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Abstract. It is now 50 years since the first papers describing the use of Molecular Dynamics (MD)
were published by Alder and Wainright, and since then, together with Monte Carlo (MC) tech-
niques, MD has become an essential tool in the theoretical study of materials properties at finite
temperatures. In its early days, MD was used in combination with simple yet general models, such
as hard spheres or Lennard-Jones models of liquids, systemswhich, though simple, were neverthe-
less not amenable to an analytical statistical mechanical treatment. Nowadays, however, MD is most
frequently used in combination with rather sophisticated models, ranging all the way between em-
pirical force fields to first-principles methods, with the aim of describing as accurately as possible
any given material. From a computational aid in statisticalmechanics and many-body physics, MD
has evolved to become a widely used tool in physical chemistry, condensed matter physics, biology,
geology and materials science. The aim of this course is to describe the basic algorithms of MD,
and to provide attendees with the necessary theoretical background in order to enable them to use
MD simulations in their research work. Also, examples of theuse of MD in different scientific dis-
ciplines will be provided, with the aim of illustrating the the many possibilities and the wide spread
use of MD simulation techniques in scientific research today.
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1. INTRODUCTION

As a scientific tool for the study of condensed matter, Computer Simulation really started
in the 1950s with the development of the first sufficiently powerful computers. The two
main families of simulation techniques, Monte Carlo (MC) methods [1] and Molecular
Dynamics (MD) methods [2], were described for the first time in that decade. During
the second half of the XX century, Computer Simulation methods have established
themselves as a mature and powerful research tool in condensed matter and molecular
physics and chemistry, and are at present slowly but steadily extending their usefulness
and applicability to other, more challenging areas such as biological systems and soft
condensed matter.

The aim of this series of lectures is to provide an introduction to MD techniques,
illustrating the power of these simulation tools. The outline of the material to be covered

1 Dedicated to my teachers and mentors C. R. A. Catlow and M. J. Gillan, in recognition of an unpayable
debt.



will be the following. First I will discuss, in very general terms, the aims and usefulness
of Computer Simulation, and in particular MD methods, at least as I see it. A self-
contained and to-the-point description of MD will be provided. Next, some historical
background of MD will be reviewed, although inevitably we will not do justice to the
extensive literature on this topic that has been published over the last five decades! In
actual fact, I will just mention a few landmark papers, whichin my own (admittedly
personal) view are of key importance in the history of MD. Then we will move into
the practical aspects of performing MD simulations, how to integrate the equations of
motion, how to simulate bulk systems, etc. I will also make some general comments on
the different approaches used to model the interactions between atoms and molecules,
discussing some examples of potentials, and we will also seealternative approaches
involving electronic structure calculations. After all that introductory material, we will
get slightly more technical, and discuss how standard MD canbe extended to simulate
systems in contact with a thermal bath, emulating the conditions of constant temperature,
or to simulate systems in which the volume and/or cell-shapefluctuate in such a way as
to reproduce conditions of constant pressure. Illustrative examples of these different
techniques will be provided along the way. We will wrap up with some discussions on
the possible shortcomings and limitations of MD, and attempt to guesstimate some of
the developments we are likely to see in the future, which inevitably will attempt to
ameliorate some of those limitations.

Much of the material presented here (though not all) has beentaken from standard
references about computer simulation, and can be found there in more detail, together
with lots of useful references to the literature. Standard text books on atomistic computer
simulation are those of Allen and Tildesley [3], Frenkel andSmit [4] and Thijssen [5],
which I recommend for more details on the topics discussed here.

2. MOLECULAR DYNAMICS IN A NUTSHELL

In a nutshell, MD consists of numerically solving the classical equations of motion for
a collection of atoms2. For doing this, three basic ingredients are necessary; firstly, we
must have some law describing the mutual interactions between the atoms in the system,
from which we can calculate, given the atomic positions, theassociated potential energy,
the forces on the atoms, and if necessary the stress on the container walls. This law
is in general unknown, but it can be approximated with different degrees of accuracy
(and realism) by a force field, or it can be modelled by means ofelectronic structure
calculations, which can also be done at different levels of theory. Secondly, we need an
algorithm to integrate numerically the equations of motionfor the atoms in the system.
Over the years many different schemes have been put forward for doing this. Thirdly and
finally, in order to solve the equations of motion, the integration scheme needs to be fed
with some valid initial conditions, i.e. initial positionsand velocities for all atoms in the
system. With these three basic ingredients, one is set for performing MD simulations.

Before going into describing these different ingredients in somewhat more detail

2 Here the wordatomis used in a lose sense to refer indistinctly to atoms, ions orentire molecules



below, it is worthwhile to pause for a moment and consider whyit may be useful to
perform an MD simulation, and what can be extracted from it. With such a simulation,
we are emulating, i.e. simulating in an approximate way, thereal dynamics of the
system under study, and in so doing we can keep track of the doings of individual
atoms in an incredibly detailed way; so much so that one can easily feel like Big
Brother among the atoms. In this way MD simulations can help us to gain new insight
into important processes taking place at the atomic and molecular level, an insight
which is often impossible to obtain purely from experiments, as these rarely have
sufficient resolution. Furthermore, when performing simulations, one can easily prepare
the conditions (temperature, pressure, atomic configuration, etc.) at will, and has a level
of control over them that is much greater than is usually possible in experiments.

Aside from the numerical approximations involved in the integration of the equations
of motion, there are two basic approximations inherent in MDsimulations. The first
one is that we assume that atoms behave like classical entities, i.e. they obey Newton’s
equations of motion. How much an approximation this is depends on the particular
system under study, and on the actual conditions in which it is simulated. One can expect
this approximation to be crude for light atoms at low temperatures, but in general it is not
a bad approximation. In this respect it is fortunate that normally quantum effects on the
atomic dynamics are relatively small, except in a few notable examples such as liquid
He, and other light atoms. For those cases where quantum effects cannot be neglected,
one should use the Path Integral approach [6] or some similarmethod.

The other key approximation is the model used to describe theinteractions between
the atoms in the system. It is clear that only through a sufficiently realistic description of
those interactions one has any chance of getting useful and reliable information on the
atomic processes taking place in the system. On the other hand, if one wants to address
generic questions about a particular class of systems, suchas low density gases, or liquid
metals, say, one probably does not need to describe a particular example of such systems
with a very accurate potential; it will be sufficient to use a generic model that captures
the essential features, the defining physics, of that particular class of systems. To be too
specific in this case can actually be counterproductive and obscure the general picture.
It is therefore important to find the right level of description for the particular problem
at hand.

This nutshell description may give you the idea that MD is simply solving Newton’s
equations for atoms and molecules. But in reality MD is much more than this: one can
design rather artificial-looking forms of MD, which nevertheless serve a useful purpose,
such as simulating a system under conditions of constant temperature and/or constant
pressure (see section 7), something that is not possible to do by a straightforward
solution of the standard equations of motion, or one can combine the physical dynamics
of ions with a fictitious dynamics of electronic wave functions, which makes possible
the effective realisation of atomic dynamics from first principles (the so-called Car-
Parrinello method, see section 6). In essence, MD is extremely powerful and flexible,
and far from being a simple numerical recipe for integratingthe equations of motion for
atoms and molecules.



3. SOME HISTORY

It is no surprise that the two most fundamental methodologies for simulating condensed
matter systems, namely Monte Carlo (MC) and Molecular Dynamics (MD) made their
first appearance in the 1950s. At this time the first computers, originally available only
for classified military research, were made available to scientists in the US, and the pos-
sibility of performing fast automated calculations was immediately seen to have great
potential for problems in statistical mechanics, for example. Ever since the first publica-
tion describing the MD technique, by Alder and Wainright [2]in 1957, applications of
the technique have been growing in number, and nowadays MD isan extensively used
research tool in disciplines which include physics, chemistry, materials science, biology
and geology.

