
On the sum of the first n primes

Javier Cilleruelo

Departamento de Matemáticas
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Abstract

In this note, we show that the set of n such that the arithmetic
mean of the first n primes is an integer is of asymptotic density zero.
We use the same method to show that the set of n such the sum of
the first n primes is a square is also of asymptotic density zero. We
also prove that both the arithmetic mean of the first n primes as well
as the square root of the sum of the first n primes are well distributed
modulo 1.

1 The Main Results

Let pn be the nth prime. It is clear that if n > 1, then the geometric mean
of the first n primes, namely the number (p1 . . . pn)1/n, is not an integer.
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However, it happens sometimes that the arithmetic mean of the first n primes
is an integer. In fact, putting

sn =
n∑

i=1

pi,

and
A = {n : sn/n ∈ Z},

then one checks that

A = {1, 23, 53, 853, 11869, 117267, 339615, 3600489, . . .}.
This appears as sequence A045345 in [3], where the next three larger members
of A are shown. Regular heuristics seem to suggest that A should be an
infinite set. Indeed, assuming that sn is uniformly distributed in arithmetic
progressions of modulus n, it would follow that sn ≡ 0 (mod n) with a
probability of 1/n. Hence, putting A(x) = A ∩ [1, x], the above heuristics
suggest that

#A(x) ∼
∑
n≤x

1

n
= log x + O(1), (1)

and, in particular, A should be an infinite set, albeit not a very dense one.

While we can neither show that A is infinite, nor can we show an upper
bound on #A(x) comparable to the one predicted by heuristics (1), we can
at least show that A is of asymptotic density zero.

Theorem 1. There exists a positive constant c0 such that the inequality

#A(x) < x exp
(−c0(log x)3/5(log log x)−1/5

)
(2)

holds for all x ≥ e.

Our method is elementary and uses only the known bounds for the differ-
ence |π(x) − li(x)| (see, for example, Chapter 5 in [4]). In particular, under
the Riemann hypothesis, our argument shows that

#A(x) ¿ (x log x)5/6.

We also put B = {n : sn is an square}. The sequence

B = {9, 2474, 6694, 7785, 709838, 126789311423, . . .}
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appears as sequence A003397 in [3]. In [1], it was shown that B is a set of
asymptotic density zero but no effective upper bound on #B(x) was given.
The proof from [1] uses sieves. Heuristic arguments show that B(x) ∼√

8 log x as x → ∞. Here, we use the same method as for the proof of
Theorem 1 to get the following upper bound.

Theorem 2. There exists a positive constant c1 such that the inequality

#B(x) < x exp(−c1(log x)3/5(log log x)−1/5) (3)

holds for all x ≥ e.

A problem with a similar flavor was studied in [2] where it was shown that
the set of n such that the sum φ(1) + · · ·+ φ(n) is a square is of asymptotic
density zero, where for a positive integer m we write φ(m) for the Euler
function of m. That proof also uses sieve methods. Our proofs, however, use
an argument completely different which can perhaps be applied to strengthen
the result from [2]. We leave this as a challenge to the reader.

Theorems 1 and 2 show that the sequence of averages of the first n primes,
as well as the sequence of square-roots of the sums of the first primes are, in
general, not integers. We also prove more, namely that the fractional parts
of both these sequences are well distributed in [0, 1).

Theorem 3. The sequence
{(sn

n

)}
n≥1

is well distributed in [0, 1).

Theorem 4. The sequence {(s1/2
n )}n≥1 is well distributed in [0, 1).

Obviously, Theorems 3 and 4 already imply that both A and B have
asymptotic densities zero, but Theorems 1 and 2 give us effective upper
bounds on their counting functions.

Before proceeding to the proofs, we give a brief outline of the technique
used to prove Theorem 1. We need to prove that if sn denotes the sum of
the first n primes, then sn/n is an integer for a zero proportion of all positive
integers n. Suppose that π(x) ∼ Li(x) were an exact formula. Then sn/n
would be an integer extremely rarely for the simple reason that sn+m/(n+m)
- sn/n could not be an integer for n large and m ≤ T (n), where T (n) is a
suitably chosen increasing function of n. Indeed, this is so essentially because
1/(n + m) − 1/n = −m/(n(n + m)) is tiny for m much smaller than n.
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Now, π(x) ∼ Li(x) is not actually an exact formula. Still, the error is small
enough that sn+m/(n+m)− sn/n is very rarely an integer for n large and m
running through an interval [0, T (n)], with our suitable function T (n). Then
the fact that sn/n is an integer only for a zero proportion of all n follows
almost immediately upon an application of Cauchy’s inequality. The proof
of Theorem 2 follows a similar plan of attack.

