Dissociation of Nucleosomal Particles by Chemical Modification

EQUIVALENCE OF THE TWO BINDING SITES FOR H2AH2B DIMERS*

Juan Jordano, Maria Angela Nieto, and Enrique Palacian†

From the Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Canto Blanco, 28049-Madrid, Spain

Treatment of nucleosomal particles with dimethylmaleic anhydride, a reagent for protein amino groups, is accompanied by a biphasic release of histones H2Aplus H2B; one H2A.H2B dimer is more easily released than the other. This behavior allows the preparation of nucleosomal particles containing only one H2A.H2B dimer, which were complemented with 125I-labeled H2A.H2B. These reconstituted particles, which contain one labeled and one unlabeled H2A.H2B dimer, were treated with the amount of reagent needed to release one of the two H2A.H2B dimers. Radioactivity was equally distributed between residual particles and released proteins, which is consistent with equivalent binding sites in the nucleosomal particle for H2A.H2B dimers, rather than with intrinsically different sites. The asymmetric release of H2A.H2B dimers would be caused by a change in the binding site of one dimer following the release of the other. This behavior might be related to the structural dynamics of nucleosomes.

The Journal of Biological Chemistry
© 1985 by The American Society of Biological Chemists, Inc.

Printed in U.S.A.

9382
Marmur (16) and subjected to electrophoresis on mixed gels of 0.5% agarose and 3% polyacrylamide.

Protein concentration was determined by the methods of Lowry et al. (18) and Bradford (19). The concentration of nucleosomal particles was determined spectrophotometrically, taking \(A_{280\text{nm}} = 20.0 \) for a solution containing 1.0 mg of DNA/ml.

RESULTS AND DISCUSSION

The experimental design consists of the following steps: 1) preparation, by treatment of nucleosomal particles with dimethylmaleic anhydride, of residual particles lacking one H2A.H2B dimer; 2) reconstitution, from these particles and \(^{125}\text{I}-\)labeled H2A.H2B dimers, of nucleosomal particles containing one radioactive H2A.H2B dimer; 3) treatment of these reconstituted particles with the amount of reagent required to release 50% of all H2A plus H2B histones; and 4) evaluation of the radioactivity present in the residual particles and in the released proteins. Fig. 1 shows a scheme of the events expected from each of the two hypotheses being considered. According to the asymmetrical model, at the end of the experiment, all the radioactivity would be present in the fraction of released proteins, while the symmetrical model predicts an equal distribution of radioactivity between the released proteins and the residual particles.

The validity of this experimental design requires that the biphasicity of the H2A.H2B release allow the preparation of residual particles containing only one H2A.H2B dimer. Previous work shows that the release of H2A plus H2B is biphasic (11). In addition, the structural properties of preparations of residual particles devoid of at least 50% of H2A plus H2B, after regeneration of the modified amino groups, indicate the practical absence of particles containing two H2A.H2B dimers (12). If particles containing the full complement of histones H2A and H2B were present, they would not require the addition of extra H2A and H2B to show the properties of the original nucleosomal particles, which is not supported by the data (12). Moreover, according to a previous quantitative study (14), the acid treatment used in the reconstitution procedure is more than adequate to obtain complete regeneration of the modified amino groups in the residual particles.

The treatment of the original nucleosomal particles with dimethylmaleic anhydride was accompanied by release of 50-60% of histones H2A plus H2B, and the liberation of a small amount of free DNA. The sedimentation pattern of the modified preparation, and the electrophoresis of the histones present in the residual particles and in the released fraction, are shown in Figs. 2A and 3. B and C. This preparation of residual particles was used to reconstitute nucleosomal particles containing one \(^{125}\text{I}-\)labeled H2A.H2B dimer. Electrophoresis of the labeled H2A.H2B preparation is shown in Fig. 3.

The superimposed thin tracing refers to unmodified control nucleosomes centrifuged under the conditions of the samples. The bars (I or II) correspond to the isolated fractions. A, original nucleosomal particles (0.35 mg of DNA/ml, 6 ml) treated with 0.7 mg of dimethylmaleic anhydride/ml, as indicated under "Materials and Methods." B, reconstituted nucleosomal particles containing \(^{125}\text{I}-\)labeled H2A.H2B. C, reconstituted particles (0.14 mg of DNA/ml, 1 ml) treated with 0.5 mg of dimethylmaleic anhydride/ml.

![Fig. 2. Sedimentation patterns of the different nucleosomal preparations.](image1)

Fig. 2. Sedimentation patterns of the different nucleosomal preparations. The superimposed thin tracing refers to unmodified control nucleosomes centrifuged under the conditions of the samples. The bars (I or II) correspond to the isolated fractions. A, original nucleosomal particles (0.35 mg of DNA/ml, 6 ml) treated with 0.7 mg of dimethylmaleic anhydride/ml, as indicated under "Materials and Methods." B, reconstituted nucleosomal particles containing \(^{125}\text{I}-\)labeled H2A.H2B. C, reconstituted particles (0.14 mg of DNA/ml, 1 ml) treated with 0.5 mg of dimethylmaleic anhydride/ml.

![Fig. 3. Histone electrophoresis of different preparations.](image2)

Fig. 3. Histone electrophoresis of different preparations. A, original nucleosomal particles. B, residual particles (Fraction I in Fig. 2A). C, released fraction (Fraction II in Fig. 2A). D, preparation of \(^{125}\text{I}-\)labeled H2A.H2B dimers. E, autoradiography of D. F, reconstituted nucleosomal particles. G, autoradiography of F.

3. D and E. Of the two histones, only H2B is modified, in agreement with previous results (20). The reconstituted nucleosomal particles have the core histone composition (Fig. 3, F and G), sedimentation coefficient (Fig. 2B), CD spectrum (not shown), thermal denaturation profile (not shown), and DNase I digestion pattern (not shown) of the original particles. Autoradiography of the electrophoretic gel shows the incorporation of the labeled dimer to the nucleosomal particle, while no degradation products are observed. Treatment of the reconstituted particles with dimethylmaleic anhydride caused the release of 60% of histones H2A plus H2B and 20% of DNA. The same percentages of these histones and DNA were released from control nucleosomal particles treated with the reagent under identical conditions. Approximately 50% of the total radioactivity incorporated into the reconstituted particles was associated with each of the two fractions: 12,652 cpn were found in the residual particles and 11,274 in the released fraction. This result is in agreement with the symmetrical model (Fig. 1). The small amount of free DNA released on modification should not affect the interpretation of the results, even if, contrary to the conclusion of a previous work (11), its production were not independent of the liberation of H2A and H2B. Therefore, our results seem to exclude the existence in nucleosomal particles of two intrinsically different binding sites for the two H2A.H2B dimers as the cause of the biphasic dissociation obtained upon treatment with dimethylmaleic anhydride. In spite of the equivalence of the
two binding sites for H2A.H2B dimers shown in this work, a functional asymmetry has been observed in the assembly and disassembly of both histone octamers (6–10) and nucleosomal particles (21, 22). The properties responsible for this behavior might be important for correct assembly and disassembly of the nucleosomal particles, and for the production of structural changes of functional significance.

REFERENCES