In the early days of MD, covering mostly the 1960s and 70s, thetechnique was mostly
used as an aid in statistical mechanics. For the largest part, there was no attempt to model
realistic systems, but rather the focus was on simple, generic model systems such as
hard spheres or the Lennard-Jones fluid. The aim was not so much to address questions
concerning specific systems, but rather to learn about entire families of systems, e.g.
simple liquids. In time, models grew in complexity and in their degree of specificity.
Empirical (i.e. derived from experimental information) models began to be developed
for specific classes of systems, such as the CHARMM [7] or AMBER [8] force fields
for organic and biological molecules, the ionic potentialsfor oxide materials [9], the
embedded atom potentials for metals [10], or the bond-orderinspired potentials for
covalent materials [11].

At the same time, new methodological developments were being carried out. Since
MD consists basically of integrating the classical equations of motion for the atoms
or molecules of a system, it was implicitly accepted that MD could only be used to
simulate systems in microcanonical conditions, i.e. conditions of constant number of
particles, N, constant volume, V, and constant energy, E. This was somewhat limiting,
as experiments are most often conducted on samples which arenot isolated, but in ther-
mal and/or mechanical contact with their surroundings. However, in an influential paper,
Andersen [12] demonstrated that new, more general forms of MD could be devised. An-
dersen introduced two new tools, known as the Andersen thermostat and the Andersen
barostat, which, as their name indicates, serve the purposeof controlling the temperature
and the pressure during the simulation, respectively. In section 7 we will discuss the de-
tails of Andersen’s thermostat and barostat; for now let us just remark that particularly
the idea of the barostat has proved to be very influential in the subsequent history of
MD. In essence, Andersen introduced a new variable into the dynamics of the system,
namely the system’s volume, with an associated velocity, a fictitious mass, and a poten-
tial energy term depending on the external pressure. The coupled dynamics of atoms and
volume proposed by Andersen ensured that the system samplesthe isoenthalpic (con-
stant enthalpy) ensemble, which is useful for analysing howthe system may react to
an externally imposed pressure. Andersen showed that, by introducing a small number
of additional fictitious degrees of freedom (the volume) it was possible construct a new
dynamics which effectively achieved the same effect as coupling the system to the in-
finitely many degrees of freedom of a reservoir. As pointed out above, this idea was to
prove extremely influential.



Shortly after Andersen’s paper was published, Nosé [13] showed that the introduction
of an additional fictitious variable coupled to the atomic dynamics could be done in such
a way as to obtain sampling in the canonical (constant temperature) ensemble. Contrary
to the thermostat already introduced by Andersen [12], which affects the atomic dynam-
ics in a stochastic way, Nosé’s thermostat is fully deterministic. Nosé’s approach, as later
modified by Hoover [14], has now become perhaps the most commonly used scheme for
performing MD simulations in the canonical ensemble.

The constant-pressure scheme of Andersen, originally conceived for the simulation
of bulk fluids, was not generally applicable to crystalline solids, because only volume,
and not shape fluctuations were considered. Parrinello and Rahman [15] generalised
the method of Andersen by incorporating the components of the lattice vectors of
the simulation cell as new fictitious dynamical variables, thus making possible the
observation of solid-solid phase transitions in MD simulations. This scheme also made
possible the study of systems under non-hydrostatic stressconditions.

Andersen’s barostat and Nosé’s thermostat proved that MD was potentially much
more than simply a scheme for solving the equations of motionfor a collection of atoms
isolated from the rest of the universe. By adequately incorporating appropriately de-
signed fictitious variables, these developments showed that more general and experimen-
tally relevant statistical ensembles could be sampled. Butthe introduction of fictitious
variables was soon to be found to have even wider possibilities: in 1985, i.e. only 5 years
after Andersen’s barostat had been introduced, Car and Parrinello [16] demonstrated a
new use of fictitious dynamical variables. In their seminal paper, Car and Parrinello
showed for the first time that it was possible to perform ab initio MD, i.e. MD in which
the forces on the atoms are not extracted from an empirical force field, but rather from a
full blown first principles electronic structure calculation. This combination of methods
has been given the name first principles molecular dynamics (FPMD), also known asab
initio molecular dynamics (AIMD).

Before Car and Parrinello’s paper, FPMD had been regarded asessentially impossible
mostly due to the computational cost involved in performinga time-consuming elec-
tronic structure calculation for each time step of an MD simulation, i.e. thousands or
even tens of thousands of times. Computers were simply not fast enough for the task in
1985. However, Car and Parrinello showed that with a clever introduction of new ficti-
tious variables, the cost of FPMD could be brought down significantly, so much so as to
make it a realistic undertaking, even with the computers of the day. Briefly, Car and Par-
rinello’s idea consisted of bringing electrons and ions simultaneously into the picture,
but in a very unusual and imaginative way. Just as in conventional force-field MD, ions
moved subject to the forces acting on them, but these forces came not from an empirical
potential, but from their mutual (coulombic) interaction,and from their interaction with
the valence electron density around them. Car and Parrinello formulated their FPMD
in the context of density functional theory (DFT) [17, 18] formalism. Within this for-
malism, the electron density is obtained from a series of so-called Kohn-Sham orbitals,
which are the solutions of a Schrödinger-like equation, theKohn-Sham equation. These
orbitals must be obtained for the given ionic configuration before the total energy of
the system and the forces of the ions can be calculated, and this process is considerably
more costly than any calculation based on force fields. Typically, Kohn-Sham orbitals
are represented by means of some basis set of appropriately chosen functions, such as



atomic-like orbitals, or plane-waves, the latter being particularly convenient in the case
of periodic systems. Then, solving the electronic structure problem consists of finding
the appropriate expansion coefficients for the relevant Kohn-Sham orbitals in terms of
the basis set functions. The break-through of Car and Parrinello was to incorporate the
expansion coefficients of the Kohn-Sham orbitals in terms ofthe basis functions as fic-
titious dynamical variables, with associated fictitious masses. By choosing these masses
appropriately (set to values much smaller than those of the ions), the Kohn-Sham or-
bitals evolve much more rapidly than the ions, and as a resulta regime is established
in which the orbitals adapt quasi-instantaneously to the comparatively slow change in
the ionic positions. This is the Born-Oppenheimer approximation again, but in a new,
imaginative setting.

The achievement of Car and Parrinello served the purpose of waking up the scientific
community to the fact that FPMD was indeed viable, and soon many groups world-
wide began to perform FPMD simulations, either directly employing the Car-Parrinello
scheme, or alternative ones. Throughout the 1990s and this century, FPMD has now be-
come a relatively standard tool, with an impressive showcase of applications. This is not
to say that FPMD has completely supplanted the simpler, moreapproximate force-field
based MD; far from it. There are many problems that remain toochallenging to tackle
via FPMD, either because the system is too large, too complex, or because it cannot be
modelled accurately enough with DFT. In such cases empirical force fields continue to
be the only viable option, and this is likely to remain the case for some time to come.

Up to here what is now the history of MD, according to an admittedly personal view.
As for future developments, well, as the saying goes, makingpredictions is extremely
difficult (especially about the future!), but at the end of this chapter I will try to sum-
marise what we can already begin to see, or guess, for the relatively short term future of
MD.

4. MD: BASIC TECHNIQUES

In this section we are going to review some practical aspectsof MD simulations, such as
how to integrate numerically the classical equations of motion, how to deal with infinite
systems, how to start and run a simulation, and how to analysethe results.

4.1. Integrating the equations of motion

Much has been written about how to integrate the equations ofmotion of a dynam-
ical system most effectively and accurately. This is more anissue of applied mathe-
matics [19] than of physics (although some methods have a very physical inspiration),
therefore we are not going to go in depth here. I just want to provide a simple recipe,
which will be useful in most cases that we are likely to encounter.

