C2 contributions to back-angle inelastic electron scattering from 166Er and 181Ta

P. Sarriguren and E. Moya de Guerra
Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
(Received 8 August 1984)

We present results of distorted-wave Born approximation calculations of longitudinal contributions to 180° inelastic electron scattering, in the limit of zero electron mass and pure Coulomb distortion. A rough estimate of said contributions is given for the transitions 0⁺ → 2⁺ in 166Er, and $\frac{1}{2}^+ → \frac{3}{2}^+$ and $\frac{3}{2}^+ → \frac{5}{2}^+$ in 181Ta. Results are compared to plane-wave Born approximation calculations of transverse form factors.

In a previous paper,¹ one of us pointed out that, in distorted wave Born approximation (DWBA), the differential cross section at 180° for inelastic electron scattering from nuclei contains charge multipole contributions that are different from zero even for ultrarelativistic electrons ($m_\epsilon/v_e^2 → 0$). In this Brief Report we give a rough estimate of these contributions in the limit of zero electron mass. As is well known,² in this limit the differential cross section at 180° in plane wave Born approximation (PWBA) is proportional to the transverse form factor,

$$\frac{d\sigma(\epsilon_i, \theta = \pi)}{d\omega} = \frac{Z^2\alpha^2}{4\epsilon^2(1 + 2\epsilon_i/M_{\text{Hug}})} F_T^2(q)^2,$$ \hspace{1cm} (1)

with $\epsilon_i = K_i, \epsilon_f = K_f$, the initial and final electron energies and momenta, $q = K_i + K_f$, and F_T is the transverse form factor involving only transverse multipoles of the nuclear transition vector current. The PWBA result expressed in Eq. (1) has motivated³ many experiments of electron scattering at 180° to get information on current distributions in nuclei, since electron scattering at lower angles is, in general, dominated by longitudinal form factors. This is particularly so for transitions within ground-state rotational bands in axially symmetric deformed nuclei. In particular, for $0^+ → \lambda^+ (\lambda = \text{even} \geq 2)$ transitions within the ground-state band of even-even rotational nuclei, the cross section at back-angle measurements, according to Eq. (1), the transverse $E2 \lambda \mu$ multipole of the collective rotational current in the band,⁴ and thus, experiments at 180° offer a way to obtain direct and unique information on the nature of the nuclear collective rotational motion. However, as said before, if we take into account distortion effects, the longitudinal Cλ multipole also contributes. It is then very important, for the correct interpretation of experimental data, to know the order of magnitude of the longitudinal contribution and, in particular, to know whether the latter is comparable or not to the transverse form factor in Eq. (1). If the Cλ contributions in DWBA turn out to be much smaller than F_T, we may expect Eq. (1) to hold, but otherwise a complete DWBA analysis of the experimental data at 180° will be required.

In DWBA, the Cλ contribution to the differential cross section at 180° is given by⁵

$$\frac{d\sigma_{C\lambda}(\epsilon_i, \theta = \pi)}{d\Omega} \left| \frac{\alpha^2 64 \pi^2 \epsilon_i^2}{(1 + 2\epsilon_i/M_{\text{Hug}})(2L_i + 1)} \right|^2 \lambda \mu^2 \langle \lambda \lambda \rangle \left(\left| \Phi_{C\lambda}^\lambda \right| \right)^2,$$ \hspace{1cm} (2)

where $\Phi_{C\lambda}^\lambda (\lambda = \lambda \mu + 1)$ is the individual reduced amplitude corresponding to the total contribution of the Cλ multipole ($\mu^2 \langle \lambda \lambda \rangle$) of the nuclear transition charge. The notation and conventions are as in Ref. 1. To compare with the transverse form factor in Eq. (1), we computed the C2 "form factor"

$$[F_{C2}]^2 = \frac{4\epsilon_i^2(1 + 2\epsilon_i/M_{\text{Hug}})}{Z^2\alpha^2} \frac{d\sigma_{C2}(\epsilon_i, \theta = \pi)}{d\Omega} \left| \frac{\lambda \mu^2 \langle \lambda \lambda \rangle \left(\left| \Phi_{C\lambda}^\lambda \right| \right)^2}{Z^2(2L_i + 1)} \right|^2.$$ \hspace{1cm} (3)

For the transition $0^+ → 2^+$ in 166Er, this is the whole longitudinal contribution; for the transitions $\frac{3}{2}^+ → \frac{5}{2}^+$ and $\frac{3}{2}^+ → \frac{11}{2}^+$ in 181Ta, higher longitudinal multipoles ($C4, C6, C8$) also contribute, but since these peak at higher q values and the transition multipole moments are small, we may forget them in a first estimate.¹ Note that Φ_{C2}^λ [see Eqs. 2 and 4 in Ref. 1] changes sign under the interchange of ϵ_i and ϵ_f, then for small $q = (\epsilon_i - \epsilon_f)/2$ we may expand Φ_{C2}^λ in powers of $q/2K$ [with $K = (\epsilon_i + \epsilon_f)/2$] and get to second order $\Phi_{C2}^\lambda \propto q/K$. We have taken this expansion for the evaluation of Φ_{C2}^λ.

