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1. Formalism for the Casimir-Lifshitz force calculations 

The system schematized in Fig. 1(a) is devised as a multilayer structure in which the glycerol 

medium mediates the interaction between the silicon substrate and the levitating composite. The 

former consists of an inhomogeneous SiO2 thin film embedding PS nanoinclusions. In our 

formalism, each layer in the multilayer structure is indexed by 𝑚 = -1, 0, 1, and 2, which 

correspond to silicon, glycerol, composite and glycerol materials, accordingly. The thickness of 

each layer is denoted by 𝑑𝑚, and the corresponding permittivity evaluated at Matsubara 

frequencies is given by 𝜀(𝑚)(𝑖𝜉𝑛). The 𝐹𝐶−𝐿  is calculated employing the Lifshitz’s theoretical 

formalism expressed for an arbitrary layered system in which the electromagnetic field and the 

material bodies are treated macroscopically [23-25]: 
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In the above expression, 𝑇 is the temperature of the system at thermal equilibrium, and 𝑘𝐵 the 

Boltzman constant. In addition,  𝒌⏊ = (𝑘𝑥, 𝑘𝑦) and   𝑘𝑛
(0)

 account for the components of the 

wavenumber inside the liquid medium, with the subscript 𝑛 = 0, 1,2, … describing the discrete 

and infinite Matsubara frequencies 𝜉𝑛 = (2𝜋𝑘𝐵𝑇)𝑛/ħ. The “prime” in the summation indicates 

that the term 𝑛 = 0 must be multiplied by a factor 1/2. Also, the multiple Fresnel coefficients for 

transverse magnetic and transverse electric polarizations, 𝑗 = 𝑇𝐸, 𝑇𝑀, take the form: 
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the simple Fresnel coefficients evaluated at Matsubara frequencies, and 𝑘𝑛
(𝑚)

 taking the form: 
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Finally, the permittivity evaluated at Matsubara frequencies is given by 

𝜀𝑛 ≡ 𝜀(𝑖𝜉𝑛) = 1 +
2

𝜋
∫

𝜔𝜀′′(𝜔)

𝜔2 + 𝜉𝑛
2

𝑑𝜔
∞

0

         (6) 

with 𝜀′′(𝜔) the imaginary part of the complex permittivity at 𝜔 frequencies, 𝜀(𝜔) = 𝜀′(𝜔) +

𝑖𝜀′′(𝜔). 

 

The total force per unit area acting on the levitating film is given by: 

𝐹 =  𝐹𝐶−𝐿 + 𝐹𝑔 + 𝐹𝐵   (10) 

With 𝐹𝑔 the gravity force (𝐹𝑔 = −𝑔𝐷1𝑑1 = −𝑔𝐷𝑓𝑖𝑙𝑚𝑑𝑓𝑖𝑙𝑚), 𝐹𝐵 the buoyancy force (𝐹𝐵 =

𝑔𝐷0𝑑1 = 𝑔𝐷𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙𝑑𝑓𝑖𝑙𝑚), 𝑔 the gravity constant,  𝐷𝑓𝑖𝑙𝑚 the density of the film (which will 

vary according to the amount of disordered nanoscatterers), and 𝐷𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 = 1258 𝑘𝑔/𝑚3, the 

density of glycerol. 

2. Description of the Monte Carlo approach employed to calculate the optical response of a 

composite material. 
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A numerical approach based on the Monte Carlo method that integrates Fresnel coefficients and 

scattering Mie theory is used to calculate the optical response of inhomogeneous materials. This 

approach, described in-depth in [35], considers a multilayer system in which each layer is 

characterized by its thickness (𝑑𝑚), and the complex refractive index (𝑁𝑚). Also, layers may 

contain spherical inclusions of radius (r), volume filling fraction (𝑓𝑓), and complex refractive 

index (𝑁𝑖𝑛𝑐). In this approach, we launch a large number of photons (typically, 106 photons for 

each wavelength 𝜆 provides converged results) and track their trajectories from the impingement 

