------------|------------|----------|-------|-------|
| Size class                                                                      |       |           | 00102     | POL04  | POLOS  | POLOS     | 00107     |          | POLOS     | POI 10   | DOI 11   | POI 12     | DOI 12     | POI 14  | n         |            |            | Millions |       |       |
| Size class                                                                      | POLOI | FULUZ     | POLOS     | POL04  | FULUS  | POL00     | FOLU      | FULU8    | FOLUS     | FOLIO    | FULII    | POLIZ      | FULIS      | FULI4   | PORTUGAL  | SPAIN      | TOTAL      | PORTUGAL | SPAIN | TOTAL |
| 6                                                                               | 0     | 0         | 0         | 0      | 0      | 0         | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 0       | 0         | 0          | 0          | 0        | 0     | 0     |
| 6,5                                                                             | 0     | 0         | 0         | 0      | 0      | 0         | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 0       | 0         | 0          | 0          | 0        | 0     | 0     |
| 7                                                                               | 0     | 0         | 0         | 0      | 0      | 0         | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 0       | 0         | 0          | 0          | 0        | 0     | 0     |
| 7,5                                                                             | 0     | 0         | 0         | 0      | 0      | 0         | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 0       | 0         | 0          | 0          | 0        | 0     | 0     |
| 8                                                                               | 0     | 0         | 0         | 0      | 0      | 762681    | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 0       | 762681    | 0          | 762681     | 1        | 0     | 1     |
| 8,5                                                                             | 0     | 0         | 0         | 0      | 0      | 762681    | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 0       | 762681    | 0          | 762681     | 1        | 0     | 1     |
| 9                                                                               | 0     | 0         | 0         | 0      | 0      | 2288043   | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 0       | 2288043   | 0          | 2288043    | 2        | 0     | 2     |
| 9,5                                                                             | 0     | 0         | 0         | 0      | 0      | 26693832  | 0         | 0        | 0         | 0        | 0        | 6208375    | 22645897   | 0       | 26693832  | 28854272   | 55548104   | 27       | 29    | 56    |
| 10                                                                              | 0     | 0         | 0         | 0      | 2300   | 11440214  | 0         | 0        | 0         | 0        | 62070    | 49127140   | 118366037  | 0       | 11442514  | 167555247  | 178997761  | 11       | 168   | 179   |
| 10,5                                                                            | 0     | 0         | 0         | 0      | 9199   | 7626809   | 0         | 0        | 0         | 0        | 62070    | 185130871  | 388409046  | 0       | 7636008   | 573601987  | 581237995  | 8        | 574   | 581   |
| 11                                                                              | 0     | 0         | 0         | 0      | 9199   | 2288043   | 70670     | 2812518  | 0         | 901486   | 248278   | 833809930  | 911089263  | 0       | 5180430   | 1746048957 | 1751229387 | 5        | 1746  | 1751  |
| 11,5                                                                            | 0     | 0         | 1415804   | 0      | 11499  | 7626809   | 610331    | 2625017  | 1529007   | 4885678  | 1179323  | 1343572214 | 478386991  | 0       | 12289460  | 1829553213 | 1841842673 | 12       | 1830  | 1842  |
| 12                                                                              | 0     | 0         | 1415804   | 0      | 9199   | 5338766   | 1002227   | 4875032  | 11082956  | 4520040  | 1303462  | 1303507414 | 209844468  | 8254    | 12641028  | 1530266594 | 1542907622 | 13       | 1530  | 1543  |
| 12,5                                                                            | 1351  | 319070    | 4601364   | 2950   | 16098  | 6864128   | 1149991   | 2812518  | 12841380  | 6694955  | 2048297  | 749698288  | 60446836   | 0       | 15767470  | 831729756  | 847497226  | 16       | 832   | 847   |
| 13                                                                              | 1351  | 413563    | 12034338  | 2950   | 27597  | 11440214  | 1291331   | 1687511  | 19261163  | 7419927  | 2917272  | 234898989  | 4644563    | 8254    | 26898855  | 269150168  | 296049023  | 27       | 269   | 296   |
| 13,5                                                                            | 4052  | 3800270   | 76099490  | 8849   | 22998  | 11440214  | 539661    | 187501   | 8046507   | 3076401  | 1365532  | 77678310   | 3235128    | 8254    | 92103035  | 93410132   | 185513167  | 92       | 93    | 186   |