Following Ref. 1, we write the C2 amplitude as

$$\Phi_{C2}^\lambda = \sum_{l > 1} \left(-1 \right)^l G_l(x,x') \left(\pdf_{Cl}(x',x) \right),$$ \hspace{1cm} (4)

with $x = K_f, x' = K_f + r$, and

$$G_l(x,x') = \frac{l(l+1)}{(l^2 - \frac{1}{4})(l^2 - \frac{1}{2})} \left[(l^2 - \frac{1}{2})e^{ik_l x'} G_l(x,f_1(x),f_1+2(x')) \right.$$
$$\left. - (l + \frac{1}{2})e^{i(k_l + k_{l+1})} f_1(x) G_l(x'+1) - (l - \frac{1}{2})e^{i(k_l - 1 + k_{l+1})} G_{l-1}(x) G_{l+1}(x') \right.$$
$$\left. - (l + \frac{1}{2})e^{i(k_l + k_{l+1})} f_1(x) G_l(x') \right].$$ \hspace{1cm} (5)

where we have rearranged the sum over partial waves l so that in the plane wave limit each term is identically zero. The notation and conventions for phase shifts (k_l) and radial solutions (f_l, G_l) of the Dirac equation for the electron in the electrostatic field $V(r)$ are as in Ref. 5. To evaluate Eqs. (4) and (5), we used the well-known expressions⁶ of phase

30 2105 ©1984 The American Physical Society
shifts and radial functions corresponding to a pure Coulomb potential \(V(r) = -\alpha Z/r \), in the limit of zero electron mass. Consistently with the point charge approximation \(V(r) = -\alpha Z/r \) we took \(r_\gamma \) and \(r_\sigma \) in Eq. (4) to be the nuclear and electronic coordinates, respectively, and evaluated the electronic integrals

\[
I_\gamma = \int_0^\infty \frac{dr}{r} \left[G_i(x,x') - G_i(x',x) \right].
\]

These are somewhat different from the radial integrals of Dirac-Coulomb functions usually discussed in the literature,\(^6 \) for if we neglect the energy difference \(E_1 \) is automatically zero.

The easiest way to evaluate these integrals is to make an expansion in \(\alpha Z/l \). Using the recurrence relations for the confluent hypergeometric functions, one can show, after a straightforward but tedious algebra, that the integrand in Eq. (6) can be written to lowest order in \(\alpha Z/l \) as

\[
G_i(x,x') - G_i(x',x) = e^{-(z + z')/2} (-iy)(-zz') e^{\pi it/2} \frac{\Gamma(1 + l + iy)}{\Gamma(2l + 3)} \left(\frac{2l + 1}{l^2 - \frac{1}{4}} (l + \frac{z}{2}) \right)
\times \left\{ \frac{2l - 1}{z} \frac{z'}{z} \left[F_i(l, 2l; z) \left[F_i(l + 2l + 4; z') z \left(\frac{l + 1}{2l + 1} \right) \right] + F_i(l + 1, 2l + 2; z) \left[F_i(l + 2l + 4; z') \frac{z}{2l + 1} \right] \right] + F_i(l + 1, 2l + 2; z) \left[F_i(l + 1, 2l + 4; z') \frac{l}{2l + 1} \right] \right\}
\]

with \(z = 2ix', z' = 2ix, y = \alpha Z \). Then, the integrals involved in Eq. (6) reduce to integrals of products of spherical Bessel functions and having simple analytical solutions (for more details see Ref. \(^7 \)), and after the expansion in \(\omega/K \) we get

\[
I_\gamma = \frac{\omega}{K} a_1 = \frac{\omega}{K} \frac{2\pi}{5} \frac{2}{(4l^2 - 1)(2l + 3)} \exp\left[\pi y - 2iy\psi(l + 1) \right] \left(\frac{l^2 + l + 1}{2l + 1} \right)
\times \left[\frac{2l + 1}{l + 1} \frac{1}{2l - 1} + \frac{1}{2l + 3} \right],
\]

with \(\psi(n) = \Gamma''(n)/\Gamma(n) \). Then \(\mathcal{F} \) in Eq. (4) takes the form

\[
\mathcal{F} \approx \frac{\omega}{K} \int (\alpha Z) \int r^6 P_3(r) dr.
\]

with

\[
I(\alpha Z) = \frac{3}{8\sqrt{6}} \sum_{l=1}^{\infty} (-1)^l a_l.
\]

To sum the infinite series in Eq. (10) we used the reduction method based on the recurrence relations of the Legendre polynomials [note that \((-1)^l P_l(\cos\theta) \) for \(\theta = \pi \)] described in Sec. II, Pt. 4 of Ref. 8. Since \(a_l \) goes like \(1/l \), the series converges quite rapidly after just one reduction.