The classical equations of motion have the general form

q̇ = G(p,q), ṗ = F(p,q), (1)



whereG(p,q) = ∂H/∂ p andF(p,q) = −∂H/∂q, andH is the Hamiltonian, which in
the standard case is given by

H = ∑
i

p2
i

2mi
+U(q), (2)

whereqi represents the coordinates of atomi, andpi is its conjugate momentum. The
recipe which we will use is known as thegeneralised leapfrog, and is summarised as
follows. First, we advance the momenta in time half a time step, then, with the momenta
at half time step we move the coordinates forward in time by a full time step, recalculate
the forces at the new positions, and with these new forces, advance the momenta to full
time step. The algorithm is symbolically written down as:

p(t +∆t/2) = p(t)+∆tF[p(t +∆t/2),q(t)]/2,

q(t +∆t) = q(t)+∆t{G[p(t +∆t/2),q(t)]+ (3)
G[p(t +∆t/2),q(t +∆t)]}/2,

p(t +∆t) = p(t +∆t/2)+∆tF[p(t +∆t/2),q(t +∆t)],

where∆t is the time step. For the simple case of a separable Hamiltonian such as that of
Eq. (2), the generalised leapfrog algorithm reduces to:

p(t +∆t/2) = p(t)− ∆t
2

∂U
∂q

(t),

q(t +∆t) = q(t)+∆t p(t +∆t/2), (4)

p(t +∆t) = p(t +∆t/2)− ∆t
2

∂U
∂q

(t +∆t),

which is known simply as the leapfrog algorithm. Using Eqs. (4) repeatedly, one can map
out a trajectory from specified initial conditions (coordinates and momenta of all atoms
in the system). Provided the time step∆t is sufficiently small, this scheme conserves the
energy reasonably accurately, and is time reversible, as the equations of motion are. The
generalised leapfrog (and therefore the leapfrog) is accurate to second order in∆t.

The classical equations of motion have many properties, of which the most obvious
one is time reversibility, but there are other ones. A particularly important symmetry is
that known assimplecticityor simplecticness. Consider the following sum of infinitesi-
mal areas:

∑
i

δri ×δpi , (5)

where the sum extends over all degrees of freedom of the system, and the deltas imply
infinitesimally short vectors centred at each position and momentum. It can be easily
shown that this infinitesimal area is a constant of motion of classical mechanics. It is
important that any numerical scheme for integrating the equations of motion respects
as many as possible of the intrinsic properties of the equations of motion; the more of
such properties that are respected, the greater the guarantee that we will have that the



numerical solution found will resemble a physically correct trajectory. The generalised
leapfrog scheme described above is time reversible and simplectic, and due to this it is
particularly stable. A more in-depth discussion of these issues can be found in the book
by Sanz-Serna and Calvo [19].

There are many other schemes for integrating numerically the equations of motion,
and excellent discussions can be found in the literature [3,4, 5], but the generalised
leapfrog will suffice as an example for us, and turns out to be one of the best schemes in
the market anyway.

4.2. Periodic boundary conditions

Frequently one is confronted with the need to study a system,periodic or not, which
contains large numbers of atoms or molecules, where large means of the order ofNA,
Avogadro’s number. Naturally, we cannot deal with such large numbers, so we must
resort to some computational tricks in order to emulate a system in these conditions.
The trick used in this case is referred to asperiodic boundary conditions(PBC), and
consists of assuming that the simulation box (i.e. the box containing the atoms in the
simulation) is surrounded by identical copies of itself in all directions. In the simulation
of periodic systems the simulation box is typically a (super)cell with the periodicity of
the system. If the simulation does not involve studying the dynamics of the system (as
when we do a structural relaxation) then there is no approximation involved in the use of
PBC, unless we are doing an electronic structure calculation, in which case care has to
be taken in order to sample the electronic states in regions of the Brillouin zone beyond
theΓ point to ensure the convergence of the calculation3. If, however, we are interested
in the dynamics of the system, the use of PBC involves an approximation, even if the
system is periodic. Adopting PBC implies assuming that all periodic images of atoms in
the central simulation box move in exactly the same way.

In a liquid, or in an amorphous solid, the use of PBC imposes anartificial symmetry,
the consequences of which can be subtle. Further limitations arise in the study of defects
and impurities in solids: the use of PBC generally implies that one is considering a
large concentration of the defect or impurity under consideration, since we cannot
always make the simulation box as large as we would like due tothe computational
cost involved in doing so. Furthermore, there are certain kinds of defects that cannot be
easily accommodated in a periodic cell. This happens with dislocations. In such cases
one has to include two dislocations of opposite sign so that they can both be included
within a periodic cell, or renounce to the use of PBC altogether.

Another consideration when using PBC is that long-range interactions have to be dealt
with appropriately. Electrostatic forces have such a long-range that it is necessary to in-
clude the contribution of far-away periodic images of the simulation box on the atoms
contained in the central simulation box in order to get meaningful results. Simply trun-
cating electrostatic interactions beyond a certain cutoffis crude, and generally frowned

3 The discussion of this very important point is however specific to electronic structure calculations, and
we will not discuss it here; see e.q. [20].
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FIGURE 1. Periodic Boundary Conditions; illustration in two dimension. The simulation box is high-
lighted at the centre, and is surrounded by periodic images of itself.

upon. Several ways have been described in the literature to deal with long-range in-
teractions. Perhaps the most popular procedure is that due to Ewald, known as Ewald
Summation. I will not go into details here, but I would like todescribe the basic idea.
The problem with electrostatic interactions is that terms of order 1/r decay very slowly
with r, the interatomic distance. The Ewald summation method consists of splitting this
term as follows:

1
r

=
erf(αr)

r
+

erfc(αr)
r

, (6)

where erf is the error function, erfc is the complementary error function, andα is a
parameter. The idea is that the first term on the rhs of Eq. (6) can be shown to be short-
ranged in reciprocal space, where it can be easily evaluated, and likewise, the second
term is short-ranged in real space. The parameterα is chosen so that an optimal split
between the real-space sum and the reciprocal-space sum is obtained.

A final consideration concerning PBC is the following. PBC are a useful device for
calculating the energy and its derivatives (forces and stresses, see below) as if the atoms
of the system were indeed in an infinite system, or at least sufficiently far away from any
surface to notice its presence. However, in general it is notrequired, nor is it desirable,
to modify the positions of the atoms as they move so that they all lie in the central
simulation box, particularly if one is interested in monitoring the diffusion or other
dynamical properties of the system. So, when using PBC, one calculates the total energy



and the forces on the atoms as if all atoms were relocated in the central simulation box,
regardless of their actual position in space, but they are not moved back to the simulation
box if during the simulation they drift out of it.

4.3. Derivatives of the total energy

In order to integrate the equations of motion for the atoms constituting the system, we
must be able to obtain the forces, i.e. the derivatives of thetotal energy with respect to
the atomic positions:

fi = −∇ri Etot, (7)

whereEtot is the total energy of the system. In the standard case, the kinetic energy does
not depend on the atomic positions, and so only the derivative of the potential energy
has to be considered.

Another useful derivative of the total energy, needed if onewishes to calculate the
pressure of the system, or conduct a constant pressure simulation (constant pressure
simulations will be discussed in section 7, is the stress. The stress is also useful because
it can be related with the elastic constants of a crystal. Thestress is defined as the
derivative of the total energy with respect to the components of the strain tensor. The
strain,ε, defines infinitesimal distortions of the simulation box. For example, consider
that the simulation box (not necessarily cubic or orthorhombic) is defined by the three
vectorsaα , with α = 1,2,3. Then, a distortion of the simulation box defined by the strain
tensorε will lead to new cell vectorsa′α given by

a′α = aα +∑
β

εαβ aβ . (8)

Because a distortion of the cell will cause the distances between atoms and the angles
between bonds in the cell to change, such a distortion changes the total energy, and that
change is given to first order by the stress, defined as

σαβ =
∂Etot

∂εαβ
. (9)

Note that in this definition we have dropped a minus sign, so that the stress is not minus
the derivative of the total energy with respect to the strain. With this definition, a negative
applied stress is tensile, while a positive applied stress is compressive, resulting in an
intuitive convention.