| 14                                                                              | 20259 | 9256076   | 31147698  | 44243  | 13799  | 7626809   | 321227    | 187501   | 3615393   | 901486   | 1489671  | 20170679   | 4644563    | 0       | 48617612  | 30821792   | 79439404   | 49       | 31    | 79    |
| 14,5                                                                            | 20259 | 13879593  | 25484480  | 44243  | 18398  | 11440214  | 179887    | 187501   | 1275071   | 359334   | 2110367  | 6338665    | 7879691    | 8254    | 51254575  | 17971382   | 69225957   | 51       | 18    | 69    |
| 15                                                                              | 27012 | 13081213  | 7432973   | 58991  | 6899   | 762681    | 109217    | 0        | 849547    | 0        | 3475898  | 0          | 3235128    | 8254    | 21478986  | 7568827    | 29047813   | 21       | 8     | 29    |
| 15,5                                                                            | 2701  | 7188060   | 7432973   | 5899   | 0      | 7626809   | 0         | 0        | 7051645   | 0        | 2731063  | 0          | 0          | 105233  | 22256442  | 9887941    | 32144383   | 22       | 10    | 32    |
| 16                                                                              | 0     | 6328816   | 0         | 0      | 0      | 0         | 10581205  | 0        | 9041739   | 0        | 620696   | 0          | 0          | 160944  | 16910021  | 9823379    | 26733400   | 17       | 10    | 27    |
| 16,5                                                                            | 0     | 13590154  | 0         | 0      | 0      | 0         | 21155986  | 0        | 18084956  | 0        | 0        | 0          | 0          | 328079  | 34746140  | 18413035   | 53159175   | 35       | 18    | 53    |
| 17                                                                              | 0     | 28315306  | 0         | 0      | 2300   | 0         | 110322077 | 0        | 35798430  | 0        | 0        | 0          | 0          | 191895  | 138639683 | 35990325   | 174630008  | 139      | 36    | 175   |
| 17,5                                                                            | 0     | 28701776  | 0         | 0      | 0      | 0         | 68003680  | 0        | 25549634  | 0        | 0        | 0          | 0          | 96979   | 96705456  | 25646613   | 122352069  | 97       | 26    | 122   |
| 18                                                                              | 0     | 23156153  | 0         | 0      | 0      | 0         | 31737192  | 0        | 9748444   | 0        | 0        | 0          | 0          | 33014   | 54893345  | 9781458    | 64674803   | 55       | 10    | 65    |
| 18,5                                                                            | 0     | 7316354   | 0         | 0      | 0      | 0         | 4535720   | 0        | 1446401   | 0        | 0        | 0          | 0          | 24761   | 11852074  | 1471162    | 13323236   | 12       | 1     | 13    |
| 19                                                                              | 0     | 2927936   | 0         | 0      | 0      | 0         | 0         | 0        | 1059163   | 0        | 0        | 0          | 0          | 8254    | 2927936   | 1067417    | 3995353    | 3        | 1     | 4     |
| 19,5                                                                            | 0     | 319070    | 0         | 0      | 0      | 0         | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 16507   | 319070    | 16507      | 335577     | 0,3      | 0,02  | 0,3   |
| 20                                                                              | 0     | 567837    | 0         | 0      | 0      | 0         | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 0       | 567837    | 0          | 567837     | 1        | 0     | 1     |
| 20,5                                                                            | 0     | 267217    | 0         | 0      | 0      | 0         | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 8254    | 267217    | 8254       | 275471     | 0,3      | 0,01  | 0,3   |
| 21                                                                              | 0     | 0         | 0         | 0      | 0      | 0         | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 0       | 0         | 0          | 0          | 0        | 0     | 0     |
| 21,5                                                                            | 0     | 0         | 0         | 0      | 0      | 0         | 0         | 0        | 0         | 0        | 0        | 0          | 0          | 0       | 0         | 0          | 0          | 0        | 0     | 0     |
| TOTAL n                                                                         | 76985 | 159428464 | 167064924 | 168125 | 149485 | 122028947 | 251610402 | 15375099 | 166281436 | 28759307 | 19613999 | 4810140875 | 2212827611 | 1015190 | 715902431 | 7238638418 | 7954540849 | 716      | 7239  | 7955  |
| Millions                                                                        | 0,1   | 159       | 167       | 0,2    | 0,1    | 122       | 252       | 15       | 166       | 29       | 20       | 4810       | 2213       | 1       | 716       | 7239       | 7955       | /10      | 7235  | ,,,,, |

