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Abstract We evaluate theoretically the interaction of the
open bottom and strange systems B̄ K̄ , B̄∗ K̄ , B̄ K̄ ∗ and B̄∗ K̄ ∗
to look for possible bound states which could correspond to
exotic non-quark–antiquark mesons since they would con-
tain at least one b and one s quarks. The s-wave scattering
matrix is evaluated implementing unitarity by means of the
Bethe–Salpeter equation, with the potential kernels obtained
from contact and vector meson exchange mechanisms. The
vertices needed are supplied from Lagrangians derived from
suitable extensions of the hidden gauge symmetry approach
to the bottom sector. We find poles below the respective
thresholds for isospin 0 interaction and evaluate the widths
of the different obtained states by including the main sources
of imaginary part, which are the B∗ → Bγ decay in the
B̄∗ K̄ channels, the K ∗ → Kπ in the channels involving a
K ∗, plus the box diagrams with B̄ K̄ and B̄∗ K̄ intermediate
states for the B̄∗ K̄ ∗ channels.

1 Introduction

The discovery of the X0(2866) (X0(2900) officially) as
a J P = 0+ resonance with isospin I = 0, decaying
into DK̄ [1,2] was an important step forward, reporting
on a manifestly exotic meson state with c and s open
quarks which, thus, cannot be accounted for as an ordi-
nary qq̄ meson. Different pictures have been proposed to
explain that state as compact tetraquark structures [3–6].
Yet some explicit tetraquark calculations using a relativized
quark model favour instead a D∗ K̄ ∗ molecular structure
[7]. The small binding of the X0(2900) with respect to the
D∗ K̄ ∗ threshold has prompted many calculations favoring
the D∗ K̄ ∗ molecular structure [8–16]. Suggestions that the
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peaks observed could come from some kinematic singular-
ities, as a triangle singularity, have also been done [17,18].
A prediction of this state as a bound D∗ K̄ ∗ state had already
been done ten years before in [19] with results for the mass
and width very similar to those reported in the experiment
[1,2]. In Ref. [11] a reanalysis of the work of [19] was done
to fine tune the mass and width of the state and explicit decay
channels were also evaluated for the companion D∗ K̄ ∗ states
with 1+ and 2+.

The purpose of this work is to extend those results to
the bottom sector studying the B̄∗ K̄ ∗ states and their decay
modes. At the same time, we study the B̄ K̄ , B̄∗ K̄ , and
B̄ K̄ ∗ systems and make predictions for binding energies and
widths. Contrary to the D∗ K̄ ∗ states that have attracted much
attention, this is not the case of the B(∗)K (∗) states. Yet, a
study of these states using the formalism of the local hidden
gauge [20–24] employed in [11,19] is done in [25], where
some exotic B∗K ∗, BK ∗ are found with small binding and
width. We shall discuss the analogies and differences from
that work, anticipating that we obtain more bound states,
more binding and larger widths. Related molecular states
were found in [26] where the non exotic B∗ K̄ ∗, B∗ K̄ and
BK̄ states were studied. Exotic states of B(∗)D(∗) nature
were studied in [27]. The discovery of the X0(2900) and
the large attention given to it, makes it opportune to study
the natural extension to the bottom sector. Our strategy to
make as accurate predictions as possible is to start from the
results obtained in Ref. [11] to fit the X0(2900) data from
the D∗ K̄ ∗ molecular perspective, using a cutoff to regularize
the loops. The reason is that in the transition from the D to
the B sector, heavy quark symmetry imposes constraints that
are satisfied if one uses the same cutoff from one sector to
the other [28,29]. With these constraints we obtain several
bound states of I = 0, one of BK nature with 0+, one 1+
bound state of B∗K nature, another 1+ state of BK ∗ nature,
and three states of B∗K ∗ nature with total J P = 0+, 1+, 2+.
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Fig. 1 Kinds of diagrams needed for the tree level potentials

The binding energies are bigger than for the related D∗ K̄ ∗
systems, which seems a general trend for explicit calculations
using quark models [30–33].

