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1 Introduction

We present a method for deriving the set of allowed in�nitesimal motions of a polyhedron

in contact with a polyhedral assembly without breaking the established basic contacts.

The result is obtained, under the frictionless assumption, by describing each basic contact

by means of the Grassmann-Cayley algebra and using cycle conditions over closed kine-

matic chains between the polyhedron and the assembly. Although, in practice, subparts

of assemblies need to be moved completely and not only in�nitesimally, the obtained re-

sults constitute a very useful information for an assembly sequence planner [Thomas et al.

1992], [Sta�etti et al. 1998]. We also apply the proposed technique to solve in�nitesimal

mobility analysis problems of general multiloop spatial mechanisms.

2 Background

In this section we give a general overview of the subset of the Grassmann-Caley algebra

operations needed in subsequent developments without going into mathematical details.

A deeper insight can be found in [White 94] or [White 95].

2.1 Projective Space and Pl�ucker Coordinates

Let us consider the projective 3-space. A point q in this space is represented by a non-zero

4-tuple q = (q1; q3; q3; q4) whose elements are called the homogeneous coordinates of the

point. Two 4-tuples p and q represent the same projective point if, and only if, p = �q for

some � 6= 0. If q4 6= 0 we say the point is �nite and it can be represented by the 4-tuple

p = (p1; p2; p3; 1) where the �rst three components are the Euclidean coordinates of the

same point indicated with p. If q4 = 0 the point lies on the plane at in�nity.

Given two points a and b in homogeneous coordinates, a line L through them can be

represented by the vector PL formed by the six 2�2 minors of the following 2�4 matrix:�
a1 a2 a3 1

b1 b2 b3 1

�
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called the Pl�ucker coordinates of the line. It can be proven that:

PL =
�
b1 � a1 b2 � a2 b3 � a3 a2b3 � a3b2 a3b1 � a1b3 a1b2 � a2b1

�
= (s; r� s);

where s = (b � a) and r is the Euclidean position of any point on L. In the Cayley

algebra, a modern version of the Grassmann algebra, the subspace generated by a and b

is called the 2-extensor of a and b and its symbolic Pl�ucker coordinates are indicated by

a _ b or _
�
a; b
�
[Dubilet et al. 1974], [White 1995]. Thus the line L can be expressed as

L = a _ b.

The point at in�nity on L is the vector
�
b1 � a1 b2 � a2 b3 � a3 0

�
. Each 4-tuple of

the form (t1; t2; t3; 0) 6= (0; 0; 0; 0) represents a point at in�nity. This point can be thought

as in�nitely far away in the direction given by s. The same point at in�nity lies on every

line parallel to L but non-parallel lines have distinct points at in�nity.

A line at in�nity is determined by two distinct points at in�nity:

�
s1 s2 s3 0

t1 t2 t3 0

�
;

which has the following vector of Pl�ucker coordinates

PL =
�
0 0 0 s2t3 � s3t2 s3t1 � s1t3 s1t2 � s2t1

�
:

Likewise, the plane P determined by the three points a, b, and c is a 3-extensor indicated

by a _ b _ c whose Pl�ucker coordinates are the four 3 � 3 minors of the following 3 � 4

matrix0
@a1 a2 a3 1

b1 b2 b3 1

c1 c2 c3 1

1
A :

It can be easily proven that the Pl�ucker coordinates of the plane P can be ordered such

that PP = (n;�r � n), where n is the normal vector to P and r is the Euclidean position

vector of any point on P .

2.2 Projective Representation of Motions

Let u be the Euclidean velocity of an Euclidean point p. The motion of the projective

point p can be de�ned as M(p) = (u;�u � p), that is, the 3-extensor that represents the

plane containing the point p whose normal is u.

An instantaneous motion in projective 3-space, that is an assignment of motionsM(pi) to

the projective points pi, is a rigid motion if the velocities preserve all distances between

them. In projective terms rigid motions can be expressed in a simple and e�ective way

[White 1994].

If r and s are projective points, for each point p in space we de�ne M(p) = r _ s _ p.

This assignment of motion preserves all distances and therefore it will correspond to a

rigid motion in space determined by the 2-extensor C = r _ s. This 2-extensor, that
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represents the line through r and s, is called the center of the motion. Since M(r) = 0

and M(s) = 0, it represents a rotation around the axis determined by r and s. For

example, a counterclockwise rotation around the z axis is expressed by the following

extensor _

�
0 0 1 1

0 0 2 1

�
=
�
0 0 �1 0 0 0

�
using two Euclidean points r = (0; 0; 1)

and s = (0; 0; 2) on it.