|            |       |          |          |       |       |          | ECOCADIZ 20 | 018-07 . Sardir | na pilchardus . | BIOMASS (t) |         |           |          |        |           |           |            |
|------------|-------|----------|----------|-------|-------|----------|-------------|-----------------|-----------------|-------------|---------|-----------|----------|--------|-----------|-----------|------------|
| Size class | POL01 | POL02    | POL03    | POL04 | POL05 | POL06    | POL07       | POL08           | POL09           | POL10       | POL11   | POL12     | POL13    | POL14  | PORTUGAL  | SPAIN     | TOTAL      |
| 6          | 0     | 0        | 0        | 0     | 0     | 0        | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0      | 0         | 0         | 0          |
| 6,5        | 0     | 0        | 0        | 0     | 0     | 0        | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0      | 0         | 0         | 0          |
| 7          | 0     | 0        | 0        | 0     | 0     | 0        | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0      | 0         | 0         | 0          |
| 7,5        | 0     | 0        | 0        | 0     | 0     | 0        | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0      | 0         | 0         | 0          |
| 8          | 0     | 0        | 0        | 0     | 0     | 2,431    | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0      | 2,431     | 0         | 2,431      |
| 8,5        | 0     | 0        | 0        | 0     | 0     | 3,006    | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0      | 3,006     | 0         | 3,006      |
| 9          | 0     | 0        | 0        | 0     | 0     | 11,021   | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0      | 11,021    | 0         | 11,021     |
| 9,5        | 0     | 0        | 0        | 0     | 0     | 155,482  | 0           | 0               | 0               | 0           | 0       | 36,162    | 131,904  | 0      | 155,482   | 168,066   | 323,548    |
| 10         | 0     | 0        | 0        | 0     | 0,016 | 79,815   | 0           | 0               | 0               | 0           | 0,433   | 342,746   | 825,806  | 0      | 79,831    | 1168,985  | 1248,816   |
| 10,5       | 0     | 0        | 0        | 0     | 0,076 | 63,189   | 0           | 0               | 0               | 0           | 0,514   | 1533,832  | 3218,017 | 0      | 63,265    | 4752,363  | 4815,628   |
| 11         | 0     | 0        | 0        | 0     | 0,090 | 22,337   | 0,690       | 27,457          | 0               | 8,801       | 2,424   | 8139,914  | 8894,339 | 0      | 50,574    | 17045,478 | 17096,052  |
| 11,5       | 0     | 0        | 16,170   | 0     | 0,131 | 87,106   | 6,971       | 29,981          | 17,463          | 55,800      | 13,469  | 15345,061 | 5463,701 | 0      | 140,359   | 20895,494 | 21035,853  |
| 12         | 0     | 0        | 18,794   | 0     | 0,122 | 70,870   | 13,304      | 64,714          | 147,122         | 60,002      | 17,303  | 17303,554 | 2785,604 | 0,110  | 167,804   | 20313,695 | 20481,499  |
| 12,5       | 0,021 | 4,893    | 70,568   | 0,045 | 0,247 | 105,271  | 17,637      | 43,134          | 196,940         | 102,676     | 31,413  | 11497,654 | 927,035  | 0      | 241,816   | 12755,718 | 12997,534  |
| 13         | 0,024 | 7,287    | 212,048  | 0,052 | 0,486 | 201,579  | 22,754      | 29,734          | 339,386         | 130,741     | 51,403  | 4138,973  | 81,838   | 0,145  | 473,964   | 4742,486  | 5216,45    |