2 Formalism

2.1 Lagrangians

The tree level scattering amplitudes needed for the differ-
ent channels are of the kind depicted in Fig. 1. (We will
detail below which are and why the specific diagrams for
each particular channel). Therefore we need the basic ver-
tices, vector–pseudoscalar–pseudoscalar (VPP), three vec-
tors (VVV) and four vectors (VVVV), which we will obtain
from the extension of the local hidden gauge symmetry
(HGS) formalism [20–24] to the beauty sector [19,34]. The
HGS formalism has proven itself as a suitable and successful
way to realize chiral symmetry in SU (3) in the presence of
vector mesons, and provides the needed Lagrangians:

LV PP = −ig 〈[P, ∂μP]Vμ〉, (1)

LVVV = ig 〈(Vμ∂νVμ − ∂νV
μVμ)V ν〉, (2)

LVVVV = g2

2
〈VμV νVμV ν − V νVμVμV ν〉, (3)

with g = MV
2 f for which we take MV = 800 MeV, f =

93 MeV.
For the evaluation, later on, of the box diagrams arising

in the calculation of the width of the B̄∗ K̄ ∗ generated states,
see Fig. 7b, we will also need the Lagrangian involving the
vector–vector–pseudoscalar (VV P) vertex, which is related
to the non-abelian anomaly [35,36], and is given by [37]:

LVV P = G ′
√

2
εμναβ〈∂μVν∂αVβ P〉, (4)

with G ′ = 3g′2
4π2 f

, g′ = −GV Mρ√
2 f 2 and f = 93 MeV, with

GV = 55 MeV.
In Eqs. (1)–(4), P and V are the qq̄ matrices which, con-

sidering only the quarks u, d, s and b, read in terms of mesons
as

P =

⎛
⎜⎜⎜⎜⎝

η√
3

+ η′√
6

+ π0√
2

π+ K+ B+

π− η√
3

+ η′√
6

− π0√
2

K 0 B0

K− K̄ 0 − η√
3

+
√

2
3 η′ B0

s

B− B̄0 B̄0
s ηb

⎞
⎟⎟⎟⎟⎠

, (5)

with the standard η, η′ mixing of [37] and

V =

⎛
⎜⎜⎜⎜⎝

ω+ρ0√
2

ρ+ K ∗+ B∗+

ρ− ω−ρ0√
2

K ∗0 B∗0

K ∗− K̄ ∗0 φ B∗0
s

B∗− B̄∗0 B̄∗0
s ϒ

⎞
⎟⎟⎟⎟⎠

. (6)

It is worth mentioning that, as discussed in Ref. [27], they
should not be interpreted as SU (4) Lagrangians, since they
are only a practical way to obtain the different couplings of
the vertices and is equivalent to use only SU (3) consider-
ing the heavy mesons as spectators, in the line of the heavy
quark flavour symmetry. Yet, in the case of meson couplings
one does not even have to invoke SU (3) symmetry since the
couplings are tied to the simple qq̄ structure of the mesons
[27].

At this point we can take advantage of the work in Ref. [19]
regarding the D∗ K̄ ∗ interaction. In the D∗ K̄ ∗ case attraction
was only found in isospin I = 0 [19], being the I = 1 repul-
sive, and, as we will see, the isospin structure is equivalent
in the present case, so we can expect the same result. Indeed,
if we consider the I = 0 D∗ K̄ ∗ combination1

|D∗ K̄ ∗, I = 0〉 = 1√
2
|D∗0 K̄ ∗0 − D∗+K ∗−〉, (7)

and for B̄∗ K̄ ∗,

|B̄∗ K̄ ∗, I = 0〉 = 1√
2
|B∗− K̄ ∗0 − B̄∗0K ∗−〉, (8)

we see that Eq. (8) is equivalent to (7) with the replacements
D∗0 → B∗− and D∗+ → B̄∗0. This is a consequence of
the fact that B̄∗ K̄ ∗ can be constructed from D∗ K̄ ∗ with the
only replacement of one quark c by one b. Thus, the qq̄
matrix involving D∗ has the same structure as Eq. (9) with
the replacement c → b:

V =

⎛
⎜⎜⎜⎜⎝

ω+ρ0√
2

ρ+ K ∗+ D̄∗0

ρ− ω−ρ0√
2

K ∗0 D∗−

K ∗− K̄ ∗0 φ D∗−
s

D∗0 D∗+ D∗+
s J/ψ

⎞
⎟⎟⎟⎟⎠

. (9)

This is far from being a trivial detail, because this means
that the tree level amplitudes arising from the Lagrangians
(1)–(3) are the same as in the D∗ K̄ ∗ case with the aforemen-
tioned substitutions and changing the corresponding masses.