From Eq. (8) we see that the strain is a tensor with dimensionless components.
Furthermore, we are only interested in symmetric strain tensors, because any asymmetric
strain tensor involves rotation as well as distortion of thecell. Rigid rotations of the
system are not interesting, however (at least in the absenceof external fields), and
complicate the dynamics, so, in practise, we will always be concerned with symmetric
strain tensors, and, for the same reasons, the stress tensorwill also be symmetric.



4.4. Start-up of an MD simulation

Imagine that you have written an MD code, which integrates the equations of motion
for a given model, and everything works correctly. You are now in a position to perform
a simulation. How does one start? Typically, one needs a starting configuration of the
system. For a crystal, the perfect lattice will serve the purpose, although one can use
also a slightly distorted version of the lattice (in fact this may have some advantages in
achieving the thermalisation of the system; see below). Fora liquid the initial configura-
tion may be less obvious. In this case one can start with a lattice configuration known to
be unstable at the temperature of the simulation, and hope that this will evolve rapidly
toward configurations typical of the liquid phase.

As well as coordinates, one needs to generate initial velocities for the atoms. The
almost universally adopted choice is to generate random velocities sampled from the
Maxwell-Boltzmann distribution defined for the desired temperature of the simulation.
These may need to be corrected, so that the centre of mass of the system has zero velocity
(this avoids the drift of the system as the simulation proceeds). In the case of finite
systems it is also useful to avoid the rotation of the system,by ensuring that its total
angular momentum is zero.

Generally, one wishes to conduct a simulation at a given temperature. However, even
if one generates initial velocities sampling from the Maxwell-Boltzmann distribution
corresponding to the desired temperature, the evolution ofthe system will drive the tem-
perature to other values, such that its average over the simulation run will not in general
coincide with (or even be near) the desired temperature. This happens essentially be-
cause the starting atomic positions are not necessarily consistent with the desired tem-
perature. It is therefore necessary to drive the system fromits starting conditions to other
conditions, compatible with the desired temperature. Thisis generally done by scaling
the velocities during an initial period of the simulation, usually referred to asthermalisa-
tion or equilibration. Each atomic velocity is scaled by a factor

√

Text/Tinst, whereTinst
is the instantaneoustemperature (see below), andText is the desired equilibrium tem-
perature. This scaling will slowly drive the system toward the desired conditions; it can
be done every time step of the equilibration period, or everyfew time steps. Obviously,
this tampering with the velocities results in a lack of energy conservation. The dynam-
ics is thus artificial, and only serves the purpose of preparing the system in conditions
from which the real simulation can start. Therefore, no information obtained during this
period is useful, and should not be included in the subsequent analysis of results.

How long should the equilibration period be really depends on the nature of the
simulated system, but also on practical considerations, such as the cost involved. Ideally,
one should run the equilibration period for long enough so that the system has lost any
“memory” of its initial conditions, and is fully at equilibrium at the desired temperature.
Once this is achieved, the average temperature should be close to (usually not more
than a few degrees away from) the desired temperature. If this does not happen, then
obviously the equilibration period was not sufficiently long.



5. ANALYSING THE RESULTS

MD simulations can produce a wealth of information, rangingfrom the time evolution
of the coordinates and velocities of individual atoms to other so called “collective”
properties such as the temperature, pressure, and so on. In this section we review the
standard magnitudes that are monitored during an MD simulation.

5.1. Temperature

The temperature in a simulation can be calculated directly from the standard expres-
sion from statistical mechanics relating it to the kinetic energy of the atoms. This ex-
pression is

Tinst =
2

gkB
Ekin, (10)

whereEkin is the kinetic energy at the present time,g is the number of degrees of freedom
of the system andkB is Boltzmann’s constant. This expression gives theinstantaneous
temperature of the simulation. This value will be differentat different time steps; really
only its average value over the length of the simulation gives a meaningful value to the
temperature:

< T >=
1
N ∑

n
Tinst(n), (11)

where the sum extends over all time steps (or a subset) of the simulation, N. Only if
an appropriate equilibration period has been undertaken before the actual simulation
(see 4.4 above) will one have that the temperature of the simulation will be close to the
desired target temperature, i.e.< T >≈ Ttarget.

5.2. Pressure

The pressure is another useful magnitude to monitor througha simulation. Its average
value will provide information on the mechanical state of the system, i.e. if the system
is compressed or expanded with respect to its equilibrium volume at the temperature of
the simulation. The instantaneous pressure of the system isgiven by

Pinst = ρkBT +
1

3V

〈

∑
i< j

fi j · ri j

〉

, (12)

whereρ is the number density,V is the volume,fi j is the pair force between atomsi and
j, andri j is the distance vector. This expression is actually only valid for the case of pair
interactions, and must be generalised in more complicated models. Like in the case of
the temperature, only the average value,< P >, makes sense, as the value ofPinst will
fluctuate strongly in time.



If it is desired to perform the simulation at a pre-specified pressure, one has to adjust
the volume of the simulation cell in such a way that the average pressure has the
desired value. This usually requires performing several short simulations. The average
pressure is a smooth function of the simulation volume, so itis usually sufficient to
find two volumes which give average pressures which bracket the desired pressure,
and then use linear interpolation to obtain the volume whichwould correspond to the
desired average pressure. This procedure is simple if the shape of the simulation box
is fixed, as is the case in a liquid, or in a solid where no phase transition is expected.
However, if the crystal shape is complicated or unknown a priori, it is probably more
desirable to conduct a variable-shape MD simulation at constant pressure, which allows
the system to dynamically adopt volume and shape to the most favourable values at the
conditions of the simulation. These are called constant-pressure MD simulations, and
will be discussed in section 7.

5.3. Structure

Even though at finite temperatures the atoms of the system will never be at rest, the
system will have a definite structure. Let us consider the atomic density of the system at
each point in space,ρ(r). We can write such a density as the following thermal average:

ρ(r) =<
N

∑
i=1

δ (r− ri) > . (13)

If the system is crystalline or amorphous at the conditions of the simulation,ρ(r) will
peak at the average positions of the atoms, and will fall to low values close to zero
at interstitial regions, which will be visited infrequently by the atoms. If, on the other
hand, the system is fluid, thenρ(r) should be constant everywhere, and equal to the
bulk density. In the crystalline caseρ(r) will have the periodicity of the lattice and the
system will possess so-called long-range order. But even ifthe system is amorphous or
fluid, it will possess short-range order, and it will be interesting to characterise it. Two
quantities are frequently used to achieve this, known as theradial distribution function
and thebond-angle distribution function.

5.3.1. Radial distribution function

The radial distribution function (RDF) is constructed as a histogram of the distances
between an atom and its neighbours during the simulation. Assuming that we are dealing
with a one-component system, all atoms are equivalent, and the RDF is then averaged
over all atoms. Suppose that we want to calculate the RDF, typically calledg(r), in the
ranger0 to rmax. To do so, we divide this range into a number of equally spacedsegments
of lengthδ r, and add a 2 in the appropriate segment of theg(r) histogram for each pair
of atoms separated by a distancer corresponding to that segment. Such a histogram will
diverge for large distances, since the probability of finding two atoms separated byr
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FIGURE 2. Radial distribution function calculated for Pb using the empirical potential due to Cleri and
Rosato [21]. Results are shown for the solid fcc phase at 500 Kand for the liquid at 700 K, both at zero
pressure.

whenr is large grows very rapidly, so it is customary calculateg(r) as the probability of
finding two atoms separated by distancer relative to the probability of finding two atoms
at the same distance in the ideal gas of the same density. According to this definition,
g(r) should tend to 1 asr becomes large.

In Fig. (2) a typical RDF function obtained from a simulationis shown for the
particular case of solid and liquid Pb. As can be seen, the RDFis zero at short distances,
reflecting the exclusion volume around a given atom; it then grows rapidly to reach
a maximum at the nearest neighbour distance, falling down again to a first minimum,
which can be followed by other (smaller) maxima and minima, or smoothly evolve to its
large-distance limit of 1. The volume integral of the RDF from zero to the first minimum
after then nearest neighbour peak gives the number of first neighbours of each atom, i.e.
the average coordination of atoms through the simulation:

nc = 4πρ0

∫ rmin

0
r2g(r)dr, (14)

whereρ0 is the bulk density.