| 13,5       | 0,082 | 76,539   | 1532,67  | 0,178 | 0,463 | 230,410  | 10,869      | 3,776           | 162,059         | 61,960      | 27,502  | 1564,468  | 65,157   | 0,166  | 1854,987  | 1881,312  | 3736,299   |
| 14         | 0,464 | 212,068  | 713,632  | 1,014 | 0,316 | 174,740  | 7,360       | 4,296           | 82,833          | 20,654      | 34,130  | 462,135   | 106,413  | 0      | 1113,89   | 706,165   | 1820,055   |
| 14,5       | 0,526 | 360,144  | 661,264  | 1,148 | 0,477 | 296,847  | 4,668       | 4,865           | 33,085          | 9,324       | 54,759  | 164,474   | 204,460  | 0,214  | 1329,939  | 466,316   | 1796,255   |
| 15         | 0,791 | 382,821  | 217,525  | 1,726 | 0,202 | 22,320   | 3,196       | 0               | 24,862          | 0           | 101,722 | 0         | 94,676   | 0,242  | 628,581   | 221,502   | 850,083    |
| 15,5       | 0,089 | 236,332  | 244,384  | 0,194 | 0     | 250,757  | 0           | 0               | 231,847         | 0           | 89,793  | 0         | 0        | 3,460  | 731,756   | 325,1     | 1056,856   |
| 16         | 0     | 232,925  | 0        | 0     | 0     | 0        | 389,429     | 0               | 332,771         | 0           | 22,844  | 0         | 0        | 5,923  | 622,354   | 361,538   | 983,892    |
| 16,5       | 0     | 557,976  | 0        | 0     | 0     | 0        | 868,609     | 0               | 742,521         | 0           | 0       | 0         | 0        | 13,47  | 1426,585  | 755,991   | 2182,576   |
| 17         | 0     | 1292,746 | 0        | 0     | 0,105 | 0        | 5036,795    | 0               | 1634,39         | 0           | 0       | 0         | 0        | 8,761  | 6329,646  | 1643,151  | 7972,797   |
| 17,5       | 0     | 1452,727 | 0        | 0     | 0     | 0        | 3441,975    | 0               | 1293,183        | 0           | 0       | 0         | 0        | 4,909  | 4894,702  | 1298,092  | 6192,794   |
| 18         | 0     | 1295,63  | 0        | 0     | 0     | 0        | 1775,755    | 0               | 545,444         | 0           | 0       | 0         | 0        | 1,847  | 3071,385  | 547,291   | 3618,676   |
| 18,5       | 0     | 451,307  | 0        | 0     | 0     | 0        | 279,784     | 0               | 89,221          | 0           | 0       | 0         | 0        | 1,527  | 731,091   | 90,748    | 821,839    |
| 19         | 0     | 198,603  | 0        | 0     | 0     | 0        | 0           | 0               | 71,843          | 0           | 0       | 0         | 0        | 0,560  | 198,603   | 72,403    | 271,006    |
| 19,5       | 0     | 23,741   | 0        | 0     | 0     | 0        | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 1,228  | 23,741    | 1,228     | 24,969     |
| 20         | 0     | 46,241   | 0        | 0     | 0     | 0        | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0      | 46,241    | 0         | 46,241     |
| 20,5       | 0     | 23,763   | 0        | 0     | 0     | 0        | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0,734  | 23,763    | 0,734     | 24,497     |
| 21         | 0     | 0        | 0        | 0     | 0     | 0        | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0      | 0         | 0         | 0          |
| 21,5       | 0     | 0        | 0        | 0     | 0     | 0        | 0           | 0               | 0               | 0           | 0       | 0         | 0        | 0      | 0         | 0         | 0          |
| TOTAL      | 1,997 | 6855,743 | 3687,055 | 4,357 | 2,731 | 1777,181 | 11879,796   | 207,957         | 5944,970        | 449,958     | 447,709 | 60528,973 | 22798,95 | 43,296 | 24416,817 | 90213,856 | 114630,673 |