in the system until the end of their path. When a photon reaches an interface in the multilayer 

structure, we apply Fresnel theory, and if it reaches an inclusion, we apply Mie’s theory taking 

an absorbing host material [33, 34]. Specifically, the trajectory of a photon is obtained by 

calculating, consecutively, the distance (𝑙) that the photon travels inside the material before being 

either scattered by an inclusion or absorbed by any of the comprising materials, and whose 

expression is the following 

𝑙 =  −ln (𝑝)/𝛼𝑒𝑥𝑡   (7) 

being 𝑝 a random number between 0 and 1, and 𝛼𝑒𝑥𝑡 the extinction coefficient accounting for 

scattering and absorption of the photon [32-34], i.e,  

𝛼𝑒𝑥𝑡 =  𝛼𝑆 +  𝛼𝐴    (8) 

Such coefficients are generally defined as: 

𝛼𝑆 =  𝜌𝜎𝑆   (13) and 𝛼𝐴 =  ∑ 𝛼𝐴,𝑗
𝑀
𝑗  (9) 

where 𝜌 is the number density of the scatters, 𝜎𝑆 is the single particle scattering cross-section, 

and 𝛼𝐴,𝑗 the absorption coefficient of material 𝑗. In the particular case here considered both SiO2 

and PS are absorbers (with 𝛼𝐴
𝑃𝑆 = 𝜌𝜎𝐴

𝑃𝑆, with 𝜎𝐴
𝑃𝑆 the single particle absorption cross-section), 

while only PS nanospheres scatter light. Therefore: 

𝛼𝑆 = 𝜌𝜎𝑆
𝑃𝑆    (15)   and  𝛼𝐴 = 𝛼𝐴2

𝑆𝑖𝑂 + 𝜌𝜎𝐴
𝑃𝑆    (10) 

In particular, the expression of 𝜎𝑆 according to the scattering Mie theory takes the form 

𝜎𝑆 =
2𝜋
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∑(2𝑞 + 1) (|𝑎𝑞|

2
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    (11) 
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where 𝑘 =  
2𝜋

𝜆𝑵ℎ
 is the modulus of the wave vector, and 𝑁ℎ the complex refractive index of the 

host material. The expansion coefficients 𝑎𝑞 and 𝑏𝑞 are given by the following expressions: 

𝑎𝑞 =
𝑚𝑟𝜓𝑞(𝑚𝑟𝑥)𝜓′

𝑞
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 (13) 

where 𝜓𝑞(𝜚), 𝜓′𝑞(𝜚), 𝜉𝑞(𝜚), and  𝜉′𝑞(𝜚) are the Riccati-Bessel functions and their corresponding 

derivatives respect 𝜚. In these expressions, 𝑚𝑟 = 𝑁𝑖𝑛𝑐/𝑁ℎ stands for the relative complex 

refractive index of the scattering particle (or inclusion) with respect to the host material, and 

𝑥 = 2𝜋𝑟𝑁ℎ/𝜆, is defined as the size parameter, with  𝑟 the radius of the spherical inclusion. 

Lastly, the expression for 𝜎𝐴 is given by 

𝜎𝐴 = 𝜎𝑒𝑥𝑡 − 𝜎𝑆    (14) 

With  

𝜎𝑒𝑥𝑡 =
2𝜋

𝑘2
∑(2𝑞 + 1)𝑅𝑒{𝑎𝑞 + 𝑏𝑞}

∞
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    (15) 

3. Dielectric functions of bulk SiO2 and PS: tabulated data and fitting with Drude-Lorentz 

model. 

In this work, we apply the Drude-Lorentz model to describe the dielectric function of the 

materials considered (taking them as if they were homogeneous films). Its expression is given by 

Eq. (2) in the main manuscript and it assumes that every transition in the material is given by a 

Lorentz oscillator. With this model, we firstly fit the tabulated data for bulk SiO2 and PS, which 

defines the characteristics of the oscillators in the model, and secondly, we use it for determining 

the dielectric function of the composite thin films, based on the fitted parameters found in the 

previous step. 