1 The isospin doublets are (D∗+,−D∗0) and (K ∗0,−K ∗−).
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Fig. 2 Vector meson exchange for the B̄ K̄ potential

Thus we refer to the work in [19] for the specific details of
the calculation of the tree level amplitudes, and we focus in
what follows in the differences and peculiarities of the present
work. In particular, for the other channels, (B̄ K̄ , B̄∗ K̄ and
B̄ K̄ ∗), which have non analogous counterparts in Ref. [19],
the flavour structure is the same as in the VV case and hence
the numerical coefficients arising from the Lagrangians are
the same except for the contribution of the different polar-
ization vectors, which we discuss below.

2.2 B̄ K̄ system

2.2.1 Potential

For the B̄ K̄ interaction in I = 0 the tree level potential comes
from the vector exchange mechanism depicted in Fig.2. From
the Lagrangian (1), and using the appropriate charge combi-
nation of diagrams implied from Eq. (8), we obtain, analo-
gously to table XI in Ref. [19],2

VB̄K̄→B̄ K̄ = − g2

m2
B∗
s

(p1 + p4)(p2 + p3)

+1

2
g2

(
1

m2
ω

− 3

m2
ρ

)
(p1 + p3)(p2 + p4) (10)

with p1(p3) the four-momentum of the initial (final) B̄ meson
and p2(p4) the four-momentum of the initial (final) K̄ meson.

We now must project Eq. (10) into s-wave for which we
use that the s-wave projection of the momentum structures
gives [38]

(p1 + p3)(p2 + p4) → 1
2

[
3s − (m2

1 + m2
2 + m3

2 + m4
2)

− 1
s (m

2
1 − m2

2)(m3
2 − m4

2)
]
,

(11)

(p1 + p4)(p2 + p3) → 1
2

[
3s − (m2

1 + m2
2 + m3

2 + m4
2)

+ 1
s (m

2
1 − m2

2)(m3
2 − m4

2)
]
,

(12)

2 The B̄ K̄ interaction is the same as the B̄∗ K̄ ∗ interaction due to vector
exchange, except for the factor �ε1 · �ε3 �ε2 · �ε4 in the latter case for ρ, ω,
exchange with �εi the polarization vectors of the vector mesons in the
order 1 + 2 → 3 + 4, and �ε1 · �ε4 �ε2 · �ε3 for the exchange of B∗

s . Since
�ε1 · �ε3 �ε2 · �ε4 = P(0)+P(1)+P(2) and �ε1 · �ε4 �ε2 · �ε3 = P(0)+P(1)−P(2),
where P(J ) are the projector operators over the vector-vector spin J
states, (see Eq. (25)), the B̄ K̄ interaction is the same as the one in
B̄∗ K̄ ∗ for the channels of spin 0 and 2.

with
√
s the center of mass energy and mi the mass of the

particle with momentum pi . This potential at threshold takes
the value −18.7g2 which implies an attractive interaction
and then we can expect that it leads to a bound state after the
unitarization procedure explained below.

2.2.2 Implementation of unitarity

The full B̄ K̄ scattering matrix can be obtained using the tech-
niques of the chiral unitary approach to implement unitarity
building upon the elementary potential. This can be carried
out by means of the Bethe–Salpeter equation, (or alterna-
tively the N/D [39,40] or IAM [41,42] methods, which are
basically equivalent):

T = [1 − VG]−1V, (13)

where V is the kernel, (the potential from Eq. (10)), and G
is the B̄ K̄ loop function:

G = i
∫

d4q

(2π)4

1

q2 − m2
B + iε

1

(q − P)2 − m2
K + iε

, (14)

dependent on the initial total four momentum P . The loop
function G, since it is logarithmically divergent, needs to be
properly regularized, which can be done using dimensional
regularization, giving

G = 1

16π2

{
a(μ) + ln

m2
1

μ2 + m2
2 − m2

1 + s

2s
ln

m2
2

m2
1

+ q√
s

[
ln(s − (m2

1 − m2
2) + 2q

√
s)

+ ln(s + (m2
1 − m2

2) + 2q
√
s)