-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

16.88 A
3
/atom

15.07 "
13.40 "
11.85 "

FIGURE 3. Bond-angle distribution function for liquid Na, calculated using ab initio simulations [22].

5.3.2. Bond-angle distribution function

Since the RDF gives a distribution of distances between atoms, it does not have
any angular resolution. Therefore, in order to complete thepicture of the short-range
environment of atoms in the simulation, it is frequent to calculate what is called the
Bond-angle distribution, or BAD. The BAD is exactly what itsname implies, i.e. a
distribution of the bond-angles, or actually, the cosine ofthe bond angles, found between
an atom and its first shell of neighbours, taken two by two, with the atom in question
forming the apex of the bond angle. A typical example of the bond-angle distribution
found from a simulation is shown in Fig. (3), calculated for liquid Na.

5.4. Dynamics

The power of MD simulation as compared to MC is that it also provides information
on the dynamics of the system, not just the structure. The dynamics of a system can
be regarded from many angles: firstly, there is atomic motion, which can be vibrational
around the equilibrium sites of atoms in a solid, or hopping from one site to another,
or even diffusive. But we also have the so-called collectivedynamics, such as density
fluctuations, sound, or viscous flow. Much could be written (and has indeed been written,
see for example [23]) about all these forms of dynamics and how to study them. But
here we are going to limit ourselves to the most frequent kindof dynamical analysis,
that related to diffusive motion.
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5.4.1. Mean-squared displacements

In order to answer the questionhow much does an atom move from its initial position
in a given time t?one can calculate the averaged mean-squared displacements(MSD),
given by

< |r(t)− r(0)|2 >= ∑
t0

N

∑
i=1

|ri(t + t0)− ri(t0)|2
Nt0N

, (15)

where we have calculated the average taking advantage of thefact that different time
originst0 can be taken,Nt0 being the number of such time origins, and since all atoms of
the same species are equivalent, we can also average over them. An example of MSDs
as obtained from a typical simulation is illustrated in Fig.(4).

MSDs are important because they provide information on how fluid-like a system is.
In Fig. (4) we show examples of how the MSD look in a system (in this particular case
Pb) before and after the system has melted. It can be seen thatwhile the system is in the
solid phase, the MSD are flat, having zero slope at all times but very short ones. This is
because in the solid atoms don’t travel large distances, butrather oscillate around their
equilibrium positions. The amplitude of those oscillations is related to the saturation
value of the MSDs at long times. On the other hand, if the system is in the liquid phase,
atoms can move and diffuse through the system. In this case the MSDs grow with time
having a well-defined slope, which is related with the diffusion coefficient:

6Dt +b =< |r(t)− r(0)|2 >, (16)

whereb is a constant, andD is the diffusion constant of the system. If there is more than
one species of atoms in the system, one can define a diffusion constant for each species
by generalising the above expression. For the particular example illustrated in Fig. (4),



one obtains a value of D equal to 2.0×10−5cm2/s, very close to the experimental value
of 2.0×10−5cm2/s found just after melting has taken place.

5.4.2. Velocity auto-correlation function

The last magnitude we will discuss is that of the velocity autocorrelation func-
tion (VAF). The VAF is defined as follows:

VAF(t) =< v(t) ·v(0) >, (17)

and is calculated from a simulation following the same scheme as for the MSD given in
Eq. (15) above. It is also frequent to work with the normalised VAF, defined by

ˆVAF(t) =
< v(t) ·v(0) >

< v(0) ·v(0) >
. (18)

In actual fact, the VAF also provides information on the diffusivity of the different
species in the system, as it is linked with the diffusion constant through the following
relation:

D =
1
3

∫ ∞

0
< v(t) ·v(0) > dt. (19)

The VAF is really telling us how much time it takes for an atom in the system to
“forget” its original velocity at time zero, through collisions with other atoms in the
system. It starts at a positive large value, equal to 1 in the case of the ˆVAF, and has an
oscillating behaviour, falling more or less exponentiallyto zero as time increases. The
Fourier transform of the VAF is given by

VAF(ω) =
1
π

∫ ∞

0
cos(ωt)VAF(t)dt, (20)

and is related to the phonon density of states through

VAF(ω) ∝ VDOS(ω)e−β h̄ω , (21)

where VDOS(ω) is the vibrational density of states at frequencyω, ande−β h̄ω is the
corresponding Boltzmann factor for that frequency (β = (kBT)−1).

5.5. Summary

In this section we have discussed some of the practical aspects of performing an MD
simulation, ranging from the numerical integration of the equations of motion to how to
deal with infinite systems, and how to start up the simulation. We have also discussed
some of the typical properties that one analyses during or after an MD simulation has



been performed, and how this analysis provides informationon the properties of the
system. Really, we have only skimmed the surface. There is much more to say about
how to perform simulations and how to analyse the results than we can discuss in these
notes, but at least I hope that you have got the basics, and canbuild from here if needed.

6. MODELLING INTERACTIONS IN ATOMIC SYSTEMS

A key issue in any for of modelling atomistic systems, be it bymeans of MD, MC,
or any other technique, is the representation of the interactions between the atoms or
molecules that make up the system. Ultimately, these interactions are the result of the
subtle interplay of electrons and nuclei. This interplay can give rise to a wide variety
of behaviours; some systems display a covalent type of bonding, while others would be
better described as ionic, although more generally the situation is intermediate between
these two extremes. Yet in other systems neither of these patterns takes place; rather,
one has a metallic behaviour, where a significant portion of the electrons are free
to move through the entire system, without being associatedto a particular atom or
bond. The opposite extreme to this is that of noble gases, where electrons are tightly
attached to individual atoms, adopting a closed-shell electronic structure. To complicate
matters further, several of these widely different behaviours can be displayed by one and
the same system at different temperature and/or pressure conditions. For example, at
ambient conditions, silicon is known to adopt the diamond structure, which is a covalent
semi-conductor. But upon raising the temperature beyond≈1670 K silicon melts, and
in so doing it becomes metallic. Likewise, upon applying pressure at fixed temperature,
the diamond structure eventually undergoes a phase transition to the so-calledβ -Sn
structure, which is also metallic.

In general, we can find two different approaches to describing the interactions between
atoms and molecules in a system. The first one is to employ someform of potential, i.e.
a (in general complicated) function which depends on the relative interatomic positions
(distances and angles) and on a series of parameters which must be fitted in order
to reproduce as closely as possible some relevant properties of the system, such as a
crystal structure, elastic or vibrational properties, etc. In this approach the electronic
structure is obviated; rather one attempts to account for its effects with the potential
function. The second approach involves retaining the picture of the system as composed
by electrons and nuclei, and to obtain the energetics of the system as well as the forces
on the atoms from a quantum mechanical treatment of the electronic structure, either at
the semi-empirical level or through a fully first-principles treatment. This approach is
theoretically more sound, but obviously more expensive.

The first approach is usually termed theempirical potentialapproach. The name
makes reference to the fact that in general the form of the potential isad hoc, i.e. there is
no underlying guiding principle as to what the mathematicalexpression of the potential
should be, beyond the fact that it should be repulsive at short distances, attractive at
intermediate ones and decay to zero at infinite separation. It also refers to the fact that
the potential has a series of disposable parameters that must be fitted, traditionally to
empirical information on the system, though lately it is very common to parametrise
potentials to results obtained with more accurate theoretical calculations, usually based



on electronic structure calculations. To give an exhaustive review of the different types
of potentials used in the literature would be a daunting task, far beyond the scope of
what only aims to be an introduction to MD. Rather, I will justname a few common
examples, and refer the interested reader to the appropriate literature.