Table S1 and S2 gather the fitting parameters for bulk SiO2 and PS. As an example, Figure S1 

shows the fitting curves, in dashed red line, for (a) the imaginary part of the dielectric function 

(𝜀′′), and (b) the real and imaginary parts of the complex refractive index of bulk SiO2. 

In our approach, the values of 𝜔𝑗 are kept constant for the fitting of the composite thin films 

made of SiO2 and PS. In addition, the values of 𝑓𝑗 and 𝛾𝑗 are varied in order to minimize the 

spectral difference among the reflectance, absorptance and transmittance spectra simulated with 

the Transfer Matrix Method (TMM) using the Drude-Lorentz model for 𝜀𝑒𝑓𝑓, and the spectra 

generated as described in the main manuscript. 
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 SiO2 bulk – fitting parameters 

j 𝜔𝑗 (nm) 𝑓𝑗(eV) 𝛾𝑗(eV)  𝑗 𝜔𝑗 (nm) 𝑓𝑗(eV) 𝛾𝑗(eV) 

1 9 0.006 40.00  10 112 0.12 1.00 

2 28 0.14 50.00  11 118 0.12 0.60 

3 45 0.09 15.00  12 130 0.01 0.50 

4 58 0.09 5.00  13 8600 0.04 0.01 

5 70 0.11 3.50  14 9200 0.14 0.01 

6 80 0.11 2.80  15 9530 0.12 0.004 

7 90 0.11 1.80  16 9800 0.15 0.008 

8 100 0.11 1.80  17 12700 0.10 0.02 

9 105 0.12 1.80  18 22100 0.85 0.006 

Table S1: Fitting parameters of the Drude-Lorentz model (Eq.(2) in the main manuscript) for the 

dielectric function of bulk SiO2. 

 PS bulk – fitting parameters 

j 𝜔𝑗 (nm) 𝑓𝑗(eV) 𝛾𝑗(eV)  𝑗 𝜔𝑗 (nm) 𝑓𝑗(eV) 𝛾𝑗(eV) 

1 35 0.0723 40.00  10 122 0.07 1.70 
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2 55 0.1025 11.00  11 136 0.07 1.20 

3 67 0.12 6.00  12 183 0.10 0.90 

4 70 0.09 6.00  13 190 0.03 0.50 

5 79 0.08 2.00  14 296.5 0.22 0.49 

6 87 0.10 2.00  15 213 0.35 0.35 

7 96 0.14 2.00  16 221 0.015 0.20 

8 105 0.12 2.00  17 260 0.002 0.50 

9 115 0.13 2.00  18 3430 0.003 0.01 

Table S2: Fitting parameters of the Drude-Lorentz model (Eq.(2) in the main manuscript) for the 

dielectric function of bulk PS. 

 

Figure S1: (a) Imaginary part of the dielectric function of bulk SiO2 as a function of lambda. 

Solid navy, dashed red, and solid grey lines stand for tabulated, fitted values, and the 

contribution of each individual oscillator in the model, respectively.  (b) Complex refractive 

index of bulk SiO2 as a function of lambda. Solid black and blue lines correspond to the real and 

the imaginary part of the tabulated complex refractive index, while dashed red and grey lines 

correspond to fitted values and the contribution of each individual oscillator in the model. 
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4. Maxwell-Garnet effective medium model. 

An alternative and most commonly used procedure to describe the optical behavior of a hybrid 

system is to consider the composite thin film made of a matrix with inclusions of a different 

material as a homogeneous single layer with an effective dielectric function (𝜀𝑒𝑓𝑓(𝜔)). More 

than ten mixing formulas based on diverse approximations have been proposed in the literature 

to evaluate 𝜀𝑒𝑓𝑓(𝜔) (1), however their accuracy can only be verified by comparison with 

experiments (2). In particular, for Casimir-Lifshitz calculations, the validation of some of the 

formulas has been previously analyzed for metallic inclusions in polymeric matrices (3). In this 

work, we compare our results with those obtained using the widely employed Maxwell-Garnett 

effective medium model (𝜀𝑒𝑓𝑓
𝑀𝐺 (𝜔)) for spherical inclusions assuming dilute systems (i.e. volume 

filling fractions (𝑓𝑓) lower than 20%) to discard possible correlation effects. The expression for 