− ln(s − (m2
1 − m2

2) − 2q
√
s) − ln(s + (m2

1 − m2
2) − 2q

√
s)

−2π i
]}

, (15)

where q is the three-momentum of any of the intermedi-
ate particles in the center of mass frame, μ is the scale of
dimensional regularization, and mi the masses of the parti-
cles in the loop. Note that any changes in the scale, μ, are
reabsorbed in the subtraction constant a(μ), thus fulfilling
scale invariance. The regularization can also be carried out
implementing a three-momentum hard cutoff, qmax:

G =
qmax∫

0

d3q

(2π)3

ωB + ωK

2ωBωK

1

s − (ωB + ωK )2 + iε
, (16)

with ωB(K ) =
√
m2

B(K ) + �q 2. In spite of the fact that both

regularization procedures usually provide equivalent results,
it was argued in Refs. [43–45] that in the heavy flavour sector
the cutoff method is more appropriate since the value of the
cutoff is independent of the heavy flavour, thus respecting
heavy quark symmetry [28,29]. The cutoff method is also
intuitive since, using a separable potential one obtains also
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(a) (b)

Fig. 3 Vector meson exchange for the B̄∗ K̄ and B̄ K̄ ∗ potentials

Eq. (13) and qmax represents the range of the interaction in
momentum space [46,47]. This determines a natural scale
for the value of the cutoff. Indeed, since the potentials are
mediated by vector meson exchange, the value of the cut-
off is expected to be of the order of the exchanged vector
meson, qmax ∼ mρ or a bit higher since we are also exchang-
ing a B∗

s although it is less relevant. In short, we have a
natural scale for the cutoff, of the order of 1 GeV, but we
can refine the estimation of its value using the study done
in [11] regarding the D∗ K̄ ∗ system. Using a similar formal-
ism to the present work and using dimensional regulariza-
tion, the subtraction constant for the D∗ K̄ ∗ loop function
a(μ) was fitted [11] to reproduce the experimental mass of
the X0(2866) state, obtaining a(1500 MeV) = −1.474. We
now obtain that, in order to get the same pole position for the
D∗ K̄ ∗ interaction using the cutoff method instead, we need
qmax 
 1050 MeV. The same value should then be used in the
present work for the bottom sector in order to preserve heavy
quark mass invariance as dictated by heavy quark flavor sym-
metry. Therefore, in the present work we will consider a
conservative range of the cutoff, qmax ∼ 900−1050 MeV
to quantify the cutoff dependence and to get an idea of the
uncertainties in our calculation.

2.3 B̄∗ K̄ and B̄ K̄ ∗ systems

2.3.1 Potential

The elementary diagrams for the B̄∗ K̄ and B̄ K̄ ∗ channels,
from vector meson exchange, are depicted in Fig. 3a, b
respectively. Note that we do not have now the B∗

s exchange
since it would imply an anomalous VV P vertex which is
small. We could also have Bs exchange with ordinary V PP
vertices, but these crossed diagrams are largely reduced ver-
sus the vector exchange terms (see Appendix A of [48]) and
here are further reduced with the large masses of the B∗

s ,
Bs . Another difference with respect to the B̄ K̄ case is that
now we have a VVV vertex instead of a V PP one. How-
ever, both Lagrangians (see Eqs. (1) and (2)) have the same
flavour structure and hence they provide the same potential
as the ρ, ω part of Eq. (10) except for the vector character
of the B∗ (or K ∗). This implies that, if we neglect terms of
order q2/m2

V [49], we have an extra �ε · �ε ′ factor in Eq. (10),

Fig. 4 B̄∗ K̄ loop considering the B∗ → Bγ decay. The cut shown
is the source of the imaginary part of the unitarized B̄∗ K̄ scattering
amplitude

(where �ε(�ε ′) is the polarization vector of the initial(final)
vector meson):

VB̄∗ K̄→B̄∗ K̄ = 1

2
g2

(
1

m2
ω

− 3

m2
ρ

)
(p1 + p3)(p2 + p4) �εB̄∗ · �εB̄∗ ′

(17)

