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• Spatial evaluation of the presence of a
range of PAHs and trace metals in the
Porcupine Basin

• Derivation of background values of PAHs
and metal(loid)s suitable for the North
Atlantic region

• Comparison with other background
values with other Atlantic areas

• The data generated and the expansive off-
shore area sampled can support MSFD
GES assessment.
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Little is known about pollutant concentrations in marine remote areas such as the Porcupine Bank in the NE Atlantic
Ocean. Remote locations aremuch less studied than themore readily accessible coastal areas, nevertheless, are of great
importance both to unveil how far human influence has reached and, are more challenging, to infer background con-
centrations (BCs) of naturally occurring and/or anthropogenic pollutants. Knowledge of contaminant background
levels are critical for establishing remediation and management strategies; in addition, background assessment is
heavily emphasised in legislative monitoring requirements. Obtaining suitable sampling locations to assess
background concentrations can be challenging, as samples should match characteristics to the target area and not
be impacted by historical or current inputs of the chemical substances of study. Anthropogenic impacts generally
deem local-based sampling to be unsuitable to infer background pollution values. Sampling in remote areas such as
the Porcupine Bank better fulfils low impact and pressure requirements making themmore suitable for the derivation
of background concentration estimates for organic compounds and metals.
The total concentrations of polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s in deep sea sediments were
evaluated and both an environmental status and a set of concentration data were adequate to derive BCs concentrations
is presented. Concentration data indicated, in comparison with previous published data, trace level presence of PAHs and
metal(loids) in sediments from the Porcupine Bank. These values will provide a valuable tool to identify the natural
presence of organic and inorganic compounds and be the basis to perform a sound environmental assessment.
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1. Introduction

The Porcupine Bank is located in the North-Eastern Atlantic, ~200 km
off the west coast of Ireland, forming a seamount-like structure. The
north-western part is limited by cliffs whereas in the eastern part the
bank is connected to the Irish shelf by the narrow Slyne Ridge. The Porcu-
pine Bank location is important from a fishery perspective (Bañón et al.,
2020; Fernández-Zapico et al., 2013; Johnston et al., 2010; Ordines et al.,
2017; O’Riordan, 1984; Ruiz-Pico et al., 2018), its potential natural
resource reserves (Levell et al., 2010; Mann et al., 2003) and also for the
presence in the upper canyon of cold-water corals forming reefs and
mounds up to 30 m tall and 28 km long (Lim et al., 2020). Despite the
recognized importance of the area, in terms of fishery and mining
opportunities, it has been scarcely studied in respect of contaminants
presence. This lack of information is mainly due to two reasons: there
is generally more interest in coastal areas and it is harder to work in
deep waters.

The measurement of PAHs and inorganic compounds (referred to as
trace metals for simplicity, as the term metal is used without distinction
between the target metals and metalloid (As)), is often used to evaluate
the environmental status of an area. PAHs are a large group of organic com-
pounds with two or more fused aromatic rings; while PAHs can naturally
occur their presence in marine sediments is largely a result of anthropo-
genic emissions (such as fossil fuel-burning, motor vehicles, waste inciner-
ation, oil refining, oil spills). PAHs have received increased attention
because of their potential carcinogenicity, mutagenicity and teratogenicity
to aquatic organisms (CCME (Canadian Council of Ministers of the
Environment), 2008). European Directives such asWFD (Water Framework
Directive) regulate the presence of these compounds inwater (EC European
Commission, 2011). Metals studied here include: aluminium (Al), arsenic
(As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury
(Hg), lithium (Li), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn).
Metals occur naturally in the environment; however, the main sources in
the environment include agricultural and industrial processes and their
use as antifouling chemicals, corrosion anodes or on ship hulls or marine
installations. Mercury, cadmium and lead are among the most toxic
metals to humans and living organisms in general and, as other pollut-
ants, they have been regulated by European Directives such as the
Water Framework Directive (WFD) and their status assessment is often
monitored in support of the Marine Strategy Framework Directive
(MSFD) obligations.