𝜀𝑒𝑓𝑓
𝑀𝐺 (𝜔) is the following 

𝜀𝑒𝑓𝑓
𝑀𝐺 (𝜔) =  𝜀ℎ(𝜔)

2(1 − 𝑓𝑓)𝜀ℎ(𝜔) + (1 + 2𝑓𝑓)𝜀𝑖(𝜔)

(2 + 𝑓𝑓)𝜀ℎ(𝜔) + (1 − 𝑓𝑓)𝜀𝑖(𝜔)
         (S. 20) 

Where 𝜀ℎ(𝜔) and 𝜀𝑖(𝜔) are the dielectric functions at frequency 𝜔 of the host and the inclusion 

materials, correspondingly; and 𝑓𝑓 stands for the volume filling fraction occupied by the 
inclusion in the host material. 

5. Analysis of the optical properties of a 1000 nm thick SiO2 matrix with ff = 10% of PS 

particles of diverse size bearing in mind extinction events of photons at λ = 200 nm. 

Absorptance (A), percentage of specularly reflected (Rs) and ballistically transmitted (Tb) 

photons, as well as percentage of diffusively reflected (Rd) and transmitted (Td) photons at λ = 

200 nm impinging on a 1000 nm thick SiO2 matrix embedding PS particles of diverse size in a 

10% volume concentration are shown in Fig. S2 with empty black diamonds, blue stars, and 

empty black circles. In addition, absorptance of photons occurring after, 1, 2, 3 or 4 particle 

encounter events is also shown with blue squares, orange circles, yellow upwards triangles, and 

green downwards triangles, respectively. At λ = 200 nm, bulk SiO2 does not absorb light, and 

thus, all absorption in the system must be ascribed to absorption by the PS inclusions. The 

probability of absorbing a photon in the composite enhances with the number of inclusions 

(which, for a fixed fill factor, corresponds to smaller particles), as it is observed in the figure. 

Interestingly, this is reflected in an increment of (Rs + Tb) with the particle size, being the 

amount of the total diffusely scattered light (Rd + Td) always ≤ 12%, and almost negligible for 

small particle sizes (r ≤ 40 𝑛𝑚). 

In addition, results of 𝜎𝐴 and 𝜎𝑆 in Fig. 2 in the main body of the manuscript explain why the 
probability of absorption occurring after several scattering events increases as the particle size 

increases, since 𝜎𝐴 and 𝜎𝑆 become of similar intensity. For very small PS inclusions, 𝜎𝐴 >> 𝜎𝑆. 

For small particles, the probability of a photon being absorbed in a particle encounter event is 
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higher than that of being scattered, whereas for larger particles these probabilities tend to be 

equal, hence the chances of light being absorbed after experiencing diverse scattering events 

slightly increases. However, in this case, as it was previously mentioned, the number of 

inclusions in the system is lower, and thus, the probability of a photon to experience an 

extinction event is reduced, yielding a total absorption lower than that in systems with more 

particles of smaller size.      

  

  

Figure S2. Absorptance (A), percentage of specularly reflected (Rs) and ballistically transmitted 

(Tb) photons, as well as percentage of diffusively reflected (Rd) and transmitted (Td) photons at λ 

= 200 impinging on a 1000 nm thick film made of a SiO2 matrix with PS spheres (ff = 10 %) as a 

function of its radius. Empty black diamonds correspond to A, blue stars to (Rs+ Tb), i.e., to the 

percentage of photons do not suffering any scattering event, and empty black circles to (Rd+ Td). 

Blue squares, orange circles, yellow upwards triangles, and green downwards triangles account 

for absorptance of photons after 1, 2, 3 or 4 particle encounter events, respectively. 
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