**Figure 1.** *ECOCADIZ 2018-07* survey. Location of the acoustic transects sampled during the survey. The different protected areas inside the Guadalquivir river mouth Fishing Reserve and artificial reef polygons are also shown.



Figure 2. ECOCADIZ 2018-07 survey. Location of CTD-LADCP stations.



Figure 3. ECOCADIZ 2018-07 survey. Location of Manta trawl hauls (micro-plastics).



Figure 4. ECOCADIZ 2018-07 survey. Location of ground-truthing fishing hauls.



Figure 5. ECOCADIZ 2018-07 survey. Species composition (percentages in number) in fishing hauls.



**Figure 6.** *ECOCADIZ 2018-07* survey. *Engraulis encrasicolus*. Top: length frequency distributions in fishing hauls. Bottom: mean  $\pm$  sd length by haul.



**Figure 7.** *ECOCADIZ 2018-07* survey. *Sardina pilchardus*. Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.



**Figure 8.** *ECOCADIZ 2018-07* survey. *Scomber scombrus*. Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.



**Figure 9.** *ECOCADIZ 2018-07* survey. *Scomber colias*. Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.



**Figure 10.** *ECOCADIZ 2018-07* survey. *Trachurus picturatus*. Top: length frequency distributions in fishing hauls. Bottom: mean  $\pm$  sd length by haul.



**Figure 11.** *ECOCADIZ 2018-07* survey. *Trachurus trachurus*. Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.



**Figure 12.** *ECOCADIZ 2018-07* survey. *Trachurus mediterraneus*. Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.



**Figure 13.** *ECOCADIZ 2018-07* survey. *Boops boops*. Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.



**Figure 14.** *ECOCADIZ 2017-07* survey. *Capros aper*. Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.



**Figure 15.** *ECOCADIZ 2017-07* survey. *Maurolicus muelleri*. Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.



**Figure 16.** *ECOCADIZ 2018-07* survey. Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the pelagic fish species assemblage. Bottom: time-series of total NASC estimates per survey.



**Figure 17.** *ECOCADIZ 2018-07* survey. Anchovy (*Engraulis encrasicolus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.

30

10

20

SRID: ETRS89/UTM 29N

40 Nm

 Mean NASC, m²/mm²

 E. encrasicolus

 12 - 100

 100 - 200

 200 - 300

 300 - 400

 400 - 425

 Bathymetry

 0-50 m

 50-100 m

 100-200 m

 200-200 m

500-1750 m

> 1750 m





**Figure 18.** *ECOCADIZ 2018-07* survey. Anchovy (*E. encrasicolus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous stratum (POL01-POLn, numeration as in **Figure 17**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



Figure 18. ECOCADIZ 2018-07 survey. Anchovy (E. encrasicolus). Cont'd.



**Figure 19.** *ECOCADIZ 2018-07* survey. Anchovy (*E. encrasicolus*). Estimated abundances (number of fish in millions) by age group (years) by homogeneous stratum (POL01-POLn, numeration as in **Figure 17**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by age group for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



Figure 19. ECOCADIZ 2018-07 survey. Anchovy (E. encrasicolus). Cont'd.



Figure 19. ECOCADIZ 2018-07 survey. Anchovy (E. encrasicolus). Cont'd.



| ECOCADIZ 2018-07                             |              |  |  |  |  |  |  |  |  |  |
|----------------------------------------------|--------------|--|--|--|--|--|--|--|--|--|
| CUFES st                                     | 151          |  |  |  |  |  |  |  |  |  |
| Positive anchovy st8                         | 111 (73.5 %) |  |  |  |  |  |  |  |  |  |
| Max number eggs by st                        | 1453         |  |  |  |  |  |  |  |  |  |
| Total anchovy eggs (in number)               | 7630         |  |  |  |  |  |  |  |  |  |
| Max density by st (eggs/100 m <sup>3</sup> ) | 122          |  |  |  |  |  |  |  |  |  |
| Total density (eggs/100 m <sup>3</sup> )     | 656          |  |  |  |  |  |  |  |  |  |