In what follows, we use p and q with or without subscripts for prime
numbers, and the Landau symbols O and o and the Vinogradov symbols À,
¿ and ³ with their usual meanings. The constants implied by these symbols
are absolute. We write c0, c1, . . . for positive computable constants which are
labeled increasingly throughout the paper.

Acknowledgements. We thank the referees for comments which im-
proved the quality of this paper. This work was done in July of 2007 when
the second the author visited the UAM in Madrid, Spain. He thanks the
host institution for its hospitality. The first author was supported in part
by Grant MTM 2005-04730 of MYCIT (Spain), the second author was sup-
ported in part by project SEP-CONACyT 46755 (Mexico), and both authors
were also supported by the project Red Iberoamericana de Teoŕıa de Números
of the UAM-Grupo Santander (Spain).

2 Preliminary Results

We recall that

Li(x) =

∫ x

2

dt

log t

is the logarithmic integral of x. We put π(x) = #{p ≤ x} and write

E(x) = max{|π(y)− Li(y)| : 2 ≤ y ≤ x}.
The following estimate for E(x) is well-known (see Chapter 5 of [4]).

Lemma 1. There exists a constant c2 > 0 such that

|E(x)| ≤ x exp
(−c2(log x)3/5(log log x)−1/5

)

holds for all x > e.

Lemma 1 above and some straightforward algebraic manipulations yield
the following estimates.
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Lemma 2. The estimates

sm =

∫ Li−1(m)

2

t

log t
dt + O(m(log m)E(pm)), (4)

and
sm+k − sm = kLi−1(m) + O (k log(m + k)(E(pm+k) + k)) (5)

hold, where Li−1 is the inverse function of the logarithmic integral function
Li(x).

Proof. Since Li(x) = (1 + o(1))x/ log x as x → ∞, we have that Li−1(x) =
(1 + o(1))x log x as x →∞. Furthermore, since

(Li−1)′(Li(x)) =
1

Li′(x)
= log x,

we get that

(Li−1)′(x) = log(Li−1(x)) = (1 + o(1)) log x as x →∞.

We can write
m = π(pm) = Li(pm)(1 + εm),

with |εm| ≤ E(pm)/Li(pm) = o(1) as m →∞. Therefore pm = Li−1(m/(1 +
εm)) and then

|pm − Li−1(m)| = |Li−1(m/(1 + εm))− Li−1(m)| ¿ εmm log m,

Thus,
pm = Li−1(m) + O((log m)E(pm)).

Then,

sn =
∑

1≤m≤n

pm =
∑

1≤m≤n

Li−1(m) + O(n(log n)E(pn)).

Finally we can write

∑
1≤m≤n

Li−1(m) =

∫ n

0

Li−1(t)dt +
∑

1≤m≤n

∫ m

m−1

(
Li−1(m)− Li−1(t)

)
dt =

=

∫ Li−1(n)

2

t

log t
dt + O

( ∑
1≤m≤n

log m

)
=

∫ Li−1(n)

2

t

log t
dt + O(n log n).
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For the second one, we certainly have that

pm+j = Li−1(m + j) + O((log(m + k))E(pm+k))

= Li−1(m) + (Li−1(m + j)− Li−1(m)) + O((log(m + k))E(pm+k))

for all j = 1, . . . , k. Since

Li−1(m + j)− Li−1(m) = O(j(Li−1)′(m + j)) ¿ k log(m + k),

when j = 1, . . . , k, we get that

pm+j = Li−1(m) + O (log(m + k)(E(pm+k) + k))

for all j = 1, . . . , k. Summing up these estimates for j = 1, . . . , k we get

sm+k − sm =
k∑

j=1

pm+j = kLi−1(m) + O (k log(m + k)(E(pm+k) + k)) .

In particular, we have the estimates

sm = (1 + o(1))
m2 log m

2
and sm+k − sm = (1 + o(1))km log m (6)

as m →∞, assuming that k = o(m).

Lemma 3. Let g, h denote the functions

g(x) =
Li−1(x)

x
−

∫ Li−1(x)

2

s

log s
ds

x2
, (7)

and

h(x) =
Li−1(x)

2

(∫ Li−1(x)

2

s

log s
ds

)1/2
. (8)

Then the estimates

g(x) =
log x

2
(1 + o(1)), g′(x) =

1

2x
(1 + o(1)),

h(x) =

(
log x

2

)1/2

(1 + o(1)), h′(x) =
1

2(2x log x)1/2
(1 + o(1))

hold when x →∞.
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Proof. It is easy to check that g(x) ∼ (log x)/2. For the asymptotic behavior
of g′(x) it suffices to prove that g′(Li(x))Li(x) ∼ 1

2
. We write

g(Li(x)) =
x

Li(x)
−

∫ x

2
s

log s
ds

Li2(x)
.

