LA COMPOSICIÓN QUÍMICA COMO FACTOR GENÉTICO EN EL ESTUDIO DE ROCAS Y MINERALES.
APLICACIÓN AL GRANITO DE ALBAÑA (CACERES)

por Julio Saavedra Alonso y Antonio García Sánchez
con la colaboración de Fernando Madruga del Real, Antonio Sánchez Menéndez
y María del Carmen Fernández Aguilar*

* Sección de Mineralogía del Centro de Edafología del CSIC de Salamanca y Departamento de Mineralogía de la Facultad de Ciencias de la Universidad
LA COMPOSICIÓN QUÍMICA COMO FACTOR GENÉTICO EN EL ESTUDIO DE ROCAS Y MINERALES.

APLICACIÓN AL GRANITO DE ALBALÁ (CÁCERES)

por Julio Saavedra y Antonio García Sánchez

con la colaboración de:
Fernando Madruga
Antonio Sánchez Menéndez
M. Carmen Fernández Aguilar

Resumen
Se propone un esquema de análisis en serie de elementos en trazas por fluoroscencia de Rayos X, que se aplica a las biotitas del batholith de Albalá (Cáceres). Los resultados están de acuerdo con la génesis de sus diversas facies, recientemente expuestas, y permiten establecer una secuencia del carácter ácido de estos elementos.

Summary
A rapid method of analysis of trace elements by X-ray fluorescence has been developed and applied to the biotites of Albala batholith (Cáceres, Spain). The results are confirmed in general by the facies genesis and it is possible to make a progressive acid character increase for these elements.

Introducción
El estudio sistemático de diversos problemas geológicos se ha visto considerablemente reforzado por la posibilidad del empleo del análisis químico de gran número de muestras, obtenido en un tiempo relativamente breve y proporcionando resultados con una exactitud razonable. En este trabajo se han utilizado estos criterios en la investigación del granito de Albalá, que presenta una asociación muy estrecha con yacimientos de origen ácido.

Dentro de la problemática general de las rocas graníticas y sus mineralizaciones, existen determinados componentes de gran interés. La biotita y los minerales derivados de ella por reacciones químicas en medios naturales son de gran importancia en el estudio de granitos desde muchos puntos de vista.

Su variabilidad de composición química hace que, en cierta manera, pueda considerarse como un "tampón" del medio químico. Dentro de su fórmula general (silicoluminato de Fe, Mg, Al y K, con amplios márgenes de variación en Fe²⁺, Fe³⁺, Mg, Al, agua y P) caben muchas modificaciones cuantitativamente importantes. Por ello, el análisis químico proporciona valiosas informaciones: es un reflejo de las condiciones termodinámicas que reinaban durante su formación; su utilidad para establecer la presión, temperatura, acidez, potencial de oxidación, etc. es obvia.

Antecedentes geológicos
El granito de la zona de Albalá ocupa un área de unos 200 km² de la península ibérica de Extremadura Central (HETANZ, PACHECO, 1947).

Existen muy pocos estudios sobre este batholith, casi todos antiguos y que hacen mención a aspectos parciales de la geología regional. Los trabajos más modernos, WEIBEL (1965), proporcionan una información algo más específica. Son, sin embargo, las publicaciones de ARRIBAS (1962), MARTÍN (1967), PENHA (1973) y SAAVEDRA y Cols. (1974), las que aluden algo más a la petrografía, mineralogía y geoquímica de este granito.

El granito de Albalá está constituido por granodioritas y granitos monzoníticos de megacrístales, granitos biotíticos de grano medio y granitos aplíticos; en todos ellos la proporción de microcristal es variable.

Los granitos de megacrístales se caracterizan por contener silicatos ricos en aluminio, sobre todo cordierita idiomorfa; plagioclasas zonadas con un máximo del 25 por ciento de An, a veces con el corazón sericitizado; feldespatos potásicos pertenecientes a la inclusión de cuarzo, biotitas y plagioclasas; moscovita tardía (en alguna ocasión primaria); andalucita, relícto poco frecuente;
silimanita, rara; biotita muy rica en inclusiones, y finalmente, accesorios en mayor o menor pro-
porción (circón, apatito, turmalina, rutilo, ilmenita y epidotita).

El granito biotítico de grano med-
do es semejante al anterior. Di-
fiere solamente en que hay un brusco descenso en la cantidad de corderieta y megacristales de
feldespato potásico, mientras que la zonación de las plagioclases es
rara y el contenido en CaO dismi-
nuye notablemente (términos al-
bita u oligoclase ácida). El paso
respecto al anterior granito pare-
ce ser transicional.

Los granitos aplásticos aparecen en manchas de extensión varia-
ble, generalmente no cartografi-
ables, con plagioclases muy ácidas, biotitas y silicatos ricos en Al
subordinados y turmalina muy
abundante.