Several sediment quality guidelines (SQGs) can be used for the assessment
of the environmental status in coastal areas (e.g. Bakke et al., 2010; Bellas
et al., 2008; Burton, 2002; Menchaca et al., 2012). In this study, the potential
ecological risk of the sediments was evaluated using the approach of the US
National Oceanic Atmospheric Administration (NOAA) (Long et al., 1995)
based on the Effects Range Low (ERL) and the Effect Range Median (ERM)
guidelines. In brief, contaminant concentrations below the ERL are not
expected to produce adverse effects, while levels above the ERM are likely
to be toxic. It is well recognized that SQG can be useful to identify anthropo-
genic inputs to the environment, nevertheless, both PAHs and trace metals
can also have a natural origin. In this sense, different areas will present natu-
ral concentrations, so-called BCs that identify natural levels (OSPAR
Commission, 2009). Establishing reference concentration (often called BCs)
and/or the distance to target (an OSPAR principle related to the relation
between the present concentration and the BC objective) is critical for reme-
diation and management objectives, detecting contamination patterns, and
developing monitoring programs for the contaminants of concern. Obtaining
suitable background sampling locations can be challenging as samples should
be collected from areas with similar physical, chemical, geological, and/or
biological characteristics to the target area and not impacted by the chemical
substances of interest. Easily accessible or local pristine areas, have gradually
reduced in number and remote areas are now deemed to be suitable
alternatives. In this regard, the Porcupine Bank fulfils the requirements to
infer background values that can be used for evaluations in the North
Atlantic.
2

Recognising the less impacted status of the Porcupine Bank sampling
area, the objectives defined in this study were:

– To evaluate the concentration of PAHs and trace metals in sediments
collected in the Porcupine Bank.

– To compare established OSPAR BC values with the data obtained from
the Porcupine Bank.

– to establish whether these newly derived BC values correspond to other
existing marine thresholds.

– to establish whether these newly derived BC values are appropriate.

2. Material and methods

2.1. Study area and sampling procedure

Surface sediment sampleswere collected using ameso box-core during a
number of scientific cruises performed aboard R/V Vizconde de Eza in the
years 2006 to 2012. Sampling locations and basic sediment characteristics
are shown in Table S1 and Fig. 1.

Sediments were stored in clean appropriately prepared containers,
deep-frozen on board prior to transport to the laboratory, where they
were freeze-dried on arrival. Analyses were conducted in the total fraction
of sediment (fraction <2 mm), consequently, the samples were sieved
through a 2 mmmesh to remove the remains of shells and stones. The sam-
ples were then homogenised and stored in clean glass vials at room temper-
ature until chemical analysis took place.

As the objectives of this study were to complete a wider contaminant
status study and to derive BCs, an adequate sample volume for analysis
and a wide knowledge of the sediment characteristics (including
granulometric composition and content of organic matter (OM)) is para-
mount to determine the base characteristics of the sediments. The fraction
<63 μm was determined using wet sieving and subsequent drying and
weighing, to characterise the sediment and facilitate data assessment. The
textural characteristics of the sedimentswill also be analysed against pollut-
ant concentration in each sample to ensure the absence of correlation, thus
confirming a non-biased concentration of pollutants due to the fine parti-
cles in the sediments (Long et al., 1995).

The OM content was determined using the combustion method
described as weight loss of dried (100 °C, 24 h) samples after combustion
(500 °C, 24 h) (Lourido et al., 2019). Also, the aluminium percentage and
the Li concentration are presented in Table S1 since they can be used as
an indicator of sediment mineralogy.

2.2. Analytical methods

PAHs and metals analysis were performed following previously
described procedures. PAHs listed in Table 1 were determined following
the procedure described in Viñas et al. (2009). In brief, around 3 g of the
freeze-dried sediment were Soxhlet extracted and after a clean-up step
using aluminium oxide and copper, the extracts were analysed using liquid
chromatography (HPLC) with a fluorescence detector.

Analytical procedures for the determination of metals listed in Table 1
were described in detail elsewhere (Quelle et al., 2011). In summary, the
analysis of all metals, excluding Hg, included total digestion of the samples
with a mixture of hydrofluoric acid and aqua-regia in a microwave oven,
followed by neutralisationwith boric acid. Nitric acid digestionwas applied
for total Hg analysis. Selected metals were analysed using a Perkin-Elmer
AAnalyst 800 spectrophotometer equipped with a Zeeman background
correction device. The operational parameters and matrix modifiers were
those recommended by the manufacturer. Total Hg was determined by
cold vapor technique, employing a Perkin-Elmer FIMS-400 system (SnCl2
as reducing agent).