A translation can be described as a rotation about an axis at in�nity. Let a = (a1; a2; a3; 0)

and b = (b1; b2; b3; 0) be two points at in�nity. Then, the extensor a_ b can be used as the

center of a motionM(p) = a_b_p. The corresponding velocity is v = (a2b3�a3b2; a3b1�

a1b3; a1b2� a2b1). Since it is independent from the point p, it will represent a translation.

For example a translation along the positive direction of the z axis can be expressed by

means of two Euclidean points a = (1; 0; 0) and b = (0; 1; 0) that lies on the plane xy.

The corresponding extensor is _

�
1 0 0 0

0 1 0 0

�
=
�
0 0 0 0 0 1

�
.

By composing translations and rotations represented by their centers Si, a more general

screw motion in space can be obtained. Instantaneously, this composition corresponds

to a simple addition of the motion centers Si, that is, the equivalent motion is M(p) =P
i(Si _ p) = (

P
i Si) _ p.

3 GR Graphs

Let us consider two bodies hinged along the line a_ b then, for any instantaneous motion

of the bodies with centers S1 and S2, there is a scalar � such that S1�S2 = �(a_b). This
concept can be extended to any number of rigid bodies and hinges [Crapo et al. 1982].

An kinematic chain is a set (B;A) where B is a �nite collection of bodies (B1; : : : ; Bn),

and A = (: : : ; Li;j; : : : ) is a set of hinges represented by non zero 2-extensors in projective

space indexed by ordered pairs of indices with Li;j = �Lj;i. An instantaneous motion of

the kinematic chain (B;A) is an assignment of a center Si to each body Bi such that for

each hinge Li;j 2 A and for some choice of scalars !i;j we obtain Si � Sj = !i;jLi;j. The

scalars !i;j being directly the rotational or translational velocities at the hinges Li;j if the

involved extensors have unitary module. In what follows all the used extensors will be

unitary.

Since in our case the same body may appear in di�erent kinematic chains, it is better

to represent the situation using a directed graph { called GR graph { whose nodes will

represent the center of motion of the bodies and, if body Bi is restricted in its motion

with reference to body Bj, there will be a directed arc going from node Si to node Sj

labeled with Li;j.

Now, let us assume that a GR graph has a cycle, for example S0, L0;1, S1, L1;2, S2, : : : ,
Sk, Lk;0, S0. Since the net velocity around a cycle must be zero, we obtain the following
loop equation:

!0;1L0;1 + !1;2L1;2 + � � �+ !k;0Lk;0 = 0; (1)

which constrains the velocities !0;1, !1;2, : : : , and !k;0 to have compatible values. This

can be done for any cycle in a GR graph but, in practice, we only need to consider the
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loop equations resulting from a complete set of basic cycles [Thomas 1992].
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(a) (b)

Figure 1. A single loop mechanism (a), and its associated GR graph (b).

Example 1. Let us consider the single loop mechanism shown in �g. 1a, where all the
rotation axes are parallel to z axis of the reference frame, and the points a = (0; 0; 1),
b = (0; 0; 0:5), c = (0:5; 0:5; 0), d = (0:5; 1:5; 0), e = (0; 2; 0), and f = (0; 2; 1) that lie
on them as shown in the �gure. The screw motion with pitch p of B2 with respect to B1

about the z axis can be described by means of the composition of a rotational motion

around the axis represented by the extensor _

�
0 0 1 1

0 0 2 1

�
and a translational motion,

with velocity p times greater than the rotational one, in the direction represented by the

extensor

�
p _

�
1 0 0 0

0 1 0 0

��
. In the same way, the complete set of extensors describing

the motion of the mechanism can be obtained. So we have

L1;2 =
�
p

�
0 0 0 0 0 1

�
+

�
0 0 �1 0 0 0

��
=

�
0 0 �1 0 0 p

�
;

L2;3 =
�
�q

�
0 0 0 0 0 1

�
+

�
0 0 �1 0 0 0

��
=

�
0 0 �1 0 0 �q

�
;

L3;4 =
�
r

�
0 0 0 0 0 1

�
+

�
0 0 �1 0:5 �0:5 0

��
=

�
0 0 �1 0:5 �0:5 r

�
;

L4;5 =
�
0 0 �1 1:5 �0:5 0

�
; L5;6 =

�
0 0 �1 2 0 0

�
; and

L6;1 =
�
u

�
0 0 0 0 0 1

�
+

�
0 0 �1 2 0 0

��
=

�
0 0 �1 0 0 u

�
;

where p; q; r and u are the pitches of the four screws in the mechanism.