El granito de Alba é tiene una
tendencia acusada silico-sódica,
que se manifiesta mineralógica-
mente con nitidez por los fenó-
menos de albitionización y mosco-
vitización. Es un granito datado
cuando perteneciente al Westfà-
liense (313 ± 10 m.a.) con una al-
teración deutérica importante y
do mineralizada en U, Sn, W y
fósforos.

De acuerdo con los trabajos de
SAAVEDRA (1975), la biotita y
andalucita de estos granitos (mi-
nerales precoces) comenzaron a
 cristalizar a una presión alrede-
dor de unos 4 kilobares (4.000
atm) y 680°C a temperatura en un
magma saturado en agua.
Aunque hay un poco de moscovit-
ta primaria, la inmensa mayoría es secundaria, producto de trans-
formación de otros minerales ya
formados. Pueden distinguirse
tres facies principales: granito de
granos gruesos, muy porfírico,
biotítico, con oligoclase cálcica
y cordierita; granito central, más
ácido, muy ligeramente porfíri-
de y sin cordierita, de granos me-
dío; y granito híbrido, de carac-
terísticas intermedias. Todos pre-
sentan andalucita y moscovita en
cantidades medias.

Método experimental

Las rocas fueron analizadas según
el proceso detallado por SAA-
VEDRA y cols. (1974). Los re-
sultados totales en rocas y biot-
titas quedan expresados en traba-
jos anteriores (SAAVEDRA,
1974, 1975). Las micas se trata-
ron tras una separación previa
las muestras de las rocas utiliza-
das fueron molidas grossamente,
tamizadas, y se separó la fracción
comprendida entre 0,5 y 0,2
mm.

La concentración en biotita se
obtuvo mediante la diferente
densidad de los constituyentes de
la roca en bromoformo. El con-
centrado en biotitas se purificó
con la ayuda de un separador
magnético (FRANZ) a intensidad
de 0,5 amperios, inclinación de
15º y vibración de 6.

El concentrado en moscovitas se
preparó por la diferente densidad
de las micas (biotitas y mosco-
vitas) con los cuarzos y feldes-
patos en una mezcla de bromo-
formo y acetona. La purificación se
realizó separando previamente
las biotitas a una densidad de
0,5 amperios y purificando la
parte no magnética a una inten-
dad de 1,5 amperios.

Determinación de elementos
trazas por fluorescencia de Rayas X

Dejando aparte sus ventajas, en-
tre ellas rapidez, versatilidad,
buena reproducibilidad y sensibi-
1 d 3
lidad, los principales inconven-
te de esta técnica residen en
los efectos de matriz, que derivan
1 0 µ

 siendo µ1 el coeficiente de absor-
ción de la muestra considerando
la radiación primaria incidente y
la de fluorescencia del compues-
to i.

Para el caso de los elementos ma-
yoritarios de rocas silicadas
se hace del orden de 1-3 µ, impos-
sible de obtener con una molien-
da normal, por lo que para este
caso es imprescindible recurrir a
las técnicas de fusión. Sin em-

bargo, para los elementos trazas en materiales silicatados, este problema granulométrico desaparece puesto que los molinos vibradores de discos oscilantes consiguen obtener tamaños de partícula que satisfacen la relación anterior; como punto de referencia, para una λ fluorescente del orden de 1 A la granulometría necesaria aproximada (hay que tener en cuenta la policromatidad de la radiación primaria) es del orden de 40-50 μ. Un problema especial lo constituye la molienda de las mismas. Cuando no se ha conseguido el diámetro mínimo de estos minerales (fácilmente controlable a la lupa) las intensidades de fluorescencia de algunos elementos trazas (incluidos en estos minerales preferencialmente con respecto a los demás componentes mineralógicos de la roca) aumentan, contrariamente a lo esperado, probablemente debido a la orientación preferencial de estos minerales y a la consiguiente gran superficie de exposición a los Rayos X. En estos casos es necesario tamizar (300 mallas), molear la fracción superior y homogeneizar posteriormente. En definitiva, utilizando un molino TEMA (vibrador), el tiempo necesario para la obtención de una granulometría idónea en el caso de una roca granítica, por ejemplo, es, en un elevado porcentaje de casos, de 7 min.

A partir de aquí se trabaja con el polvo así obtenido directamente o mezclado con celulosa y compactado en un anillo de aluminio (40 x 4 mm) a la presión de 300 atm, mostrando esta preparación una reproducibilidad muy buena (coeficiente de variación 2 por ciento para todos los elementos estudiados).