It is customary to assume that the total potential energy of an atomic system in the
absence of external fields can be written as a series of the form

U = ∑
i, j

V2(ri ,r j)+ ∑
i, j ,k

V3(ri ,r j ,rk)+ ∑
i, j ,k,l

V4(ri ,r j ,rk,rl )+ . . . , (22)

whereV2 represents the energy of interactions of pairs of atoms,V3 that of triads, and
so on. In practice this series is rarely taken beyond the sum containing theV4 terms, and
frequently it is truncated after the first or second sums.

Although much work has been done with discontinuous potentials such as hard
spheres, here we will focus on continuous potentials. Of these, perhaps the simplest,
though still extensively used, is the Lennard-Jones potential, which takes the form

VLJ = 4ε
[

(σ
r

)12
−

(σ
r

)6
]

. (23)

The potential is characterised by two parameters, namelyε, which has dimensions of
energy, and which determines the minimum value of the potential, andσ , which has
dimensions of length, and is related to the position of the minimum. The first term
in the squared brackets of Eq. (23) causes the potential to bestrongly repulsive at
short distances, while the second term has the typical form expected for dispersion-
type interactions, which decay asr

′6. This potential has been frequently used to model
e.g. noble gases, and in such a case it is an example of a model in which Eq. (22)
is truncated after the first sum. Eq. (23) is frequently used also to describe non-bonded
type interactions (i.e. interactions between atoms that are not linked by a chemical bond)
in more complex molecular systems.

Covalent systems generally have a more complex bonding, where interactions are not
only distance dependent but also directional. Several potentials have been put forward
for such systems, out of which perhaps the best well known arethose of Stillinger and
Weber [25] for silicon, and that of Tersoff [11], also for silicon, but which has been
parametrised also for carbon. Both potentials have been extensively used for modelling
covalent materials, and have inspired the formulation of more sophisticated models. For
example, the Tersoff [11] potential has the following expression:

U =
1
2∑

i
∑
i 6= j

fC(r i j )
[

fR(r i j )+bi j fA(r i j )
]

, (24)

where fR(r i j ) = Ai j e−λi j r i j and fA(r i j ) = −Bi j e−µi j r i j are repulsive and attractive pair
potentials, respectively, and the parametersAi j , Bi j , λi j andµi j depend on the chemical
species of atomsi and j. It would appear from Eq. (24) that this model is a pair-wise
potential, but this is not so. The third-body dependence of the potential is contained in
thebi j term, which is a function ofθi jk , the angle defined by the vectors connecting one



atom with every possible pair of its neighbours. The parametrisation for silicon is such
that a tetragonal arrangement of each atom’s neighbours, atappropriate first-neighbour
distances, minimises the energy. In the case of carbon, a second minimum at 120◦ allows
the obtain also the single-layer graphite structure (graphene).

Potentials have also been developed for metallic systems, such as the Embedded
Atom Model (EAM) and its derivations, or the Cleri and Rosato[21] potential. In these
models there is also an environment dependence of the potential, but it is not so strongly
directional as in the case of covalent materials. This model, like many of its kind, is
based on the observation that the energetics of d-band metals are largely dictated by
the width and centre of gravity of the d-band density of states (d-DOS), but are fairly
insensitive to its detailed shape. Since the width of the d-DOS is proportional to

√µ2,
whereµ2 is the second moment of the d-DOS, andµ2 can be related to the hopping
integrals of the Hamiltonian, the idea is then to write down the binding energy of the
system as an expression reminiscent of this. Cleri and Rosato [21] proposed to use

Ei
b = −

[

∑
j

η2e−2q(r i j /r0−1)

]1/2

, (25)

whereη plays the role of a hopping integral, andr0 is the nearest-neighbour distance.
The binding energy is complemented by a pairwise repulsive energy of the form

Ei
r = ∑

j
Ae−p(r i j /r0−1). (26)

The total potential energy of the system,U , is then given as the sum over all atoms
of Eqs. (25) and (26) above. This model has been parametrisedfor a series of metals,
including Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Al and Pb [21].

Organic and biological molecules are frequently simulatedwith potentials of the form

U = ∑
bonds

kbond(d−d0)
2+ ∑

angles

kangle(θ −θ0)
2+

+ ∑
torsions

ktorsion[1+cos(nχ −δ )]+

+ ∑
i j

{

4εi j

[

(

σi j

r i j

)12

−
(

σi j

r i j

)6
]

+
qiq j

r i j

}

, (27)

where the first term is a sum over the bonds, the energy of whichis modelled by a
harmonic spring or some similar potential (e.g. a Morse potential). The second term
accounts for bond-angle vibrations, also modelled by a harmonic spring on the deviation
from the equilibrium angle. The third term describes dihedral angles, and involves
sequences of four atoms linked by three adjacent bonds. The last term encompasses
the energy of interaction between pairs of atoms that are notdirectly bonded, and it
includes a Lennard-Jones type potential (see above) and a Coulomb term to account for
the electrostatic interaction between charged ions. Potentials similar to that of Eq. (27)
form the core of such programs as CHARMM [7] and AMBER [8].



Tight-Binding (TB) models occupy the middle ground in the spectrum of models for
materials simulation, between the extremes of empirical potentials and first-principles
methods. TB models, unlike empirical potentials, do incorporate a description of the
electronic structure, although they do so at a much more simplistic and approximate
level than first-principles methods. In TB models the matrixelements of the electronic
Hamiltonian are not evaluated rigorously from the Hamiltonian operator and a chosen
basis set, but rather are assumed to have a certain parametrised dependence on the
interatomic distances. This makes the cost of constructingthe matrix representation of
the TB Hamiltonian rather small, while it is a significant part of the calculation in first-
principles methods. However, this is at the cost of assuminga given form of the matrix
elements, which may be physically sound, but is ultimatelyad hoc, just as the form of
an empirical potential is. In spite of this, TB models have become extremely popular
in materials modelling [26], due to their combination of methodological simplicity and
comparative accuracy. We will not go into details on the different TB models; interested
readers may find details of these techniques in several review papers [26, 27] and
books [20, 28].

As discussed in Section 3, one of the landmarks in computational condensed matter
physics was the development of first-principles MD by Car andParrinello [16] (CP).
These authors obviated the need to employ a potential for modelling the atomic interac-
tions by means of an empirical potential. Rather, the potential energy and its derivatives
were directly obtained from first-principles electronic structure calculation. Specifically,
CP formulated FPMD within the context of Density FunctionalTheory (DFT). DFT was
formulated in the 1960s by Kohn and collaborators. Hohenberg and Kohn [17] demon-
strated that the energy of an ensemble of electrons moving inan external field, and in
particular the field generated by the nuclei or ions, is a unique functional of the electron
density, and furthermore, that this functional adopts a minimum value when the electron
density is that corresponding to the ground state. Subsequently, Kohn and Sham [18]
showed that the electronic structure problem could be cast into an independent particle
problem in which the wave functions of each particle obey a Schrödinger-like equation
of the form

[

−1
2

∇2+VKS(r)
]

ψi = εiψi , (28)

whereψi andεi are the particle wave functions and energies, respectively, andVKS is the
Kohn-Sham potential, given by

VKS(r) = Vext(r)+

∫

d r′
n(r′)

| r− r′ | +
δExc[n(r)]

δn[r]
. (29)

Here the first term on the rhs is the potential of interaction with the ions or nuclei,
the second term is the potential due to the electrostatic interaction with the electron
density, and the last term is the exchange-correlation potential. To cut a long story short,
the Kohn-Sham orbitals must be obtained by self-consistently solving Eqs. (28) (note
thatVKS depends on theψi orbitals through the densityn(r) = 2∑i | ψi(r) |2). Once
the Kohn-Sham equations have been solved, the total energy,forces and stress can be
obtained, and used in a conventional MD simulation. In orderto solve Eqs. (28), it is



customary to expand the orbitalsψi as a linear combination of basis functions, like so:

ψi = ∑
k

ci,kφk, (30)

where different choices of basis functionsφ exist. The problem then is reformulated
into finding out the coefficients of the expansion,ci,k. This can be done by any of a
number of techniques [20]. Let’s imagine starting an MD simulation from an atomic
configuration for which theci,k coefficients in Eq. (30) had been previously obtained.
For such a configuration the total energy and forces on the ions are available once
the electronic structure problem is solved, so one can use these forces to perform a
conventional MD step on the ions. Once the ions move, however, in principle one would
have to go back and solve the electronic problem all over again. But CP proposed to do
something different: they showed that it is possible to incorporate theci,k expansion
coefficients as fictitious classical variables in the dynamics, with adequately chosen
fictitious masses. Thus one ends up with a combined dynamics of ions and wave function
coefficients. This looks very strange indeed, but it is in fact a very clever trick: with a
suitable choice of fictitious masses for theci,k coefficients and a a small enough time
step, it is possible to arrange things in such a way that the dynamics of theci,k follows
closely the Born-Oppenheimer surface, or in other words, theci,k automatically adapt to
the slowly varying ionic configuration, giving wave functions that are very close to the
Kohn-Sham ground state for the current ionic configuration.The fictitious masses of the
ci,k need to be small enough so that their dynamics is faster than that of the ions; this
in turn imposes a smaller time step than would be required fora stable dynamics of the
ions with a conventional force field, but the gain is that one has done away with the force
field altogether!