VB̄K̄ ∗→B̄ K̄ ∗ = 1

2
g2

(
1

m2
ω

− 3

m2
ρ

)
(p1 + p3)(p2 + p4) �εK̄ ∗ · �εK̄ ∗ ′,

(18)

with the substitution of Eq. (11) with the masses changed
accordingly. The values of these potentials at threshold are
−17.7g2 and −31.6g2 for B̄∗ K̄ and B̄ K̄ ∗ respectively which
imply also a very strong attraction. Furthermore, the polariza-
tion vectors of the vector mesons in the loop function should
in principle be accounted for in the resummation implicit
in the Bethe–Salpeter equation, Eq. (13). However it was
shown in Ref. [38] that, for the general vector-pseudoscalar
interaction, the same Bethe–Salpeter equation (13) could be
used factorizing a global �ε · �ε ′, up to a correction in the loop
function of �q 2/(3m2

V ) which can be safely neglected.

2.3.2 Sources of the widths

In the B̄ K̄ case, there is no possible source of imaginary part
which could provide a width to the generated pole that we
will find in the real axis below the B̄ K̄ threshold, because
both B̄ and K̄ are stable (as far as strong or electromagnetic
interaction is concerned). However, in the B̄∗ K̄ and B̄ K̄ ∗
systems the vector mesons can decay providing a finite width
to the generated pole. Indeed, for the B̄∗ K̄ system, the B∗ →
Bγ decay can provide a source of imaginary part which can
give a small but finite width to the generated state. The B∗ →
Bγ width has not been measured but we can take from [50–
53] the average value �B∗ 
 0.40keV.

In Fig. 4 we show the mechanism including the B∗ → Bγ

decay providing an imaginary part from the cut depicted in
the figure. This is the source of the width of the B̄∗ K̄ gener-
ated state, which should then be of electromagnetic order of
magnitude.
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Fig. 5 B̄ K̄ ∗ loop considering the K ∗ → Kπ decay. The cut shown
is the source of the imaginary part of the unitarized B̄ K̄ ∗ scattering
amplitude

This effect can be taken into account, in a similar way as
in Ref. [34], introducing the energy dependent B∗ → Bγ

width into the B̄∗ propagator of the loop function:

G(s) = i
∫

d4q

(2π)4

1

q2 − m2
K + iε

× 1

(P − q)2 − m2
B∗ + i

√
(P − q)2�B∗((P − q)2)

.

(19)

This way to introduce the B∗ width is formally more rigorous
than the usual convolution with the B∗ spectral function since
it accounts properly for the off-shell-ness of the B∗ in the
loop. The energy dependent B∗ → Bγ width is evaluated
as:

�B∗(s′) = �B∗(m2
B∗)

m2
B∗
s′

(
pγ (s′)

pγ (m2
B∗)

)3

�(
√
s′ − mB),

(20)

where �B∗(m2
B∗) 
 0.4keV is the aforementioned on-shell

width; pγ is the photon decay momentum and � is the step
function.

The q0 integration in Eq. (19) leads to

G(s) 

∫ qmax

0
dq

q2

4π2

ωB∗ + ωK

ωB∗ωK

1√
s + ωB∗ + ωK

× 1
√
s − ωB∗ − ωK + i

√
s′

2ωB∗ �B∗(s′)
, (21)

with ωK (B∗) =
√

�q 2 + m2
K (B∗) and s′ = (

√
s − ωK )2 − �q 2.

Note that now Eq. (21) provides a small but finite imagi-
nary part for the T matrix corresponding to the cut depicted
in Fig. 4.

For the B̄ K̄ ∗ system the imaginary part comes from the
cut shown in Fig. 5, that is, from the K ∗ decay width. In this
case the width brought to the B̄ K̄ ∗ generated state would be
in the scale of the strong interaction and can be accounted
for introducing the K ∗ → Kπ decay width into the loop

function in an analogous way to Eq. (21):

G(s) 

∫ qmax

0
dq

q2

4π2

ωB + ωK ∗

ωBωK ∗
1√

s + ωB + ωK ∗

× 1
√
s − ωK ∗ − ωB + i

√
s′

2ωK∗ �K ∗(s′)
, (22)

with s′ = (
√
s − ωB)2 − �q 2, and

�K ∗ (s′) = �K ∗ (m2
K ∗ )

m2
K ∗
s′

(
pπ (s′)

pπ (m2
K ∗ )

)3

�(
√
s′ − mK − mπ ),

(23)

with �K ∗(m2
K ∗) the on-shell K ∗ width.