Hay que añadir también en favor de este método la nula, o casi nula, pérdida de sensibilidad ocasionada por la dilución de la muestra, tan importante en el caso de análisis de trazas cuyos contenidos normales (de algunos de ellos) en los materiales que nos ocupan, resan los límites de detección de esta técnica analítica; y que para el caso de trabajar con fundidos supone un grave inconveniente en este sentido, debido a la necesaria y normalmente grande dilución ocasionada por la adición del fundente e incluso, en gran número de casos, por la adición de agentes vitrificantes y otros compuestos que rebajan la viscosidad del fundido; necesidad impuesta por las normales condiciones de fabricación de perlas idóneas que se adaptan a la geometría del aparato.

Los efectos de matriz debidos a la composición química de la muestra pueden resumirse en tres grupos:

a) Absorción de la radiación primaria incidente.

b) Excitación mutua de los elementos constituyentes de la muestra.

c) Absorción de la radiación secundaria o de fluorescencia del elemento a medir.

Ahora bien, únicamente los efectos a y c son apreciables cuando se trata del análisis de trazas (considerando como límite de este concepto de concentración en trazas unas 1.000 ppm). Por consiguiente existe una proporcionalidad entre la intensidad de la línea analítica y la concentración del elemento de la forma:

\[I_A = K \cdot \frac{C_A}{\mu P} \]

\[I_A = \text{intensidad de la radiación X de fluorescencia del elemento A.} \]

\[C_A = \text{concentración del elemento A.} \]

\[\mu P = \text{coefficiente de absorción mágico de la muestra.} \]

\[K = \text{constante característica de la geometría del aparato.} \]

En \(\mu P \) están englobados los efectos de absorción de la muestra con respecto a la radiación primaria y a la de fluorescencia.

En el caso, en realidad, el único inconveniente es la medida de \(\mu P \) o al menos la relación entre los coeficientes de absorción globales del patrón y de la muestra problema.

Son muchos los métodos que se utilizan para solucionar este problema. Uno de ellos, conocido como el patrón externo, se basa en la utilización de curvas de calibrado construidas con patrones con el mismo \(\mu P \) que las muestras problemas. Ahora bien, los inconvenientes y poca versatilidad del método son evidentes.

El método del patrón interno consiste en la adición de una cantidad conocida con características espectrales y de absorción muy semejantes a las del elemento a medir; con lo cual la relación de intensidades de ambos elementos es igual a la relación de concentraciones. Naturalmente, su gran inconveniente está en el engorroso de la pesada y exacta de pequeñas cantidades del elemento patrón (del orden de miligramos) y de la dificultad de conseguir una homogeneización perfecta de estas cantidades tan pequeñas con la muestra problema.

El método de la medida del fondo se basa en la proporcionalidad existente entre la intensidad de radiación dispersa coherente de una determinada longitud de onda y el coeficiente de absorción mágico. Pero con él sólo se obtienen resultados semicuantitativos.

Cuando se dispone de la composición de la muestra en elementos mayoritarios el método consiste en la determinación matemática del coeficiente de absorción, haciendo uso de la fórmula:

\[\mu P = \sum C_i \mu_i \]

Se ha adoptado como el más idóneo (por rapidez, comodidad
y exactitud) el método de medida de la radiación Compton, (HOWER, 1959), (REYNOLDS, 1963). La corrección de los efectos de matriz por este método se fundamenta en la proporcionalidad existente entre el coeficiente de absorción atómico de una determinada sustancia y la intensidad de la radiación dispersa Compton de esa misma sustancia.

Teniendo en cuenta que, para intervalos entre discontinuidades de absorción, los coeficientes de absorción atómicos para distintas longitudes de onda varían de forma semejante, se puede utilizar la medida de la intensidad Compton como índice de los efectos de absorción de la matriz de forma global para una determinada longitud de onda.

Las muestras abarcan una gama desde rocas ultrabásicas hasta ácidas que corresponden a casi todos los patrones geológicos del U.S. Geological Survey, del C.R.P.G. de Nancy, y además algunas biotitas, moscovitas y rocas silicatadas de composición conocida.

Para el cálculo de los coeficientes de absorción de dichas muestras se han utilizado los datos de LIEBHAFSKY y cols. (1966).

Ha sido necesario hacer una corrección en la medida de la intensidad de la radiación Compton W L α de ocasionada por la interferencia de la radiación Ni K β. Interferencia más acusada, naturalmente, en las rocas más básicas donde normalmente la cantidad de Ni es mayor.

La corrección es posible hacerla debido a la constancia de la relación entre las intensidades de las radiaciones Ni K α y Ni K β, lo cual permite la determinación empírica del factor de corrección. Este método ha sido también utilizado por DELONG y Mc CULLOUGH (1973).