Results for \(I(\alpha Z) \) are given in Table I for different \(Z \) values. For the cases of \(\alpha Z = 0.5 \) the expansion in \(\alpha Z/l \) is not well justified for partial waves \(l < 10 \). Therefore, for \(\alpha Z \geq 0.5 \), we used an alternative method to compute the integrals \(I_\gamma \) (see results within parenthesis in Table I). This method is based on the work of Gargaro and Onley.\(^9 \) We first made a second order expansion in \(\omega/K \) of the integrand using the relation\(^{10} \)

\[
F_i(a, b; \lambda z) = \lambda^{-a} \sum_{n=0}^{a} \frac{\Gamma(a + n)}{n!\Gamma(a)} (1 - \lambda^{-1})^n
\]

\[
\times F_i(a + n, b; z),
\]

with \(\lambda = 1 \pm \omega/2K, z = 2iKr \). Then the integrals involved in Eq. (6) are of the form

\[
I = \int_0^\infty dr r^{6} e^{-2ikr} F_i(a, b; 2ikr) F_i(a, b; 2ikr),
\]

with \(K \) real, \(R_\sigma(b) > R_\sigma(a) > 0 \),

\[
R_\sigma(\tilde{b} - \tilde{a} + a - \nu) > 0, \quad \nu - b + 1 \neq 0, -1, -2, \ldots,
\]

whose solution is given in Eq. (14) of Ref. 9 (see also Ref. 7). In our case, that solution has to be handled with care. For some of the integrals (11) involved in Eq. (6), the conditions (12) are only satisfied to order \((\alpha Z/l)^2 \), leading to great numerical instabilities when that solution is used for large \(l \) values. The values of \(I(\alpha Z) \) given within parenthesis in Table I were obtained using this last method for \(l < 10 \) and the result of Eq. (8) for \(l \geq 10 \). We should mention, however, that since in the approach taken here we have neglected the effect of the finite nuclear size which is

<table>
<thead>
<tr>
<th>(\alpha Z)</th>
<th>(0.04)</th>
<th>(0.1)</th>
<th>(0.2)</th>
<th>(0.3)</th>
<th>(0.4)</th>
<th>(0.5)</th>
<th>(0.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I(\alpha Z))</td>
<td>(1.18 \times 10^{-3})</td>
<td>(3.61 \times 10^{-3})</td>
<td>(1.00 \times 10^{-2})</td>
<td>(2.09 \times 10^{-2})</td>
<td>(3.89 \times 10^{-2})</td>
<td>(6.80 \times 10^{-2})</td>
<td>(1.15 \times 10^{-1})</td>
</tr>
</tbody>
</table>

\((2.65 \times 10^{-1}) \) | \((3.07 \times 10^{-1}) \)
more important for the smaller l values, we cannot expect to get a very realistic answer with either of the two methods for $l \leq 10$. Complete DWBA calculations taking into account the nuclear extension and the electron mass will be presented in a forthcoming publication.11

In the approach of point charge nucleus, taken here, the nuclear structure only enters the calculation [see Eq. (9)] via the (q independent) quadrupole moment. To compare with the transverse form factor, we simulate the appropriate q dependence (finite nuclear size) of F_{C2}, defined in Eq. (3), replacing in Eq. (9) $\int r^4 \rho_2(r) dr$ by $(15/q^2) \times \int f_J(qr) \rho_2(r) r^2 dr$, having the same behavior as the nuclear radius goes to zero. Finally, for application to the nuclear transitions within ground state rotational bands under consideration, we write4

$$\rho_2(r) = \sqrt{2} I_l + 1 \langle l_I K \rangle \langle l_f K \rangle \rho^{q2}(r), \quad (13)$$

where $\rho^{q2}(r)$ is the intrinsic quadrupole charge distribution in the expansion

$$\rho^{q2}(r) = \sum_{\lambda = \text{even}} \rho_\lambda^{q2}(r) Y_\lambda(\Omega). \quad (14)$$