The analysed metals were those that tend to be more associated to
anthropogenic activities (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn,). In
addition, Al, Li and Fe were also determined to facilitate the recognition



Fig. 1.Map of the Porcupine Bank showing sampling sites and bathymetry of the area.
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of sediment trace metal variations caused by natural differences in sedi-
ment mineralogy. Metal concentrations are expressed in mg/kg dry weight
(mg/kg d.w.) except for Al and Fe, whose units were mg/100 mg dry
weight (i.e. the percentage of mass d.w.).

The analytical methods, PAHs and metals, were performed under a
quality assurance scheme that was periodically checked. Protocols included
analysis of certified reference materials, duplicate samples, blind samples,
recovery procedures, procedural blanks and control charts, as well as regu-
lar satisfactory participation in international interlaboratory exercises, such
as those organised by the QUASIMEME Interlaboratory Programme (Qual-
ity Assurance of Information for Marine Environmental Monitoring in
Europe https://www.wepal.nl/en/wepal.htm). LOQ of the analytical
methods are presented in Table 1.

The software used for statistical analysis was R Software version 3.4.3
(2017).

3. Results and discussion

3.1. Sediments characterization

Sampleswere collected at a depth range comprised between aminimum
of 193 m (M7) to a maximum depth of 738 m corresponding to the station
M47 (Table S1), the percentage of sediment fine particles (<63 μm) varied
from 1.46 % (M57) to 85.1 % (M19) of total sediment volume with an
average value of 33.3 % (Table S1, Fig. S1). The organic matter (OM)
content in the 2 mm fraction varied in a range of 0.67–5.66 % with an
average of 2.63 % (Table S1, Fig. S2).
3

The sediment organic matter in the study samples is generally in accor-
dance with the average quantity determined worldwide, ranging from 1 to
3 % (Blair and Aller, 2012; Mayer et al., 1988; Trask, 1955) In the studied
area three locations were identified where both OM and percentage of sed-
iment fine fraction (<0.63 μm) were higher than the wider general values
obtained, these being the areas around station M21, M48 and a third one
with a slightly lower value around station M41. All of these are located
southwest of the studied area and at a depth of around 500 m.

Organic contaminants can be linked to the fine fraction of the sediment
creating a modification of the concentration in those samples with coarse
grains. The independence between the sediment's textural characteristic
(grain size distribution) and organic contaminant concentrations was stud-
ied via the calculation of determination coefficients (Fig. S3). Aweak corre-
lation was derived for the organic matter presence with the fine fraction
percentage (R2 = 0.5578), or the aluminium with the fine fraction (R2 =
0.2963) but it was confirmed a lack of correlation of organic pollutants
with the fine fraction (e.g. for Pyr R2 = 0.0227).

Further, a non-parametric Kruskall-Wallis test was completed to
compare the textural characteristics of the sediment (i.e. sampling depth,
organic matter, aluminium content and grain size) with the concentration
of studied contaminants (Table S4). The Kruskal-Wallis statistics (H =
153.6, df = 2, p = 0.000) indicated that there is significant diference
among the variables PAHs concentrations in sediments, OM and sampling
depth. Furthermore, the regression coefficients (R) were generally <0.8
indicating a low-level correlation between each of the sediment character-
ization parameters and measured contaminant concentrations. Sampling
depth has been documented to significantly affect the distribution of

https://www.wepal.nl/en/wepal.htm


Table 1
Analytical and assessment values of the studied pollutants. When the min value is under LOQ is indicated the percentage of samples that yield that result.

Name Acronym Analytical method Analytical limit Guideline/Threshold Concentrations this study