HOWER (1959) manifestaba que, puesto que el hierro es el elemento más pesado (de los mayoritarios) en las rocas comunes silicatadas, la relación entre nuestra probabilidad de disociación de Fe. Pero para longitudes de onda más largas que ésta, correspondientes a las radiaciones K de Co, Mn, Cr, V y Sc, es decir, hasta la siguiente discontinuidad de absorción de elemento mayoritario, correspondiente al Ca, los coeficientes de absorción de las muestras varían notablemente en función de las concentraciones de hierro en ellas, por lo que no se observa correlación entre dichos coeficientes y la inversa de la intensidad Compton. En este caso es necesario recurrir a la medida de la I K del Fe en cada una de las muestras y obtener los \(\mu_{2A} \) mediante la utilización de la buena correlación existente entre \(\mu_{1A} / \mu_{2A} \) y \(\text{I Fe K} \ α \) WALKER (1973).

A pesar de la simplicidad del espectro X de los elementos (sobre todo para aquellos de número atómico no muy elevado) que queda reducido a dos rayas características por elemento, K α y K β, desgraciadamente hay una serie de interferencias espectrales que es preciso y posible corregir en el mayor número de casos.

Estas correcciones se basan en la constancia de las relaciones \(\text{I K} \ α / \text{I K} \ β \).

A continuación se expone resumidamente las principales interferencias y sus correcciones.

<table>
<thead>
<tr>
<th>Radiación</th>
<th>Radiación</th>
<th>Corrección analizada interferente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb L β</td>
<td>II Sn K α</td>
<td>Medida de Sn K α</td>
</tr>
<tr>
<td>Y K α</td>
<td>Rb K β</td>
<td>Medida de Rb K α</td>
</tr>
<tr>
<td>Ni K α</td>
<td>II Rb K α</td>
<td>Medida de Rb K α</td>
</tr>
<tr>
<td>Zr K α</td>
<td>Sr K β</td>
<td>Medida de Sr K α</td>
</tr>
<tr>
<td>Nb K α</td>
<td>Y K β</td>
<td>Medida de Y K α</td>
</tr>
</tbody>
</table>

Otro factor muy importante en el análisis de rayas es la medida correcta del fondo. Los métodos clásicos utilizados de medida del fondo antes y después del pico no pueden dar resultados exactos. Se hace necesario, pues, la medida del fondo en el lugar exacto del pico. Para ello se ha recurrido a una aproximación viendo dicho fondo sobre una matriz muy semejante a la muestra, pero extensa del elemento a medir. Los resultados son semejantes al caso anterior. Sin embargo, hay un medio de hacerlo, dado que la razón de dos fondos próximos es igual al producto de la razón de los coeficientes de ab-
sorción másica por la razón de los factores de difusión de la matriz a las dos longitudes de onda correspondientes, QUINTIN (1973). Ya habíamos visto que la razón de los coeficientes de absorción era constante y también es constante la razón de los factores de difusión de los óxidos mayoritarios de las rocas QUINTIN (1973). Por consiguiente, dada la constancia de la razón de dos fondos próximos se puede medir el verdadero fondo bajo el pico utilizando correlaciones de fondos próximos obtenidos a partir de medidas hechas en óxi-
dos puros.

Límite de detección. Es de suma importancia, en el análisis de trazas, conocer bien los límites de detección con un elevado nivel de confiabilidad. Debido a la naturaleza estadística de la producción de Rayos X (primarios y de fluorescencia) y de transformación en impulsos eléctricos en los contadores hay que considerar la desviación típica (o error) de conteo que viene dado por \(\sqrt{N} \) (siendo N el número de impulsos en un tiempo determinado).

El límite de detección viene condicionado por varios factores:

a) Naturaleza de la matriz; con disminución de dicho límite al aumentar el coeficiente de absorción másico de la mue-
stra.

b) Número atómico del elemento; con disminución espectacu-
lar para los elementos ligeros (número atómico inferior a 20).

c) Tiempo de conteo y condiciones instrumentales.

d) Confianza (reproductibilidad) exigida en el análisis.

Se ha calculado los límites de detección considerando un nivel de probabilidad del 95 por cien-
to, es decir, suponiendo fluctua-
ciones en las medias de 3 \(\sqrt{N} \) y utilizando la fórmula, LEAKE y cols. (1969):

<table>
<thead>
<tr>
<th>Zr</th>
<th>Rb</th>
<th>Zn</th>
<th>Ni</th>
<th>Nb</th>
<th>Ba</th>
<th>Sn</th>
<th>Cu</th>
<th>Li</th>
<th>P(_2)O(_5)</th>
<th>Cs</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>21</td>
<td>30</td>
<td>23</td>
<td>21</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Límite de detección</th>
<th>(c \cdot 3 \sqrt{N_B})</th>
<th>N(_p) \cdot N(_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El tiempo de conteo ha sido de 80 s y para las condiciones ins-
mamentales que se exponen al final de este apartado y matrices constituidas por rocas silicatadas los límites de detección son:
Tabla 2