Since Li′(x) = 1/ log x, we have

g′(Li(x))Li(x) =
1

Li2(x)

(
(log x)Li2(x)− 2xLi(x) + 2

∫ x

2

s

log s
ds

)

=
1

Li2(x)

(
log x

(
x

log x
+

(1 + o(1))x

log2 x

)2

− 2x

(
x

log x
+

(1 + o(1))x

log2 x

)
+ 2

(
x2

2 log x
+

x2

4 log2 x

)

+
(1 + o(1))x2

8 log3 x

)
,

which tends to 1/2 when x →∞.

For the second function h, it is also easy to check that

h(x) ∼ ((log x)/2)1/2 as x →∞.

To show the asymptotic behavior of h′(x), it suffices to prove that

h′(Li(x))Li(x)(log Li(x))1/2 → 1

23/2
as x →∞.

We have

(
h2(Li(x))

)′
=

(
x2

4
∫ x

2
sds
log s

)′

=
1

4

(
2x

∫ x

2

sds

log s
− x3

log x

)(∫ x

2

sds

log s

)−2

=

1

4

(
2x

(
x2

2 log x
+

x2(1 + o(1))

4 log2 x

)
− x3

log x

)(∫ x

2

sds

log s

)−2

∼ 1

2x
,

(9)

as x →∞. We can then write

h′(Li(x))Li(x)(log Li(x))1/2 =
(
h2(Li(x))

)′ log x

2h(Li(x))
Li(x) (log Li(x))1/2 ∼

∼ 1

2x

(log x)Li(x)

2

(Li(x))1/2

h(Li(x))
∼ 1

2x

x

2

√
2 =

1

2
√

2
.
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3 Proof of Theorem 1

It clearly suffices to prove inequality (2) when the left hand side of it is
replaced by #(A ∩ (x/2, x]). We subdivide the interval (x/2, x] in intervals
Ej of length T each, j = 1, . . . , [x/2T ] + 1, and split the set of index j in
two sets J1 and J2 according to whether |A ∩ Ej| ≤ 1 or not. We note that

|A∩ Ej|2 ≤ 4
(|A∩Ej |

2

)
when j ∈ J2. Thus, by the Cauchy-Schwartz inequality,

#(A ∩ (x/2, x]) =
∑
j∈J1

|A ∩ Ej|+
∑
j∈J2

|A ∩ Ej|

≤ |J1|+ |J2|1/2

(∑
j∈J2

|A ∩ Ej|2
)1/2

≤ x

T
+ 2

( x

T

)1/2
(∑

j∈J2

(|A ∩ Ej|
2

))1/2

. (10)

The pairs (m,m′) ∈ A2 with m < m′ counted by the second sum above
satisfy that m′ = m + k for some k, 1 ≤ k ≤ T . Thus,

∑
j∈J2

(|A ∩ Ej|
2

)
≤

∑

1≤k≤T

#{m : m ∈ (x/2, x− k], m, m + k ∈ A}

≤
∑

1≤k≤T

#

{
m : m ∈ (x/2, x− k],

sm+k

m + k
− sm

m
∈ Z

}
.

(11)

For any m ∈ (x/2, x− k] and k ≤ T such that sm+k

m+k
− sm

m
∈ Z, we write

sm+k

m + k
− sm

m
=

sm+k − sm

m
− ksm

m2
− k(sm+k − sm)

m(m + k)
+

k2sm

m2(m + k)
. (12)

Since m + k ≤ x, we use Lemma 2 to obtain that

sm+k − sm

m
= k

Li−1(m)

m
+ O

(
k(log m)(E(pbxc) + k)

m

)
,

ksm

m2
= k

∫ Li−1(m)

2
sds
log s

m2
+ O

(
k(log m)E(pbxc)

m

)
,
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and
k2sm

m2(m + k)
= O

(
k2 log m

m

)
,

therefore

sm+k

m + k
− sm

m
= kg(m) + O

(
k(log m)(E(pbxc) + k)

m

)
, (13)

where g(t) is the function defined in Lemma 3.