LOQ BC(REF) ERL MIN MAX ST DEVc

PAHsa

Phenanthrene Phe HPLC-FLD 0.08 17 240 0.48 7.90 1.72
Anthracene Ant 0.03 3 85 <0.03 (19 %) 3.91 1.03
Fluoranthene Fla 0.22 20 600 <0.22 (1,7 %) 5.61 1.38
Pyrene Pyr 0.12 13 665 0.53 9.25 2.22
Benz[a]anthracene BaA 0.10 9 261 <0.10 (15.5 %) 2.60 0.646
Chrysene Chry 0.14 11 384 <0.14 (5.2 %) 3.57 0.931
Benzo[e]pyrene BeP 0.28 N.A. N.A. 0.43 4.22 0.913
Benzo[b]fluoranthene BbF 0.18 N.A. N.A. 0.46 6.02 1.29
Benzo[k]fluoranthene BkF 0.13 N.A. N.A. <0.13 (1.7 %) 2.28 0.470
Benzo[a]pyrene BaP 0.09 15 430 <0.09 (1.7 %) 1.76 0.374
Benzo[g,h,i]perylene BghiP 0.15 45 85 0.47 3.70 0.727
Dibenzo[a,h]anthracene DBahA 0.19 N.A. N.A. <0.19 (31 %) 0.83 0.230
Indeno[1,2,3-c,d]pyrene IP 0.29 50 240 0.36 6.19 1.32

Name Acronym Analytical method Analytical limit Guideline/Threshold Concentrations this study

LOQ BC ERL MIN MAX ST DEVc

Metalsb

Aluminium Al 0.0.031 N.A. N.A. 0.23 4.75 0.796
Arsenic As

AAS

0.189 15.0 8.2 1.61 14.2 2.73
Cadmium Cd 0.009 0.20 1.2 <0.009 (10 %) 0.177 0.047
Chromium Cr 0.178 60.0 81 9.36 60.5 11.8
Copper Cu 1.09 20.0 34 <1.09 (20 %) 14.9 3.44
Iron Fe 0.007 % N.A. N.A. 0.53 2.66 0.390
Mercury Hg 0.006 0.05 0.15 0.006 0.129 0.021
Lithium Li 1.26 N.A. N.A. 2.78 37.9 6.54
Manganese Mn 0.471 N.A. N.A. 86.3 304 43.9
Nickel Ni 0.211 30.0 20.9 3.59 19.6 3.89
Lead Pb 0.103 25.0 46.7 3.32 11.9 1.84
Zinc Zn 0.682 90.0 150 5.43 63.7 12.28

LOQ: Limit of Quantification; BC: Background concentration; ERL: Effects range low; d.w.: dry weight. N.A.: not available.
REF: (OSPAR, 2014).

a Units for PAHs in μg/kg d.w.
b Units for Fe and Al % rest of the metal in mg/kg d.w.
c For calulatin the standard deviation, <LOQ data were supposed to be 0.
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contaminants, so the potential for correlation among contaminants concen-
trations and depthwas studied: only Li -amongmetals- and BbF -among the
organic contaminants- show a slight correlation (Table S5). Organic matter
and granulometry were also studied as possible factors influencing the
retention of contaminants, the correlation between OM-vs-contaminants
concentration and % granulometry-vs-pollutants concentration indicated
that only in the case of Zn were both correlation factors >0.6 (Table S5).
This points towards a non-correlation between pollutant's concentration
and the fine fraction, with the proviso that, when measuring close to the
detection limits, correlations can be difficult to identify.

3.2. Description of the area in terms of the presence of organic contaminants and
trace metals

3.2.1. Organic contaminants (PAHs)
PAHs can be of both natural or anthropogenic origin, the area sampled

in this study has a great potential value to identify the influence of both
sources. A key aim of this study is to provide information about the current
PAH status in the Porcupine Bank and on the potential applicability of these
data as BC concentrations.

The area is not subject to routine monitoring programs for PAHs, thus
there is a lack of periodic information in terms of the presence and evolu-
tion of organic contaminants. Such information is valuable as it supports
the description of the environmental condition of the area (e.g for OSPAR
and/or MSFD Good Environmental Status -GES- assessment) and on the
ultimate fate of PAHs in open ocean environment.

In the samples analysed the sum of 13 PAHs ranged from 5.26 to
51.1 μg/kg d.w. with none of the individual PAHs determined in concentra-
tions in excess of 16 μg/kg (Table S2). The measured concentrations of
4

individual PAHs were then compared with internationally recognized
ERL threshold values (Table 1). For all sampling stations, concentrations
of 9 individual PAHs (those with defined ERLs) were all between 2 and 3
orders of magnitude below corresponding ERL values, therefore, it can be
concluded that PAHs in sediments from these sites present almost no
ecological risk to resident organisms.