<table>
<thead>
<tr>
<th>Zr</th>
<th>Rb</th>
<th>Zn</th>
<th>Ni</th>
<th>Nb</th>
<th>Sn</th>
<th>Cu</th>
<th>Li</th>
<th>P₂O₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>2168</td>
<td>96</td>
<td>96</td>
<td>178</td>
<td>400</td>
<td>-</td>
<td>450</td>
<td>0.26</td>
</tr>
<tr>
<td>129</td>
<td>2981</td>
<td>145</td>
<td>108</td>
<td>205</td>
<td>542</td>
<td>37</td>
<td>350</td>
<td>0.14</td>
</tr>
<tr>
<td>129</td>
<td>1420</td>
<td>75</td>
<td>69</td>
<td>69</td>
<td>474</td>
<td>41</td>
<td>190</td>
<td>0.33</td>
</tr>
<tr>
<td>101</td>
<td>1400</td>
<td>42</td>
<td>71</td>
<td>76</td>
<td>682</td>
<td>-</td>
<td>220</td>
<td>0.20</td>
</tr>
<tr>
<td>220</td>
<td>1492</td>
<td>67</td>
<td>64</td>
<td>83</td>
<td>273</td>
<td>-</td>
<td>310</td>
<td>0.26</td>
</tr>
<tr>
<td>258</td>
<td>1788</td>
<td>65</td>
<td>69</td>
<td>69</td>
<td>415</td>
<td>-</td>
<td>175</td>
<td>0.26</td>
</tr>
<tr>
<td>174</td>
<td>1686</td>
<td>66</td>
<td>56</td>
<td>85</td>
<td>409</td>
<td>38</td>
<td>225</td>
<td>0.28</td>
</tr>
<tr>
<td>199</td>
<td>2094</td>
<td>95</td>
<td>71</td>
<td>109</td>
<td>505</td>
<td>25</td>
<td>225</td>
<td>0.16</td>
</tr>
<tr>
<td>294</td>
<td>1612</td>
<td>59</td>
<td>61</td>
<td>79</td>
<td>345</td>
<td>11</td>
<td>325</td>
<td>0.17</td>
</tr>
<tr>
<td>294</td>
<td>1470</td>
<td>64</td>
<td>59</td>
<td>63</td>
<td>-</td>
<td>13</td>
<td>150</td>
<td>0.20</td>
</tr>
<tr>
<td>164</td>
<td>1290</td>
<td>45</td>
<td>51</td>
<td>49</td>
<td>593</td>
<td>27</td>
<td>120</td>
<td>0.50</td>
</tr>
<tr>
<td>443</td>
<td>2113</td>
<td>70</td>
<td>95</td>
<td>160</td>
<td>252</td>
<td>-</td>
<td>350</td>
<td>0.23</td>
</tr>
<tr>
<td>241</td>
<td>1358</td>
<td>30</td>
<td>64</td>
<td>74</td>
<td>578</td>
<td>20</td>
<td>215</td>
<td>0.24</td>
</tr>
<tr>
<td>143</td>
<td>1700</td>
<td>65</td>
<td>77</td>
<td>99</td>
<td>943</td>
<td>-</td>
<td>270</td>
<td>0.47</td>
</tr>
<tr>
<td>28</td>
<td>214</td>
<td>750</td>
<td>38</td>
<td>39</td>
<td>92</td>
<td>445</td>
<td>20</td>
<td>160</td>
</tr>
<tr>
<td>134</td>
<td>1238</td>
<td>41</td>
<td>51</td>
<td>96</td>
<td>356</td>
<td>31</td>
<td>150</td>
<td>0.19</td>
</tr>
<tr>
<td>107</td>
<td>1493</td>
<td>75</td>
<td>68</td>
<td>59</td>
<td>445</td>
<td>20</td>
<td>270</td>
<td>0.21</td>
</tr>
<tr>
<td>161</td>
<td>1050</td>
<td>49</td>
<td>39</td>
<td>74</td>
<td>400</td>
<td>31</td>
<td>140</td>
<td>0.47</td>
</tr>
<tr>
<td>80</td>
<td>1523</td>
<td>75</td>
<td>64</td>
<td>89</td>
<td>311</td>
<td>-</td>
<td>225</td>
<td>0.21</td>
</tr>
<tr>
<td>107</td>
<td>1500</td>
<td>79</td>
<td>58</td>
<td>74</td>
<td>267</td>
<td>31</td>
<td>175</td>
<td>0.22</td>
</tr>
<tr>
<td>102</td>
<td>1463</td>
<td>71</td>
<td>58</td>
<td>104</td>
<td>445</td>
<td>41</td>
<td>170</td>
<td>0.18</td>
</tr>
<tr>
<td>250</td>
<td>1340</td>
<td>45</td>
<td>65</td>
<td>49</td>
<td>711</td>
<td>-</td>
<td>100</td>
<td>0.15</td>
</tr>
<tr>
<td>129</td>
<td>938</td>
<td>34</td>
<td>45</td>
<td>44</td>
<td>667</td>
<td>31</td>
<td>100</td>
<td>0.25</td>
</tr>
<tr>
<td>155</td>
<td>1253</td>
<td>45</td>
<td>58</td>
<td>89</td>
<td>622</td>
<td>41</td>
<td>75</td>
<td>0.21</td>
</tr>
<tr>
<td>129</td>
<td>1305</td>
<td>45</td>
<td>45</td>
<td>59</td>
<td>756</td>
<td>41</td>
<td>200</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Tabla 3