**Figure 20.** *ECOCADIZ 2018-07* survey. Anchovy (*E. encrasicolus*). Top: distribution of anchovy egg densities sampled by CUFES (eggs m<sup>-3</sup>). Bottom: main descriptors of the CUFES sampling. Bottom: historical series of GoC anchovy egg densities as sampled by CUFES.





**Figure 20.** *ECOCADIZ 2018-07* survey. Anchovy (*E. encrasicolus*). Cont'd. Top: historical series of GoC anchovy egg total numbers and densities (eggs \*  $m^{-3}$ ) sampled by CUFES. Bottom: historical series of estimates of the extension of the GoC anchovy spawning area (in km<sup>2</sup>).





**Figure 21.** *ECOCADIZ 2018-07* survey. Sardine (*Sardina pilchardus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



## ECOCADIZ 2018-07: Sardine (S. pilchardus)

**Figure 22.** *ECOCADIZ 2018-07* survey. Sardine (*S. pilchardus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous stratum (POL01-POLn, numeration as in **Figure 21**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



## ECOCADIZ 2018-07: Sardine (S. pilchardus)

Figure 22. ECOCADIZ 2018-07 survey. Sardine (S. pilchardus). Cont'd.



## ECOCADIZ 2018-07: Sardine (S. pilchardus)

Figure 22. ECOCADIZ 2018-07 survey. Sardine (S. pilchardus). Cont'd.



**Figure 23.** *ECOCADIZ 2018-07* survey. Mackerel (*Scomber scombrus*). Distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in  $m^2 nmi^{-2}$ ) attributed to the species.



**Figure 24.** *ECOCADIZ 2018-07* survey. Chub mackerel (*Scomber colias*). Distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in  $m^2 nmi^{-2}$ ) attributed to the species.



**Figure 25.** *ECOCADIZ 2018-07* survey. Blue jack mackerel (*Trachurus picturatus*). Distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species.



**Figure 26.** *ECOCADIZ 2018-07* survey. Horse mackerel (*Trachurus trachurus*). Distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in  $m^2 nmi^{-2}$ ) attributed to the species.



**Figure 27.** *ECOCADIZ 2018-07* survey. Mediterranean horse mackerel (*Trachurus mediterraneus*). Distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species.



**Figure 28.** *ECOCADIZ 2018-07* survey. Bogue (*Boops boops*). Distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in  $m^2 nmi^{-2}$ ) attributed to the species.



**Figure 29.** *ECOCADIZ 2018-07* survey. Boarfish (*Capros aper*). Distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species.



**Figure 30.** *ECOCADIZ 2018-07* survey. Silvery lightfish (*Maurolicus muelleri*). Distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in  $m^2 nmi^{-2}$ ) attributed to the species.





**Anchovy biomass estimates** 

**Figure 31.** Trends in biomass estimates (in tons) for the main assessed species in Portuguese (*PELAGO*) and Spanish (*ECOCADIZ* and *BOCADEVA*) survey series. Note that the *ECOCADIZ* survey in 2010 partially covered the whole study area. The anchovy null estimate in 2011 from the *PELAGO* survey should be considered with caution.

## ANNEX

(Figures of echograms showing dense sardine schools in shallow waters. EK60 echo-sounder. 38 kHz).



Figure A1. Transect RA05 (Chipiona), 23-25 m depth.



Figure A2. Transect RA05 (Chipiona), 27-29 m depth.



Figure A3. Transect RA05 (Chipiona), 31-37 m depth.



Figure A4. Transect RA06 (Doñana), 23-24 m depth.



Figure A5. Transect RA08 (Mazagón), 23-24 m depth.



Figure A6. Transect RA10 (El Rompido), 40-44 m depth.