The data obtained in this study, were then further compared to PAHs
concentrations determined in different locations around the world
(Table 2), confirming the very low-level prevalence of PAHs in sediments
from the Porcupine Bank. Concentrations of the sum of PAHs determined
in the present study were under 51.1 μg/kg d.w., with, for example, sam-
ples from remote areas of the Barents Sea, Black Sea, or some regions in
China yielding values over 200 μg/kg d.w. In addition, the lowest values
determined in this study (~5 μg/kg d.w.) were similar to those found in
some samples of the Galician continental shelf (NW Spain) or open areas
in France.Moreover, it should be noted that sites in literature with low con-
centrations, similar to those determined in this study, often also exhibited
samples with much higher concentrations (around 10 times higher
~300–800 μg/kg), no such variation was evident in this Porcupine Bank
study. For additional context, only one study (from 33 other similar litera-
ture sources) performed on the Argentine Continental Margin (ACM) of the
Argentinean Economic Exclusive Zone (EEZ) from 41°30′S to 48°S (Portela
et al., 2012) exhibited concentrations for the sum of 13 PAHs similar to the
values determined in the Porcupine Bank.

3.2.2. Trace metals
As described for PAHs, metals can have both natural or anthropogenic

origin and are found in oceans, rivers and soil; however anthropogenic
inputs have increased their content around the world. As they are not



Table 2
Reviewof PAHs values presented for different areas. The number of PAHs analysed in each case is indicated. An * indicateswhen naphthalenewas one of the PAHdetermined
and, if available, the concentration is given in brackets. In all the studies the concentrationswere not corrected or normalized to organic carbon and are expressed as μg/kg dry
weight.

Region Area Range ΣPAHs (μg/kg d.w) Reference

Bay of Biscay, Iberian Coast and Ireland Porcupine Bank (Σ13PAHs) 5.26–51.06 Present study
England and Wales (Σ15PAHs)* 26 (<13)-43,470 (2430) Woodhead et al., 1999
Ría Santander, Spain (Σ16PAHs)* 42.16 (8.98)-20,243 (97.5) Pérez-Fernández et al., 2019
Ría Arousa, Spain (Σ16PAHs)* 23 (0.8)-6647 (35.9) Pérez-Fernández et al., 2015
Ria de Vigo, Spain (Σ13PAHs) 29–3203 Viñas et al., 2009
Galicia continental shelf, Spain (Σ13PAHs) 0.9–422 Franco et al., 2006
Santander Bay, Spanish(Σ16PAHs)*a 20 (<LOD)–344,600 (2700) Viguri et al., 2002
France(Σ14PAHs) 4–855 Soclo et al., 2000

North Sea Norway (Σ16PAHs)* 29 (3.2)- 1129 (178) Boitsov et al., 2020
Norwegian Sea, Norway (Σ22+8PAHs)* 9.5 (<0.5)-4610 (83) Boitsov et al., 2013
SW Barent Sea, Norway (Σ22+8PAHs)* 20.0 (0.68)-363 (2.46) Boitsov et al., 2009
Northwestern Black Sea (Σ14+3PAHs) 52.6–269 Maldonado et al., 1999

Mediterranean Sea Aegean Sea (Σ18PAHs) 8.98–113 Hatzianestis et al., 2020
Mediterranean coast, Israel (Σ18PAHs)* 11.8 (1.7)-190.1 (2.4) Astrahan et al., 2017
Mediterranean Sea, France-Spain (Σ14PAHs) 0.32–8400 Baumard et al., 1998
NW Mediterranean Sea, France-Italy (Σ14PAHs) 86.5–48,090 Benlahcen et al., 1997

Asia Pearl River Estuary, China (Σ16PAHs)* 156 (10.77)-9220 (50.15) Fu et al., 2001
Pearl River, China (Σ16PAHs)* 331(33)-10,811(609) Mai et al., 2002
South China Sea (Σ11PAHs)* 24.7 (3.8)–275.4 (34.7) Yang, 2000
Xiamen Harbour, China (Σ16PAHs)* 247 (1)–480 (<1) Zhou et al., 2000
Kyeonggi Bay, Korea (Σ24PAHs)* 9.1–1400 Kim et al., 1999
Masan Bay, Korea (Σ16PAHs)* 41.5–1100 Khim et al., 1999

America Michigan Lake, USA (Σ16PAHs)* <50–16,900 Kannan et al., 2005
Todos Santos Bay, Mexico (Σ16PAHs) 7.6–813 Macias-Zamora et al., 2002
S. Carolina Estuary, USA (Σ28PAHs)* 33–9600 Kucklick et al., 1997
San Francisco Bay, USA (Σ16PAHs)* 2564 (290)-27,170 (1650) Pereira et al., 1996
Kitimat Harbour, Canada (Σ16PAHs) 310–528,000 Simpson et al., 1996
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biodegradable, they tend to accumulate in the environment associatedwith
organic and inorganic matter. Also, it is well known that metal concentra-
tions in sediments can present natural variations as a function of sediment
characteristics such as grain size.