<table>
<thead>
<tr>
<th>Biotitas</th>
<th>Monozonitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falci</td>
<td>Farcis</td>
</tr>
<tr>
<td>H₁--2</td>
<td>N₁--12</td>
</tr>
<tr>
<td>H₁--6</td>
<td>N₁--14</td>
</tr>
</tbody>
</table>

Tabla 4

| Elementos trazas en biotitas - composición normativa |
| Zr-B | Nb-B | Zn-B | Li-B |
| 0.745 | 0.765 | 0.675 | 0.720 |

Los resultados de estas determinaciones (óxidos en peso, elementos en ppm) se han indicado en las Tablas 1 (biotitas) y 2 (moscovitas). En la Tabla 3 se expresa un resumen de los datos analíticos de la bibliografía y de los obtenidos a partir de las Tablas 1 y 2, agrupando las muestras dentro de las tres facies principales analizadas. Finalmente,
la Tabla 4 recoge los coeficientes de correlación lineal más significativos encontrados entre parámetros de magnitudes (elementos en trazas y porcentaje de minerales normativos).

Algunas condiciones físicas y químicas de la cristalización de granitos que influyen en las microscopias

No se conoce demasiado sobre la química de este proceso. Dado que en el medio ambiente respectivo actúan presiones elevadas, con frecuencia del orden de miles de atmósferas, las condiciones experimentales son difíciles de alcanzar y la información de campo correspondiente de la química inorgánica es, desde un punto de vista relativo, muy poco numerosa frente a los datos que se disponen de reacciones a presiones y temperaturas próximas a las ordinarias.

Las teorías modernas admiten que los silicatos fundidos constan de tetraedros de Si o de Si y Al. oxidados, de baja movilidad, y de diversos cationes. Estos últimos son de dos clases: alcalino-térreos que se enlazan íonicamente a dichos tetraedros, y un segundo grupo constituido por los elementos Ti, Al, Zr, etc., enlazados covalentemente (POLITOV Y KOVALENKO, 1973). Se está, pues, lejos de un líquido desordenado; en cierta manera, está disposición recuerda a la del enlace metálico.

La presencia de moscovita y biotita, minerales con OH en su fórmula, es una señal de que este líquido contiene agua. De acuerdo con investigaciones de KADIK y cols. (1971), la cantidad es importante: en ordenadas se expresa el agua en porcentaje molar de roca fundida (peso molecular medio del grano - 65,09). Se admite que el agua se disuelve en el fundido según:

\[
R_3 = \text{SiO-Si} = \text{H}_2\text{O} + 2R_3 \text{SiO}_3 + 2H^+ \\
\text{(EPFEL'BAUM, 1973). Puesto que H}_2\text{O} \cong \text{2H}^+ + \text{O}_2, \text{queda:}
\]

\[
K = \frac{[H^+]^2 [O_2]}{[H_2O]^2}
\]

Expresando en función de la presión y teniendo en cuenta que el agua, en vapor, es una sustancia real (introducción del coeficiente de fugacidad, \(\gamma\)), resulta:

\[
[\text{H}_2\text{O}] = \gamma \cdot P_{\text{H}_2\text{O}}
\]

Conociendo el coeficiente de solubilidad del agua, L, se puede escribirse entonces:

\[
[H^+] = L \cdot \sqrt{[\text{H}_2\text{O}]} = L \cdot \sqrt{\gamma \cdot P_{\text{H}_2\text{O}}}
\]

Queda finalmente:

\[
[H^+] = L \cdot \sqrt{\gamma \cdot P_{\text{H}_2\text{O}}}
\]

\[
[O_2] = K \cdot \gamma \cdot P_{\text{H}_2\text{O}} / [H^+]^2
\]

El carácter oxidante se regula según la ecuación:

\[
[O_2] / [O_2] = E^2 - K, \text{siendo E el potencial redox.}
\]

Es decir, como consecuencia de la disolución del agua, hay una acidez y un carácter oxidante que se pueden medir. Ambos factores influyen considerablemente sobre la composición química. En medio alcalino, el carácter es más oxidante:

\[
4 \cdot \text{OH}^- + 2\text{H}_2\text{O} + 2\cdot 4e^- = 4\text{O}_2 + 4 \cdot \text{H}^+
\]

En este medio, las biotitas pierden hierro y evolucionan a los términos magnéticos:

\[
\text{Bt (FeO)}_2 \text{O}_2 \text{Bt (Mg)}
\]

Bajo condiciones de acidez creciente, la biotita es atacada y los elementos Fe y Mg son solubilizados, concentrándose el Al y, finalmente, quedando reducida a moscovita. En los pasos iniciales, la acidez en aumento se caracteriza por un enriquecimiento en Fe a expensas del Mg en biotitas, según lo indicado anteriormente, hasta un límite en el que empieza a eliminarse también el primero de los elementos citados.