Another consideration to take into account is that the dynamics of theci,k must be
subject to the constraints of orthonormality of the Kohn-Sham orbitals, i.e.

∑
k

c⋆
i,kc j ,k = δi j , (31)

where δi j is the Kroneker delta. There are standard techniques for performing MD
subject to constraints4 which can be applied to impose Eq. (31) at each time step.
Imposing such constraints (N2 of them, whereN is the number of Kohn-Sham orbitals)
is a significant bottle-neck of FPMD, as this carries a computational cost that grows as
O(N3).

There are many intricacies in CPMD and DFT calculations, which we cannot cover
here in any detail, but fortunately all this is extensively documented in the literature (see
e.g. [20, 29, 30, 31]). Suffice it to say that FPMD in the CP flavour and in others is now
a fairly standard and frequently used simulation technique. It is still computationally
very demanding compared to MD based on force fields, but the cost is affordable in
many cases, thanks in part to the continuing improvement of algorithms and numerical
techniques, and to the ever increasing tendency of computerpower.

4 Two well-known algorithms for imposing constraints are theso-calledrattle andshakemethods. We
will not discuss them here, but interested readers will find full accounts in refs. [3, 4].



7. BEYOND THE MICROCANONICAL (NVE) ENSEMBLE

Let us now briefly discuss how MD has been extended beyond microcanonical condi-
tions, so as to simulate systems in mechanical and thermal contact with their surround-
ings. As mentioned in Sec. 3, the first work to consider the possibility of performing
MD simulations in conditions of constant pressure was that of Andersen [12]. Andersen
proposed to couple the dynamics of the atoms with that of the volume,Ω, of the system,
in such a way that they would be both described by the following Lagrangian:

LAndersen=
1
2∑

i
miΩ2/3q̇2

i −U (Ω1/3,{q})+
1
2

mΩΩ̇2−PextΩ. (32)

The first two terms here are the usual kinetic and potential energy of the atoms, but now
rewritten in such a way as to make their dependence on the volume of the system explicit.
Note that instead of the usual Cartesian positions for the atoms,ri , we have now used the
scaled, or lattice, coordinates,qi = Ω−1/3ri , which are more convenient in this case. The
third and fourth terms in Eq. (32) above correspond to the kinetic and potential energies
for the volume, which is now itself a dynamical variable.mΩ is the thermostat fictitious
mass, andPext is the external pressure which is exerted on the system. If the volume was
to stay fixed, its kinetic energy would be zero (no volume momentum), and the volume
potential energy would be constant. In this caseLAndersenreduces to the conventional
microcanonical Lagrangian for the atoms. However, when thevolume is free to move,
it will react to the external pressure, increasing or decreasing as dictated by the pressure
and the combined dynamics of atoms and volume. The volume will eventually settle
and oscillate around an average value, which will be the meanvolume for the imposed
external pressure. It is easy to make the transition from theLagrangian formulation of
Eq. (32) to the Hamiltonian form, by simple application of the usual rules of classical
mechanics [32], with momenta defined as

pi =
∂L

∂ q̇i
(33)

and defining the Hamiltonian function

H = ∑
i

q̇i ·pi −L . (34)

It is a useful exercise for the reader to transform Eq. (32) toHamiltonian form and
then use the generalised leapfrog scheme discussed in 4.1 toobtain a constant pressure
integration algorithm.

Andersen’s approach only considers volume fluctuations, i.e. the size of the simulation
box is allowed to change, but its shape is constrained to remain cubic. This is ok
for liquids, but for crystalline solids it is actually restrictive. If a undergoes a phase
transition to another solid phase, it will in general changenot only its cell volume, but
also its shape. In order to account for such situations, Parrinello and Rahman [15, 33]
generalised the method of Andersen with the following Lagrangian:

LPR =
1
2∑

i
mi q̇iHt ·Hq̇i −U (q,H)+

1
2

MHTr(ḢtḢ)−PextV. (35)



This can be seen to be somewhat similar to Andersen’s Lagrangian, Eq. (32), though
there are some differences. The key difference is that now, instead of the volume, the
cell degrees of freedom are the components of the vectors defining the shape of the
simulation box. These vectors can be arranged into a matrix which is labelled asH; the
Cartesian coordinates of the atoms areri = Hqi . In Eq. (35) a fictitious kinetic energy
term which now includes the kinetic energy of each of the cellvector components. There
are several subtleties here, not least the fact that the fictitious dynamics of the cell in the
formulation of Parrinello and Rahman allows not only for thedeformation of the cell,
but also for changes in its orientation in space. This is certainly rather inconvenient
in simulations, as one would have to somehow distinguish between the motion of the
atoms which is intrinsically due to the atomic dynamics, andthat which results from
cell rotation. There are cures for this, but we do not need to concern ourselves with such
technicalities here [34, 35]. Again, it is possible to transform Eq. (35) to Hamiltonian
form, to obtain the equations of motion from the Hamiltonian, and with them derive an
algorithm for their numerical integration using the generalised leapfrog scheme. This
would be a recommended exercise for anyone who wants to become familiar with MD
techniques.

In his famous paper, Andersen [12] proposed not only a way to perform simulations
in conditions of constant pressure (i.e. the isobaric-isoenthalpic, or NPH ensemble), but
also in conditions of constant temperature (canonical or NVT ensemble). His strategy to
attain canonical sampling consisted of selecting an atom atrandom, and changing its ve-
locity to a new value, selected from the Maxwell-Boltzmann distribution corresponding
to the desired temperature of the simulation. This process,repeated at regular intervals,
was shown to sample the canonical ensemble, and is now known as Andersen’s thermo-
stat. However, there is one key difference between Andersen’s procedure for sampling at
constant pressure and that for constant temperature, and itis that while the first one is de-
terministic (i.e. the barostat obeys a certain equation of motion), Andersen’s thermostat
is stochastic. In this sense it is a bit like introducing ingredients of MC into MD. This is
not a bad thing in itself, provided one is not interested in the dynamical properties of the
system, such as transport properties. If this is, however, the case, one must be aware of
the fact that the stochastic nature of Andersen’s thermostat affects the dynamics of the
atoms, and will cause an artificially rapid loss of coherencein their dynamics. In other
words, the VAF (see 5.4.2) will decay faster than it would otherwise do, and this clearly
affects the value of e.g. the diffusion coefficient [see Eq. (19)]. In general, if you are in-
terested in obtaining dynamical information of the studiedsystem, my recommendation
would be to avoid the use of thermostats and other artifacts,which may affect the dy-
namics of the atoms in the system, and to stick to NVE sampling. This is not to say that
thermostats and barostats are not useful; far from it! thereare many situations in which
one is not really interested in the atomic dynamics, and in which one needs to simulate
systems in conditions of constant pressure and/or temperature. In such cases the use of
these artful devices is highly recommended.