In this study, the concentrations of metals in sediments are presented in
Table 1 (and Table S3) in parallel with the applicable Effects Range Low
(ERL) guideline for each metal. As can be observed, some metal concentra-
tions were below sensitive quantification limits with the conclusion that,
overall metal levels were very low in Porcupine Bank samples.

The concentrations of all the studied metals, except for As, were below
the defined ERL value, which indicates that they were not expected to
produce adverse effects on aquatic organisms. The As concentration in 11
of 60 stations exceeded the ERL specific value (8.2 mg/kg d.w.). However,
worldwide studies show a different behaviour of As compared with other
metals and although the values exceed the guideline values this can often
be attributed to natural enrichment, like rock weathering and soil forma-
tion, increasing As values due to a non-anthropogenic input.

The OSPAR Commission, aware of this phenomenon, indicated that the
ERL/ERM values for As are too low for their application in the status assess-
ment of European coastal areas. Moreover, the BC expected in pristine/
remote areas, proposed by the OSPAR Commission (15 mg/kg d.w.)
(OSPAR Commission, 2009) is 2 times higher than the defined ERL. Taking
this into account it has been concluded that As determined in the Porcupine
Bank samples is low since the highest As concentration in Porcupine Bank
samples (stationM3414.20mg/kg d.w.) is lower than the definedOSPARBC.

To put the present data into perspective, they were compared to trace
metal concentrations in sediments from similar studies for different areas
(Table 3). As expected, the remoteness of the study area is reflected in the
concentration of the metals analysed. Sampling sites were many kilometres
away from any known anthropogenic input, so sediments were not
expected to be contaminated at most stations.

Due to geographical proximity they are compared with those reported
byCallaway et al. (2011) and Charlesworth and Service (2000) for different
areas of Ireland, with those from Porcupine Bank being much lower. They
are also lower than those obtained in sediments sampled in the English
Channel (Hamdoun et al., 2015).
5

Table 3 also lists a number of studies carried out in sediments from
global remote locations such as Azores Platform (Palma et al., 2013) or
the Argentine Continental Margin (ACM) (Portela et al., 2012). A compari-
son of these data with those found in sediments from global isolated loca-
tions confirms the low levels in the Porcupine Bank.

Deep-sea sediments studied in the Azores Platform in the North-East
Atlantic region presented concentrations of As in the range of
0.54–3.9 mg/kg d.w.; for Cr 2.1–39 mg/kg d.w.; Li 1.9–13 mg/kg d.w.
and Pb <0.2–7.4 mg/kg d.w. These values are somewhat lower than
those found in the Porcupine area but with concentrations of Cu
(8.6–28 mg/kg d.w.); Zn (4.6–91 mg/kg d.w.) and Mn (85–1395 mg/kg
d.w.) being lower in Porcupine than in the Azores platform. Again, arsenic
variations can be explained because of an enriched process due to the rock
weathering process (Zhao et al., 2020) or potentially due to biological activ-
ity disturbing the sediment, resulting in a higher background value (Zhao
et al., 2020).

The expansive Argentine Continental Margin (ACM) study found concen-
trations for As (2.65–18.90 mg/kg d.w.), Cu (<2.00–14.50 mg/kg d.w.), Ni
(1.62–18.80 mg/kg d.w.), Zn (17.70–7240 mg/kg d.w.) and Hg
(<0.001–0.113 mg/kg d.w.) similar to the ones determined in the
Porcupine Bank with the concentrations of Cd (0.022–0.291 mg/kg d.w.),
Cr (8.03–230 mg/kg d.w.), Fe (1.18–6.74 %), Li (7.74–46.80 mg/kg d.w.)
and Mn (204–734 mg/kg d.w.) being lower in the Porcupine Bank than in
the ACM.