La relación, antes expresada, entre el contenido en Mg y Fe de biotitas y el carácter oxidante del medio fue calculada cuantitativamente por WONES Y EUGSTER (1963), a partir de datos experimentales. La relación mol de Fe/(Fe + Mg) resultó ser poco dependiente de la temperatura y función, principalmente, de la fugacidad del oxígeno. Por consiguiente, el análisis químico determina directamente el oxígeno implicado en la formación de biotita.

La biotita férrea se descompone según:

\[
\text{KFe}_3\text{AlSi}_3\text{O}_{10}(\text{OH})_2 \rightarrow \text{KAISi}_3\text{O}_8 + \text{Fe}_3\text{O}_4 + \text{H}_2
\]

\[
K_{\text{eq}} = \frac{[\text{KAISi}_3\text{O}_8] [\text{Fe}_3\text{O}_4] [\text{H}_2]}{[\text{KFe}_3\text{AlSi}_3\text{O}_{10}(\text{OH})_2]}
\]

Por otra parte, el \(\text{H}_2\) fue medido experimentalmente según la ecuación:

\[
\frac{\log f_{\text{H}_2}}{T} = 8341 \cdot 42.2 (1 - x)^2,
\]

En el caso real, es preciso considerar los coeficientes de actividad y otras correcciones. No es objeto de este trabajo desarrollar el proceso que conduce a la fórmula final:

\[
\log f_{\text{H}_2} = \frac{9341 \cdot 42.2 (1 - x)^2}{T} \cdot \log x, \quad T = 11.05
\]
Puesto que el agua se descompone según $\text{H}_2\text{O} \rightarrow \text{H}_2 + 1/2 \text{O}_2$ resulta:

$$\log f_{\text{H}_2\text{O}} = \frac{3428 \cdot 4212 (1 - x_1)^2}{T},$$

$$\log x_1 \cdot 1/2 \log f_{\text{O}_2} = 8,23$$

$f_{\text{H}_2\text{O}}$: fugacidad del agua
x_1: relación molar Fe/(Fe + Mg)
f_{O_2}: fugacidad del oxígeno
T: temperatura absoluta

WONES simplificó esta fórmula para biotitas graníticas (PUFFER, 1972):

$$\log f_{\text{H}_2\text{O}} = \frac{7409}{T} \cdot 4,25 \cdot 1/2$$

$$\log f_{\text{O}_2} = 3 \log x$$

que es la que se utilizará aquí. El paso de fugacidad de agua a concentración se efectuó con los datos de HC1SER (1954).

La alcalinidad y temperatura del medio ambiente durante la cristalización de la biotita han sido evaluadas en función de la composición química por MARAKUSHEV y TARARIN (en IVANOY, 1970). En función de los parámetros Fe/(Fe + Mg) y Al/(Si + Al + Fe + Mg) (relaciones moleares).

El contenido en agua en la roca fundida, según se destacó anteriormente, es importante desde el punto de vista de acidez. Su valor se puede calcular fácilmente a partir de los datos recientes de KADIK, LEBEDEV y KHITAROV, 1971 (en EPELBAUM, 1973). Es una función de la presión parcial de este componente y de la temperatura.

Interpretación y discusión

Las consideraciones anteriores aplicadas a las biotitas del granito de Albalá concuerdan bien con los valores atribuidos a dicho mineral en su cristalización: temperatura próxima a 650°C, presión máxima de 4,5 kb, fugacidad de oxígeno baja (1018 bars) y magma saturado en agua (con un 7 por ciento de H$_2$O aproximadamente). En estas condiciones, la distribución de elementos en trazas está regulada por varios factores, no sólo por las leyes clásicas. En este trabajo se insiste particularmente en las propiedades acídicas o básicas de los elementos, considerada ya la posibilidad de reacciones redox y de interacción ácido-base.

Las condiciones de acidez y el medio más o menos oxidante vienen dadas como funciones de los parámetros Al/(Al + Si + Fe + Mg) y Fe/(Fe + Mg), respectivamente. La variación es escasa (Tabla 3). Dentro de este reducido margen la facies cordierítica es más básica (próxima a adamellites) que la de grano medio central (próxima a grano en sentido estricto). En general, y tal y como se deduce de los resultados de la Tabla 4, para el conjunto de todas las facies, la distribución de elementos en trazas se regula por el distinto carácter ácido de los iones. Los máximos contenidos en biotita son más reflejo de un ambiente más alcalino, mientras que los de moscovita (secundaria en la mayor parte de los casos) indican un nivel más elevado de acidez.