2.4 B̄∗ K̄ ∗ system

2.4.1 Potential

Within the chiral unitary approach, the vector-vector interac-
tion was studied in detail in [54,55]. It was applied to D∗D∗,
D∗
s D

∗, D∗K ∗ and D∗ K̄ ∗ system in [19]; and to B∗B∗ in
[34]. In this case the potential arises from the direct VVVV
contact term plus the vector exchange contributions, depicted
in Fig. 6. An s-channel vector exchange is also possible but
it was shown in Refs. [54,55] to be very small. It should be
noted that the contact term in the local hidden gauge formal-
ism is exclusive of the VV → VV interaction. It is a genuine
term and should not be confused with the contact terms of
the chiral Lagrangians stemming from the exchange of vec-
tor mesons when the fourmomentum exchange is neglected
(see Appendix A of [48]).

The contact term gives the potential

V contact
B̄∗ K̄ ∗→B̄∗ K̄ ∗ = g2 (

2εμεμενε
ν − εμενε

μεν − εμενε
νεμ

)

(24)

where the order of the polarization vectors represents initial
B̄∗, initial K̄ ∗, final B̄∗ and final K̄ ∗ respectively. Using the
spin projector operators, discussed in [54],

P(0) = 1

3
εμεμενε

ν

P(1) = 1

2
(εμενε

μεν − εμενε
νεμ)

P(2) = 1

2
(εμενε

μεν + εμενε
νεμ) − 1

3
εμεμενε

ν, (25)

for spin J = 0, 1 and 2 respectively, the potential in Eq. (24)
contributes as

Vcontact =
⎧⎨
⎩

4g2 for J = 0,

0 for J = 1,

−2g2 for J = 2.

(26)

123



882 Page 6 of 9 Eur. Phys. J. C (2022) 82 :882

Fig. 6 Contact term and vector
meson exchange for the B̄∗ K̄ ∗
potential

B*

K*

B*

K*

B* B*

K*

B*

K* K*
B*s

K*

B*
ρ, ω

For the vector meson exchange diagrams in Fig. 6, the con-
tribution is the same as Eq. (10) but substituting the momen-
tum structures by

(p1 + p4)(p2 + p3) → (p1 + p4)(p2 + p3)ε1 · ε4 ε2 · ε3,

(p1 + p3)(p2 + p4) → (p1 + p4)(p2 + p3)ε1 · ε3 ε2 · ε4,

(27)

which, using the spin projectors (25), give the following con-
tributions to the potential:

Vexch. =

⎧⎪⎪⎨
⎪⎪⎩

− g2

m2
B∗
s

(p1 + p4)(p2 + p3) + 1
2g

2
(

1
m2

ω
− 3

m2
ρ

)
(p1 + p3)(p2 + p4), for J = 0, 2

g2

m2
B∗
s

(p1 + p4)(p2 + p3) + 1
2g

2
(

1
m2

ω
− 3

m2
ρ

)
(p1 + p3)(p2 + p4), for J = 1

(28)

where we also have to carry out the analogous s-wave pro-
jection to Eqs. (11) and (12), changing the corresponding
masses. This potential at threshold takes the values −29.2g2,
−30.6g2 and −35.2g2 for J = 0, 1 and 2 respectively,
which imply very strong attractive interactions for all the
spins. Note that the spin degeneracy is slightly broken by
the small contact and B∗

s exchange terms. Note also that the
exchange of light vectors, ρ and ω, from Eq. (28) goes as
Vexch. ∼ 2mB∗2mK ∗ , with the normalization used in our
approach, which is a typical heavy quark spin symmetry
behavior since the heavy quark is a spectator in the inter-
action which is then independent of this heavy quark (see
details in [56]).

2.4.2 Sources of the widths

The first source of imaginary part that we must consider
comes from the B̄∗ K̄ ∗ loop function, since we must also
include the K̄ ∗ width in an analogous way to Eq. (22). For
this channel, the B̄∗ decay width, being electromagnetic, is
totally negligible compared to the K̄ ∗ one.