Moreover, we get the following loop equation for this mechanism:

!1;2L1;2 + !2;3L2;3 + !3;4L3;4 + !5;6L5;6 + !6;1L6;1 = 0:

By substituting the extensor expressions in this loop equation, we obtain:

� !1;2 � !2;3 � !3;4 � !4;5 � !5;6 � !6;1 = 0;

0:5 !3;4 + 1:5 !4;5 + 2 !5;6 + 2 !6;1 = 0;

� 0:5 !3;4 � 0:5 !4;5 = 0;

p !1;2 � q !2;3 + r !3;4 + u !6;1 = 0:
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This system of equations has rank two and therefore the corresponding mechanism has

two in�nitesimal d.o.f.

4 Motion of Polyhedra in Contact

Any contact between polyhedra can be expressed as the composition of two basic contacts;

namely: type-A and type-B contacts. A type-A contact occurs when a vertex v of a

polyhedron touches a face of other polyhedron, and a type-B contact occurs when an

edge of one polyhedron is in contact with an edge of other polyhedron (see, for example,

[Thomas 1994]).

The constrained motion between two polyhedra, Bi and Bj, under a type-A contact can
be thought as produced by a spherical and a planar joint between them. The spherical
joint can be modelled as three revolute joints whose axes intersect in the contact point
and the planar joint can be described with two prismatic joints that permit translations
along two non-parallel axes on the face plane. In this case Si and Sj, the centers of the
motion of Bi and Bj, respectively, are related by the following expression:

Si = Sj + !
A;r1
i;j L

A;r1
i;j + !

A;r2
i;j L

A;r2
i;j + !

A;r3
i;j L

A;r3
i;j + !

A;t1
i;j L

A;t1
i;j + !

A;t2
i;j L

A;t2
i;j ; (2)

where L
A;r1
i;j , L

A;r2
i;j , L

A;r3
i;j are 2-extensors that de�ne the axes of rotation and L

A;t1
i;j and

L
A;t2
i;j the axes at in�nity used to represent the translations on the face plane.

Likewise, the motion of two polyhedra, Bi and Bj, bound to keep a type-B contact, can
be modelled by means of the composition of two cylindrical and one revolute joints whose
axes intersect in the contact point. In this case, we obtain the following relation between
the centers of motion:

Si = Sj + !
B;r1
i;j L

B;r1
i;j + !

B;t1
i;j L

B;t1
i;j + !

B;r2
i;j L

B;r2
i;j + !

B;t2
i;j L

B;t2
i;j + !

B;r3
i;j L

B;r3
i;j (3)

where L
B;r1
i;j and L

B;r2
i;j are the 2-extensors that de�ne the axes of rotation around the

edges in contact, whereas LB;t1
i;j and L

B;t2
i;j are 2-extensors used to describe the translations

along directions parallel to each edge. Finally, LB;r3
i;j represents a rotation axis normal to

the plane that contains the edges in contact.

Example 2. Let us consider the two polyhedra in contact appearing in �g. 2a. They are
in contact along an edge. This contact can be expressed in terms of four type-A basic
contacts between the vertices v1 and v2 of B1 and the faces f1 and f2 of B2. This can be
expressed using a GR graph as shown in �g. 2b. Then, the set of loop equation resulting
from the set of basic cycles fc1; c2; c3g are:

� !
A;rz
a4;B1

L
A;rz
a4;B1

� !
A;ry
a3;a4L

A;ry
a3;a4 � !

A;rx
a2;a3

L
A;rx
a2;a3

� !
A;ty
a1;a2L

A;ty
a1;a2 + !

A;tx
a1;B2

L
A;tx
a1;B2

� !
A;tx
b1;B2

L
A;tx
b1;B2

+ !
A;tz
b1;b2

L
A;tz
b1;b2

+ !
A;rx
b2;b3

L
A;rx
b2;b3

+ !
A;ry
b3;b4

L
A;ry
b3;b4

+ !
A;rz
b4;B1

L
A;rz
b4;B1

= 0;

� !
A;rz
b4;B1

L
A;rz
b4;B1

� !
A;ry
b3;b4

L
A;ry
b3;b4

� !
A;rx
b2;b3

L
A;rx
b2;b3

� !
A;tz
b1;b2

L
A;tz
b1;b2

+ !
A;tx
b1;B2

L
A;tx
b1;B2

� !
A;tx
c1;B2

L
A;tx
c1;B2

+ !
A;tz
c1;c2

L
A;tz
c1;c2

+ !
A;rx
c2;c3

L
A;rx
c2;c3

+ !
A;ry
c3;c4L

A;ry
c3;c4 + !

A;rz
c4;B1

L
A;rz
c4;B1

= 0;
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Figure 2. Two polyhedra in contact along an edge (a), and its representation in terms of four

basic contacts as a GR graph (b).

� !
A;rz
c4;B1

L
A;rz
c4;B1

� !
A;ry
c3;c4L

A;ry
c3;c4 � !