Se aprecia que existe una dependencia directa entre el contenido en biotitas de la roca (basicidad) y el de elementos ácidos en dicho mineral, mientras que tal dependencia es inversa frente a elementos básicos (Li, Rb, Zn); el fenómeno contrario puede señalarse en la moscovita (acidez). Los elementos de iguales tendencias siguen un comportamiento paralelo. Pero en el caso del Sn, Nb y Pb este sentido se invierte: en medio más ácido dichos elementos forman compuestos covalentes con los compuestos volátiles, móvilizándose de esta manera y dejando de ajustarse a las relaciones ácido-base. Al pasar del granito cordierítico, más básico, al granito central, las biotitas reflejan muy bien el cambio por la acumulación de los elementos menos alcalinos en las formadas en medio más básico (Tabla 3).

Existe aquí un punto muy importante en la geoquímica de los elementos trazas. Los granitos de la región central, más ácidos que los cordieríticos, presentan una distribución de ciertos componentes que no corresponde a un esquema de diferenciación normal, sino que se ajusta mejor a una anestaxia (SAAVEDRA, 1975). El mismo hecho se observa en las biotitas: las más ricas en Ba son, precisamente, las que cristalizaron en medio más básico. No parece probable una influencia del elemento geoquímica más afín, el K, puesto que los contenidos son en la práctica idénticos. Dado que ocurre el mismo fenómeno en la roca, la explicación más satisfactoria es la dada para el origen de ésta: el granito central procedería del cordierítico por un mecanismo anfíctico, que daria lugar a un magma más ácido y enriquecido en elementos alcalinos; el Ba, Sr, etc., siguen al Ca en este proceso y quedan concentrados en la parte más básica, rica en ferromagnesianos. Están de acuerdo con ello las variaciones K/Rb, Al/Li, Mg/Li de la Tabla 3; como señalan SYRITSO y cols. (1970), éstas deberían incrementarse al pasar a condiciones más ácidas, admitiendo una diferenciación normal, y ocurre justamente lo contrario.

La facies híbrida ha surgido como resultado de la interacción entre los dos granitos citados. Se caracteriza por una sodificación y silicificación con respecto a las anteriores, probablemente ocasionadas por una albización inducida por el granito central, el
más reciente; en este caso se produce una concentración de elementos alcalinos muy móviles en el proceso (según el orden decreciente Cs, Rb, Li) y de elementos susceptibles de formar complejos covalentes (Nb y Sn). Al existir un medio enriquecido notablemente en dichos iones, las biotitas se enriquecen en ellos, pues justamente son los retenidos con menos fuerza en la red cristalina.

Al considerar las moscovitas el problema cambia. Este mineral es, en su gran mayoría, un producto de transformación de otros, y no el resultado de una cristalización directa a partir de un magma. Las relaciones inter-elementales aludidas son bastante más altas que en la biotita, por lo que puede asegurarse que el incremento de acidez ha sido notable. Por tanto, esta lixiviació n ácida ha eliminado del mineral gran parte de los elementos, quedando enriquecida en los más ácidos: Al, Si y Sn. Aunque, como consecuencia, ha sido necesario más K como elemento básico compensador, los restantes alcalinos no han sido vetenidos y se concentraron en la fracción lixivida; la posibilidad de que el Rb (radio iónico, 1,57 Å) y, sobre todo, el Cs (1,78 Å) ocupen los huecos en la moscovita (tamaño aproximado, 1,50 Å) es menor que en la biotita (tamaño 1,65 Å), y el Li (0,82 Å) que en razón a sus dimensiones ha de entrar en huecos octaédricos, también tiene más posibilidad de acomodarse en los espacios mayores de la moscovita que en los más pequeños de la biotita (por el menor radio del Al + que el del Fe²⁺ o Mg²⁺).

Teniendo en cuenta el comportamiento observado, puede darse la siguiente secuencia de carácter básico decreciente:

En resumen, las biotitas presentan una gama de distribución de elementos reflejada de la de la roca. La moscovita es un buen índice de la actividad postmagmática. Sin embargo, el comportamiento de los elementos en trazas dista mucho de explicarse por un solo mecanismo, aun dentro de un mismo batolito como el aquí estudiado. Con todas estas limitaciones, la interacción ácido-base se muestra útil para una primera aproximación.

BIBLIOGRAFÍA

SAAVEDRA, J. (1975). "Estudio petrologico y geoquímico del granito mineralizado de Albalá (Cáceres)". En preparación.