Approaching the intrinsic charge distribution by

$$\rho^{q2}(r) = \rho \left[1 - \sum \alpha_\lambda F_\lambda(\cos \theta) \right],$$

with $\rho(r)$ a two-parameter Fermi function $\rho(r) = \rho_f(1 + e^{(r-r_0)/a})^{-1}$, we get to first order in the deformation parameters α_λ

$$\rho^{q2}(r) = \left(\frac{4\pi}{5} \right)^{1/2} \alpha_2 \rho_f(\rho^{q2}) \rho_f(\frac{\partial \rho_f}{\partial r}). \quad (15)$$

For 166Er, we took $c = 6.16$ fm, $r_f(=4a_0 a_n) = 2.37$ fm, $\alpha_2 = 0.2$ adjusted to the experimental values of the intrinsic quadrupole moment $Q_0 = 756$ fm2, and rms radius,$^{12} \langle r^2 \rangle^{1/2}$

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1}
\caption{Calculated longitudinal form factor $|F_C|^2$ and $|F_{C2}|^2$ described in the text, compared with PWBA calculations of transverse form factors in the rigid rotor (RR) and projected Hartree-Fock (PHF) approaches, for the transition $0^+ \rightarrow 2^+$ in the ground-state band of 166Er.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2}
\caption{Same as Fig. 1 for the transitions $\frac{7}{2}^+ \rightarrow \frac{7}{2}^+$ and $\frac{7}{2}^+ \rightarrow \frac{11}{2}^+$ in the ground-state band of 181Ta. Also shown are the experimental data plotted vs q_{eff} (Ref. 17).}
\end{figure}
= 5.24 fm. For 181Ta, we took $c = 6.33$ fm, $t = 2.5$ fm, $\alpha_2 = 0.168$, adjusted to the experimental values (Refs. 13 and 14), $Q_0 = 738$ fm2, $(r^2)^{1/2} = 5.48$ fm.

The results obtained with these approximations for $|F_{C2}|^2$ are shown in Figs. 1 and 2 for the transition $0^+ \rightarrow 2^+$ in 166Er and for the transitions $\frac{7}{2}^+ \rightarrow \frac{9}{2}^+, \frac{11}{2}^+$ in 181Ta, respectively. To be conservative, we took the smaller value of $\lambda(\alpha Z)$ in Table I corresponding to $\alpha Z = 0.5$. In Fig. 1 we show, for comparison, the theoretical results15 of PWBA calculations of the transverse form factor, using the rigid rotor (RR) model and the projected Hartree-Fock (PHF) approach to describe the nuclear collective current. It can be seen that the first peak of $|F_{C2}|^2$ and $|F_T|^2$ PHF are located at the same q value and of the same order of magnitude. Similarly, in Fig. 2 we show the results16 of PWBA calculations of the transverse form factors in the PHF approach, also shown in this figure are the experimental data17 plotted versus q_{eff}. Again, for the transition $\frac{7}{2}^+ \rightarrow \frac{11}{2}^+$, the first peak of the transverse form factor (which is due to the $E2$ multipole) is roughly located at the same q value and of the same order of magnitude as $|F_{C2}|^2$. For the transition $\frac{7}{2}^+ \rightarrow \frac{9}{2}^+$, the first peak of the transverse form factor is dominated by the $M1$ multipole (see Ref. 16) and it is larger than the $|F_{C2}|^2$ peak. It should also be mentioned that, for the small transition energies involved in the cases considered here, taking into account the electron mass, as well as the finite nuclear size, in the DWBA calculations enhances the C2 contribution. This is especially so for the transition $\frac{7}{2}^+ \rightarrow \frac{9}{2}^+$ in 181Ta (Ref. 11), and presumably, for the transition $0^+ \rightarrow 2^+$ in 166Er, where $\omega \ll m_e$. However, as rough as the evaluation of $|F_{C2}|^2$ presented here is, the results clearly indicate that, at least for inelastic scattering on heavy nuclei, Eq. (1) is a very poor approximation and complete DWBA calculations have to be made to compare with experimental data at 180°, taking into account all permitted charge and current multipoles. This, we feel, is rather unfortunate for it makes the extraction of information on transverse nuclear currents much harder, especially since longitudinal and transverse electric multipoles interfere in DWBA. A review of some of the approaches and methods currently used in DWBA codes for the extraction of transition densities from experimental data can be found in Ref. 18.

One of us (E.M.G.) is indebted to the Comisión Asesora de Investigación Científica y Técnica (Spain) for partial financial support and to the Department of Investigación Básica (Junta de Energía Nuclear, Madrid, Spain) for its hospitality.