Using the fact that the left hand side of formula (13) is an integer, we
have proved that for all m counted in (11) we have

‖kg(m)‖ ¿ ε(x), (14)

where ε(x) = T (log x)(E(pbxc) + T )x−1 and ‖ · ‖ denotes the distance to the
closest integer. Then, if we write gk(y) = kg(y) and Il = [l − ε(x), l + ε(x)],
by (11) and (14) we have

∑
j∈J2

(|A ∩ Ej|
2

)
≤

∑

k≤T

#{m : m ∈ (x/2, x− k], ‖gk(m)‖ ≤ ε(x)}

≤
∑

k≤T

#{m : m ∈ (x/2, x− k], ∃l ∈ Z, l − ε(x) ≤ gk(m) ≤ l + ε(x)}

≤
∑

k≤T

∑

gk(x/2)≤l≤gk(x)

#{m : m ∈ [x/2, x] ∩ g−1
k (Il)}.

Since gk is an increasing function, g−1
k (Il) is also an interval, and we have

that |Il|
|g−1

k (Il)| = g′k(ξ) for some ξ ∈ (x/2, x]. Lemma 3 says that g′(y) ∼ 1/2y,

then we have that |g−1
k (Il)| = |Il|/g′k(ξ) ¿ ε(x)/(k/x). So we have that

#{m : m ∈ [x/2, x] ∩ g−1
k (Il)} ¿ xε(x)

k
+ 1.

On the other hand we have

gk(x)− gk(x/2) = k

∫ x

x/2

g′(t)dt ¿ k

∫ x

x/2

dt

t
¿ k.

Thus,

∑
j∈J2

(|A ∩ Ej|
2

)
¿

∑

k≤T

k

(
xε(x)

k
+ 1

)
¿ T 2(log x)(E(pbxc) + T ). (15)
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We substitute the last inequality (15) in (11) and (10) and we get

#(A ∩ (x/2, x]) ¿ x/T +
(
xT (log x)(E(pbxc) + T )

)1/2
.

We now take T = b(x/((log x)E(pbxc)))1/3c and get

#(A ∩ (x/2, x]) ¿ (x2(log x)E(pbxc))
1/3 + x5/6(log x)1/6/E1/3(pbxc)

¿ (x2(log x)E(2x log x))1/3 + x5/6(log x)1/6.
(16)

Lemma 1 leads to the desired conclusion. Assuming the Riemann Hypothesis,
we have that E(y) ¿ y1/2 log y for all y, which via estimate (16) gives

#(A ∩ (x/2, x]) ¿ (x log x)5/6.

4 Proof of Theorem 2

We put bn = s
1/2
n and let B = {n : bn ∈ Z}. The proof is similar to the

previous one. We proceed as before to obtain

#(B ∩ (x/2, x]) ≤ x/T + 2(x/T )1/2

(∑
j∈J2

(|B ∩ Ej|
2

))1/2

, (17)

where
∑
j∈J2

(|B ∩ Ej|
2

)
≤

∑

1≤k≤T

#
{

m, m ∈ (x/2, x− k], s
1/2
m+k − sm

1/2 ∈ Z
}

.

(18)

For any m ∈ (x/2, x− k], k ≤ T such that bm+k − bm ∈ Z, we use estimate
(6) to get

bm+k − bm =
sm+k − sm

bm+k + bm

¿ k(log m)1/2.

We assume that k = o(x) as x →∞ and apply Lemma 2 to write

bm+k − bm =
sm+k − sm

2s
1/2
m

− (sm+k − sm)(s
1/2
m+k − s

1/2
m )

2s
1/2
m (s

1/2
m+k + s

1/2
m )

=
kLi−1m + O(k log(m + k)(E(pm) + k))

2
(∫ Li−1(m)

2
s

log s
ds + O(m(log m)E(pm))

)1/2
+ O

(
k2(log m)1/2

m

)

= kh(m) + O

(
k(log m)1/2(E(pm) + k)

m

)
,

(19)

10



where h is the function defined in lemma 3. Thus, we have proved that if
bm+k − bm ∈ Z, x/2 < m ≤ m− k, k ≤ T , then we have

‖kh(m)‖ ¿ ε(x), (20)

where ε(x) = T (log x)1/2(E(pbxc) + T )x−1.

Since the following argument is similar to the proof of Theorem 1, we
omit some details. We write hk(y) = kh(y) and Il = [l − ε(x), l + ε(x)] to
obtain

∑
j∈J2

(|B ∩ Ej|
2

)
≤

∑

k≤T

∑

hk(x/2)≤l≤hk(x)

#{m : m ∈ [x/2, x] ∩ h−1
k (Il)}.