Fig. 7 Box diagrams for the evaluation of the width of the B̄∗ K̄ ∗ states

But now we also have the contribution from the box dia-
grams depicted in Fig. 7. The diagram in Fig. 7a, which we
will call box A in the following, only gives contribution for
J = 0 and J = 2 since the intermediate B̄ and K̄ need to
be in L = 0 or 2 to match the parity and angular momentum
of the initial B̄∗ K̄ ∗ state. Since the real part of the box is
expected to be small, as it is the case in D∗ K̄ ∗ [19], and we
are interested in knowing its contribution to the B̄∗ K̄ ∗ state,
we can focus on evaluating only the imaginary part of box A.
Furthermore, since we will work close to the B̄∗ K̄ ∗ thresh-
old, we can safely neglect all the external three-momenta in

the evaluation of the loops. With this in mind the amplitude
of the box A takes the form

VboxA = i36g4
∫

d4q

(2π)4

× �ε1 · �q �ε2 · �q �ε3 · �q �ε4 · �q
[q2 − m2

π ]2[(p1 − q)2 − m2
B + iε][(p2 + q)2 − m2

K + iε]
(29)

where the numerical factor in front of the integral comes
from the combination of the different channels needed to
have I = 0, see Eq. (8). After performing the q0 integration,
it yields:

VboxA = 9g4
∫

d3q

(2π)3

1

ωKωB

× �ε1 · �q �ε2 · �q �ε3 · �q �ε4 · �q
[(ωK − p0

2)2 − �q2 − m2
π ]2[p0

1 + p0
2 − ωK − ωB + iε] .

(30)

Following an analogous procedure to Ref. [57] for the D∗D∗
case to deal with the polarization vectors and the momentum
structure of the numerator, we obtain the following imaginary
part:

Im VboxA = −3g4 1

10π
√
s
q5 1

[(ωK − p0
2)2 − �q2 − m2

π ]2

×FJ F
4(q)

(
mB∗

mK ∗

)2

(31)
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where FJ is 5 for spin J = 0, 0 for J = 1 and 2 for J = 2;

q = λ1/2(s,m2
B ,m2

K )

2
√
s

and p0
2 = s+m2

K∗−m2
B∗

2
√
s

. In Eq. (31) we have

included a factor mB∗
mK∗ for each B̄∗ B̄π vertex coming from

the normalization of the external heavy vector meson, for the
reasons explained in detail in [56]. We have also added for
each vertex, as in [19], a form factor F(q) = exp[−q2/�2],
with q the four-momentum of the pion in the loop, in our case
F(q) = exp[(ωK − p0

2)2 − �q 2]/�2], with � ∼ 1200 MeV
[58] to take into account the off-shell-ness of the pion in
the loop obtained by using QCD sum rules [58]. Finally
iIm VboxA has to be added to the contact and vector exchange
contributions, (Eqs. (26) and (28)) to get the kernel, V , of the
Bethe–Salpeter equation (13).

The contribution to the imaginary part of the potential
coming from the diagram of Fig. 7b was calculated for the
D∗ K̄ ∗ interaction in [11] and the present case gives an anal-
ogous result changing the corresponding masses:

ImVboxB = − 1

8π
√
s
q5 (

G ′gmB∗
)2

× 1(
(ωK − p0

2)2 − �q2 − m2
π

)2 F ′
J F

4(q), (32)

with F ′
J = 0, 3

2 and 9
10 for J = 0, 1 and 2 respectively; and

q = λ1/2(s,m2
B∗ ,m2

K )

2
√
s

; p0
2 = s+m2

K∗−m2
B∗

2
√
s

. Note that now the

m2
B∗ factor of heavy quark spin symmetry is already imple-

mented by the anomalous vertex [56].
The final expression for the potential, V , entering the

Bethe–Salpeter equation (13), for the B̄∗ K̄ ∗ case, is

V = Vcontact + Vexch. + iIm VboxA + iIm VboxB (33)

from Eqs. (26), (28), (31) and (32). When evaluating the full
scattering amplitude, Eq. (13), for the B̄∗ K̄ ∗ case, we also
include in the B̄∗ K̄ ∗ loop function, G, the K ∗ width in an
analogous way to Eq. (22).