A;rx
c2;c3

L
A;rx
c2;c3

� !
A;tz
c1;c2

L
A;tz
c1;c2

+ !
A;tx
c1;B2

L
A;tx
c1;B2

� !
A;tx
d1;B2

L
A;tx
d1;B2

+ !
A;ty
d1;d2

L
A;ty
d1;d2

+ !
A;rx
d2;d3

L
A;rx
d2;d3

+ !
A;ry
d3;d4

L
A;ry
d3;d4

+ !
A;rz
d4;B1

L
A;rz
d4;B1

= 0:

If the Euclidean coordinates of the vertices v1 and v2 are v1 = (1; 0; 0) and v2 = (�1; 0; 0)
we obtain:

L
A;tx
a1;B2

= L
A;tx
b1;B2

= L
A;tx
c1;B2

= L
A;tx
d1;B2

=
�
0 0 0 1 0 0

�
; L

A;ty
a1;a2 = L

A;ty
d1;d2

=
�
0 0 0 0 1 0

�
;

L
A;tz
b1;b2

= L
A;tz
c1;c2

=
�
0 0 0 0 0 1

�
; L

A;rx
a2;a3

= L
A;rx
b2;b3

= L
A;rx
c2;c3

= L
A;rx
d2;d3

=
�
�1 0 0 0 0 0

�
;

L
A;ry
a3;a4 = L

A;ry
b3;b4

=
�
0 �1 0 0 0 1

�
; L

A;ry
c3;c4 = L

A;ry
d3;d4

=
�
0 �1 0 0 0 �1

�
;

L
A;rz
a4;B1

= L
A;rz
b4;B1

=
�
0 0 �1 0 �1 0

�
; L

A;rz
c4;B1

= L
A;rz
d4;B1

=
�
0 0 �1 0 1 0

�
:

By solving these linear equations, we obtain that B1 and B2 keep in contact along the
edge if, and only if, the motion of the moving body satis�es the following conditions:

!
A;tx
a1;B2

= !
A;tx
b1;B2

= !
A;tx
c1;B2

= !
A;tx
d1;B2

;

!
A;rx
a2;a3

= !
A;rx
b2;b3

= !
A;rx
c2;c3

= !
A;rx
d2;d3

;

!
A;ty
a1;a2 = !

A;ty
b1;b2

= !
A;ty
c1;c2 = !

A;ty
d1;d2

= 0;

!
A;ry
a3;a4 = !

A;ry
b3;b4

= !
A;ry
c3;c4 = !

A;ry
d3;d4

= 0; and

!
A;rz
a4;B1

= !
A;rz
b4;B1

= !
A;rz
c4;B1

= !
A;rz
d4;B1

= 0:

In other words, a rotational and a translational d.o.f. remain between both polyhedra.

Example 3. Let us assume that we want to determine which is the movable subset of bodies
in the assembly of the four workpieces in �g. 3. In this case we describe using Grassmann-
Cayley algebra the permitted motions between the objects in the subassemblies where B2
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Figure 3. Four workpieces to be assembled (a), and the associated GR graph of the �nal assembly

(b).

can be translated along the z axis with respect to B3, both B2 and B3 can be translated
along the x axis with respect to B1, and B4 can be separately translated along the y

axis with respect to all the other bodies (�g. 4b). We obtain in this case the following
extensors:

L
tx
1;2 = L

tx
1;3 =

�
0 0 0 1 0 0

�
; L

ty
2;4 = L

ty
3;4 =

�
0 0 0 0 1 0

�
; L

tz
2;3 =

�
0 0 0 0 0 1

�
;

and the following loop equations:

� !1;2L1;2 � !2;3L2;3 � !1;3L1;3 = 0;

!2;3L2;3 � !3;4L3;4 � !2;4L2;4 = 0;

!1;2L1;2 � !2;4L2;4 � !1;4L1;4 = 0:

This linear system has the solution !1;2 = !1;3 = !2;3 = 0, and !1;4 = !2;4 = !3;4. This

means that the only movable body in the �nal assembly is B4 which can be translated in

the direction of the y axis of the reference frame with an arbitrary instantaneous velocity.

5 Conclusions

It has been shown that the possible in�nitesimal motions between polyhedra, bound

to keep some set of basic contacts, can be obtained by solving a linear system of loop

equations associated with a set of basic cycles in the corresponding graph of kinematic

constraints. The projective representation of motions in the Grassmann-Cayley algebra
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allow us to straightforwardly get a tidy set of loop equations. Since the proposed technique

is procedural and is not based on lookup tables, i.e. on a case-by-case analysis, it is more

reliable and less cumbersome than symbolic techniques. We have also shown the usefulness

of the proposed technique to infer the in�nitesimal d.o.f. of arbitrary mechanisms.
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