Andersen’s paper was the starting point of a plethora of different methods to allow
MD to sample other ensembles. Among these, a key developmentwas that of Nosé [13],
who proposed a new thermostat to achieve canonical sampling. Contrary to that of
Andersen, though, Nosé’s thermostat has the peculiarity ofbeing deterministic, instead



of stochastic. Nosé proposed the following Lagrangian,

LN =
1
2∑

i
mis

2ṙ2
i +

1
2

msṡ
2−U({r})−gkBText lns, (36)

whereg is the number of degrees of freedom of the system,kB is Boltzmann’s constant,
s is the thermostatpositionvariable,ms is its associated fictitious mass, andText is the
temperature at which we desire the system to be. For once, we will miss the opportunity
of proposing an exercise for the reader, and give directly the Hamiltonian function for
the Nosé thermostat; this is

HN = ∑
i

p2
i

2mis2 +U({r})+
p2

s

2ms
+gkBText lns, (37)

where the atomic momenta arepi = mis2ṙi , and similarly,ps = msṡ. I will, however,
suggest to the reader to derive equations of motion from Nosé’s Hamiltonian Eq. (37).
Then, it will be seen that the force acting on the thermostat is proportional to the
difference between the kinetic energy of the atoms and thegkBText/2; in words, what
this means is that the thermostat variables is going to increase when the kinetic energy
grows to values above that corresponding toText, and the opposite will happen when the
kinetic energy is below the target value. In this way, one ensures that the average kinetic
energy of the system, during a sufficiently long run, will correspond to the correct value
at Text. Not only this, but it can actually be shown that because of the chosen form of
the potential energy for the thermostat in Eqs. (36) and (37), the dynamics of the atoms
samples the canonical ensemble, under the usual assumptionof ergodicity.

The thermostat variables in Eq. (36) is actually a time-scaling factor. Thereal time
of the simulation is actually given by

treal =
∫ t

0

dt
s(t)

, (38)

which means that the actual length of the time step varies during the simulation. This
is somewhat inconvenient, particularly if one wishes to calculate time dependent prop-
erties of the system. Motivated by this, Hoover [14] modifiedNosé’s original formula-
tion through a change of variables which resulted in a schemein which the length of
the time step is constant. The resulting scheme is frequently referred to in the litera-
ture as the Nosé-Hoover thermostat. There is one small caveat with this, though, which
is perhaps of little practical significance, but it is worth commenting. Hoover’s mod-
ifications amounted to a non-canonical (non-Hamiltonian) transformation of Eq. (37),
and as a result of this the method looses its Hamiltonian structure. This means that
the Nosé-Hoover equations of motion cannot be derived from aHamiltonian, and as a
consequence, one cannot use the generalised leapfrog scheme to obtain an integration
algorithm. This is not such a serious problem, because alternative integration schemes
can be used which do not rely on having a Hamiltonian structure (see e.g. [4]).

In more recent times Bondet al. [36] have shown that it is indeed possible to refor-
mulate the Nosé thermostat by means of a canonical transformation (thus respecting the



underlying Hamiltonian structure), a transformation which is designed to counteract the
troublesome time scaling implicit in Nosé’s original formulation. They did this by using
a so-called Poincaré transformation, resulting in a new Hamiltonian given by:

HNP = s(HN−H0), (39)

whereH0 is a constant, andHN is given by Eq. (37). Because this is a Hamiltonian, one
can use the generalised leapfrog scheme, and this would be myrecommended option for
canonical sampling MD.

The use of new variables such as the barostats and thermostats discussed above has
been called theextended system approach. These extended variables are designed in
such a way that they emulate the effect of having the system placed in contact with
its surroundings, i.e. with an essentially infinite number of degrees of freedom. It is
quite remarkable that one can do this with just a few additional degrees of freedom. But
in introducing these artificial variables one must assign values to their corresponding
fictitious masses [mΩ andms in Eqs. (32) and (36), respectively]; the dynamics of the
extended variables and to some extent that of the atoms of thesystem do depend on
the values chosen for these fictitious masses, and some tuning of their values may be
necessary in order to achieve sensible results. The values of average properties are in
general not very sensitive to the values ofmΩ andms; their choice should be guided by
an efficiency of sampling, while at the same time trying to affect minimally the dynamics
of the atoms.

Finally, before leaving this section, let us remark that both Andersen [12] and
Nosé [13] considered sampling the isothermal-isobaric or NPT ensemble by simulta-
neously coupling the system to a thermostat and a barostat. This combination is also
considered by Sturgeon and Laird [37] and Hernández [35].

8. PROBLEMS, CHALLENGES, . . . , AND ALL THAT!

It would not be fair to conclude these introductory notes on MD without making some
comments about the limitations of MD, which indeed exist andare not few. The most
obvious one is the issue of time scales. Depending on the level at which you model
your system (first-principles or empirical force field) MD may be limited to time scales
ranging from a few pico-seconds to up to a few nano-seconds atmost. Yet many
processes of chemical and physical interest happen over time scales which can be many
orders of magnitude larger than this (slow diffusion problems in solids, dynamics of
glassy or polymer systems, or protein folding, to name but a few), and straightforward
MD simply can get you nowhere in such cases. In recent years, Voter and others have
developed several techniques to try to address this problem, such as Hyperdynamics [38,
39], Temperature-accelerated dynamics [40] or the Parallel-replica method [41].

One of the reasons why the time scale that can be covered is limited is related to the
computational cost involved in calculating the energy and forces necessary to perform
MD simulations. It has been recently suggested [42] that specially designed neural
networks may be trained to predict with sufficient accuracy the energetics and forces of a
given system after being fed with a sufficient training data set obtained from simulations.
This could potentially reduce significantly the cost of performing accurate simulations,



and thus also extend the length of time scales accessible with such simulations. However,
this methodology is still rather new, and its full potentialis yet to be demonstrated.

MD is ultimately a sampling technique, like MC, with the added bonus of provid-
ing dynamical information, at the extra cost of calculatingthe forces. Systems with
complicated energy landscapes are inherently more problematic to sample adequately,
so special care has to be taken in such cases. In such systems one may have to wait
for a long time for the dynamics to explore the configuration space. To ameliorate this
problem, Parrinello and co-workers have proposed the technique known as metadynam-
ics [43, 44]. In this technique, a dynamical trajectory is followed which is discouraged
from visiting regions of configuration space that have already been visited by adding a
Gaussian potential of a pre-specified height and width to each visited point. In this way
potential energy minima are gradually filled up, facilitating the escape of the system
from such trapping funnels, and improving the configurationspace sampling.

Yet another challenge for MD is the issue of varying length-scales. In many systems,
the phenomena under observation cover many different length scales. A typical example
of this is crack propagation, where a material is loaded (stressed) until a crack tip forms
and starts to propagate in the material. Close to the crack tip, chemical bonds are being
broken, and atoms strongly rearrange. A bit further away from the tip the material may
be severely deformed, but without bonds being actually broken, and yet further away
the atomic positions may hardly deviate from those in the perfect crystal. To model such
systems directly at the atomistic level requires extremelylarge simulation cells, soon
growing into six orders of magnitude figures and beyond. For tackling such problems
effectively it is necessary to treat different length scales at different levels of theory,
effectively embedding a quantum mechanical description ofthe tip crack into a force
field description for the atoms a certain distance away from the crack. This in turn must
be matched at some point with a continuum mechanics description, valid for large length
scales. A similar situation is encountered e.g. in enzymatic reactions, where the active
site of the protein and the reactants must be described at a quantum mechanical level,
while the rest of the protein and perhaps the solvent (typically water) may be accounted
for at a lower level of theory.

To summarise, both challenges and exciting times lie ahead;MD in particular, and
simulation in general, are very open fields, in constant evolution, and responding to the
new issues which are continuously being raised by experimental progress in the physics
and chemistry of materials and by nanotechnology. I have no doubt that very exciting
times lie ahead in this field, a field full of opportunities forunfolding a productive and
fulfilling career in science.
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