As before, we can see that |h−1
k (Il)| ¿ |Il|/h′k(ξ) ¿ ε(x)x(log x)1/2/k and

also that hk(x)− hk(x/2) ¿ k/(log x)1/2. Then

∑
j∈J2

(|B ∩ Ej|
2

)
¿

∑

k≤T

k

(log x)1/2

(
ε(x)x(log x)1/2

k
+ 1

)

¿ T 2(log x)1/2(E(pbxc) + T ).

(21)

Substituting the above inequality (21) in (11) and (10), we get

#(B ∩ (x/2, x]) ¿ x/T + (xT (log x)1/2(E(pbxc) + T ))1/2.

We take T = b(x/((log x)1/2E(pbxc)))1/3c and finally we obtain

#(B ∩ (x/2, x]) ¿ (x2(log x)1/2E(pbxc))
1/3 + x5/6(log x)1/12/E1/3(pbxc)

¿ (x2(log x)1/2E(2x log x))1/3 + x5/6(log x)1/12.
(22)

Again Lemma 1 leads to the desired conclusion.

5 Proofs of Theorems 3 and 4

The Weil criterion for the uniform distribution says that a sequence {an}n≥1

is well distributed modulo 1 if and only if for any integer m 6= 0 we have that

∑
n≤x

exp(2πiman) = o(x) as x →∞. (23)
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We will use this criterion for the sequences an = sn/n and bn = sn
1/2. To

prove estimate (23), it suffices to prove that
∑

x/2<n≤x

exp(2πiman) = o(x) as x →∞. (24)

Writing

∑

x/2<n≤x

exp(2πiman) =
1

T

∑

x/2<n≤x−T

∑

0≤k<T

exp(2πiman+k) + O(T ),

we get
∣∣∣∣∣∣

∑

x/2<n≤x

exp(2πiman)

∣∣∣∣∣∣
≤ 1

T

∑

x/2<n≤x−T

∣∣∣∣∣
∑

0≤k<T

exp(2πim(an+k − an))

∣∣∣∣∣ + O(T ).

Estimate (12) shows that if x/2 < n ≤ x− k and k ≤ T , then

an+k − an = kg(n) + O

(
T (log x)(E(pbxc) + T )

x

)
.

We take T = b(log x)2c and use the estimate E(pbxc) ¿ E(2x log x) ¿
x(log x)−4. Then

an+k − an = kg(n) + O
(
(log x)−1

)
,

so we can write∣∣∣∣∣
∑

0≤k<T

exp(2πim(an+k − an))

∣∣∣∣∣ =

∣∣∣∣∣
∑

0≤k<T

exp(2πimkg(n))

(
1 + O

(
m

log x

))∣∣∣∣∣

=

∣∣∣∣∣
∑

0≤k<T

exp(2πimkg(n))

∣∣∣∣∣ + O(m log x)

= O

(
min

{
T,

1

‖mg(n)‖
}

+ m log x

)
.

Then∣∣∣∣∣∣
∑

x/2<n≤x

exp(2πiman)

∣∣∣∣∣∣
¿ 1

T

∑

x/2<n≤x

min

{
T,

1

‖mg(n)‖
}

+
mx

log x

¿ #

{
n : x/2 < n ≤ x, ‖mg(n)‖ ≤ 1

T 1/2

}
+

x

T 1/2
+

mx

log x
.

(25)
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If we write gm(y) = mg(y) and Il = [l − 1/T 1/2, l + 1/T 1/2] then

#

{
n : x/2 < n ≤ x, ‖gm(n)‖ ≤ 1

T 1/2

}

≤
∑

gm(x/2)≤l≤gm(x)

#{n : n ∈ g−1
m (Il) ∩ (x/2, x]}.

(26)

Since gm is an increasing function, we have that |Il|/|g−1
m (Il)| = g′m(ξ) for

some ξ ∈ (x/2, x]. Thus, by Lemma 3, we have

|g−1
m (Il)| ≤ |Il|

minξ∈(x/2,x] g′m(ξ)
¿ x

mT 1/2
. (27)

On the other hand, we have

gm(x)− gm(x/2) = m

∫ x

x/2

g′(t)dt ¿ m. (28)

Taking into account (25), (26), (27) and (28) we obtain
∣∣∣∣∣∣

∑

x/2<n≤x

exp(2πiman)

∣∣∣∣∣∣
¿ m

( x

T 1/2m
+ 1

)
+

x

T 1/2
+

mx

log x
¿ mx

log x
= o(x)

as x →∞, and we finish the proof of Theorem 3.

The proof of Theorem 4 is similar but instead of estimate (12), we use
estimate (19)

bn+k − bn = kh(n) + O

(
T (log x)1/2(E(pbxc) + T )

x

)
.

We give no further details.
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