3.3. Applicability in support of BC values

Establishment of “background” status to a sampled area involves a
number of steps including confirmation of the remote/pristine nature of
the sampling site, completion of a wide-scale review of data from previ-
ously established baseline locations (e.g. from sediment cores, deep
sediments) through to the assessment of the test site data relative to estab-
lished Ecological or other relevant thresholds.

As previously discussed, the studied area exhibits a varied bathymetry,
samples were taken from 193 m depth (M7) to a maximum depth of 738 m
(M47); also, the percentage of sedimentfine particles (<63 μm) varied from
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1.46% (M57) to 85.15% (M19) with an average value of 33.3% (Table S1,
Fig. S1) and the organic matter (OM) content range 0.67–5.66 % with an
average of 2.63% (Table S1, Fig. S2). The remoteness of the test site located
~200 km offshore further coupled with the prevailing climatic aerial depo-
sition characteristics (i.e. primarily SW airflow) and the deep-water nature
of the derived sediment sample qualifies the test samples as being lowly
impacted relative to nearer shore shallow water samples.

Background values determined for PAHs and individual metal(loid)s in
previous studies are presented in Table S6a and S6b respectively. Porcupine
Bank sediment data evaluation in this study has concluded that PAH and
metals values are all under or very close to previously published concentra-
tions, and so can be deemed to represent a set of specific BC values for
the area.

Overall the low-level PAH andmetals results, comparison to existing data
and relevant thresholds and the supporting information on the remote nature
of the samples support these Porcupine Bank samples as being appropriate for
the establishment of background concentrations, particularly so to perform
North Atlantic evaluations, since they yield very low concentrations in a
range of samples over a diverse OM content and granulometry range.

All sediments were determined to have similar or lower concentrations
for PAHs and metals compared to previously defined BC values (OSPAR
Commission, 2008; Pérez-Fernández et al., 2019, see Figs. 2 & 3).

It should be noted that derivation of background criteria, as described
by OSPAR, requires the normalisation of contaminant data to sediment
co-factors such as organic matter (PAH) or lithium or aluminium (metals).
Due to underlying geological considerations, normalisation of Iberian sedi-
ment environment for the derivation of OSPAR background values is not
performed. Normalisation of Porcupine Bank data was not performed
during this work but that data suggest that the values are lower than
(or close to) the BC defined for the Spanish area by Pérez-Fernández et al.
(2019), which are not normalized.

Afinal stepwas completed on the Porcupine Bank data utilizing an EC ap-
proach (EC EuropeanCommission, 2011) to infer BC concentration from a set
of concentration values. This approach proposes that the 10th percentile of all
remote location data is sufficiently robust to be deemed as a background con-
centration. The generation of 10th percentile data during this study plus the
comparability of non-normalized Iberian data further supports the applicabil-
ity of concentrations from the Porcupine Bank as being appropriate for back-
ground concentrations. Background concentrations derived during this study
as well as the existing BC values accepted by OSPAR are summarised in
0,0
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Fig. 2. Box-plot representation of PAHs concentrat
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Table 4 and Table S6. While consideration needs to be given to the potential
requirement for normalisation of Atlanticwater test data (as per Baltic and/or
North Sea), this study now reports a unique dataset that is particularly
relevant to the completion of North Atlantic status evaluations.

4. Conclusions

This study presents a wide spatial evaluation of the presence of a range
of PAHs and trace metals in the Porcupine Bank. The deep-water nature of
the sampling programme and the relative remoteness of the area from
anthropogenic impacts has meant that few data exist but that the area can
be deemed as a perfect location to assess the natural background concentra-
tions of PAHs andmetal(loid)s at a regional scale and to set up limits for the
distinction between natural concentrations and those derived from anthro-
pogenic contamination, especially suitable for the North Atlantic region.
Concentrations at both a 10th percentile range in addition to comparison
to existing literature data demonstrate the low levels of PAH and trace
metals in sediments from this area. It was further concluded that the
concentrations of both PAHs and trace metals are not expected to produce
adverse effects on aquatic organisms and they are in range with those
values obtained in remote areas.

While consideration needs to be given to the relevance of additional
normalisation techniques to the date this study provides valuable and
rare data from this dynamic environment and validates the recognition of
the area as a reference location for the North Atlantic.
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