3 Results

First we show in the third column of Table 1 the binding ener-
gies, EB , for the different channels defined as the difference
between the threshold of the channel and the position of the
pole of the scattering amplitude. (The value of the thresholds
are shown in brackets besides the name of the channels). The
values of EB are obtained without including the sources of
imaginary part, that is, using only the tree level potentials,
(the inclusion of the imaginary parts has a small effect in the
position of the peaks). We show the results for two different
values of the cutoff, qmax, as explained in Sect. 2.2.2. In every
numerical entry of the table the first number is the result for
qmax = 900 MeV and the second one for qmax = 1050 MeV.
The value of the cutoff is by far the main source of error. Nev-

ertheless, for the reasons explained at the end of Sect. 2.2.2,
the results for qmax = 1050 MeV should be considered as
more reliable and the other value of the cutoff can be under-
stood as a measure on the cutoff dependence and, to a lesser
extent, as an estimation of the uncertainty in our calculations.

The column labeled “width without box diagrams” shows
the values of the width of the generated states including in
the loop functions the source of imaginary part from only
Figs. 4 and 5, that is, without the box mechanisms in Fig. 7.
Note that the width for the B̄∗ K̄ channel is very small, on
the electromagnetic scale, as a consequence of the estimated
0.4keV of the B∗ → Bγ decay width. In the last column we
show the final result of the width, that is, including also the
imaginary source from Fig. 7, in addition to Figs. 4 and 5.
The widths are obtained directly from the plots of |T |2. In the
fourth column we also show the value of the couplings of the
different states to the corresponding meson–meson channel,
which is obtained as the residue of the scattering amplitude,
T , at the pole position since, if the pole is close to the real
axis, we can define

T 
 g2
R

s − sR
, (34)

with sR ≡ M2
R the squared energy of the bound state. There-

fore

g2
R = lim

s→sR
(s − sR) T (s), (35)

which is just the residue at the pole. The values of the cou-
plings shown in Table 1 are for the case without including
the imaginary parts, since this effect has a small influence in
the couplings.

We can see in the table that we find typically large values of
the binding energies. For the B̄∗ K̄ ∗ system the values 94, 106
and 145 MeV for J = 0, 1 and 2 respectively, are larger than
their analogous ones for D∗ K̄ ∗ [11], which are 38, 43 and
129 MeV respectively. This increase of the binding energy
with the mass of the heavy meson is a common observation
in other works comparing the charm and bottom sectors [30–
34].

At this point it is opportune to compare the results obtained
with those of Ref. [25]. This latter work does not aim at mak-
ing precise predictions for the B̄(∗) K̄ (∗) states. A global form
factor is used that suppresses the propagators when the parti-
cles are off-shell, the q0 integration of the loops is also done
in a different way invoking the covariant spectator approxi-
mation of Ref. [59] and results are shown for different values
of the � parameter of the form factor. Yet, in the range of
values of � chosen, the values of binding energies presented
in [25] seem to be smaller than ours by one order of magni-
tude. The widths obtained there are also much smaller than
those found in the present work. We share some qualitative
features, however. Indeed, only I = 0 states are found, like
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Table 1 Results for the binding energy, EB , coupling, gR , and the width
without and with the consideration of the box diagrams of Fig. 7. The
first number in the numerical cells represent the value obtained with the

cutoff qmax = 900 MeV and the second one using qmax = 1050 MeV.
The number in brackets besides the name of the channel shows the value
of the threshold of the corresponding channel in MeV

Channel I (J P ) EB (MeV) gR (GeV) Width without box diagrams (MeV) Full width (MeV)

B̄ K̄ (5774.7) 0(0+) 7–22 17–22 – –

B̄∗ K̄ (5820.4) 0(1+) 3–15 14–20 (117-10) eV (117-10) eV

B̄ K̄ ∗(6172.9) 0(1+) 70–117 34–38 6.5–1.9 6.5–1.9

B̄∗ K̄ ∗(6218.6) 0(0+) 54-94 31–35 9.0–3.1 115–160

0(1+) 62–106 33–37 7.6–2.4 13–10

0(2+) 90–145 38–42 4.2–0.9 55–80

in the present approach. The 1+ B∗K states are not bound
in [25] for the range of values of � chosen, while bindings
up to 24 MeV are found for the BK ∗ system in the same
range of �. In Table 1 we see that we get binding for both
systems, but the binding energies of B̄ K̄ ∗ are about one order
of magnitude bigger than for B̄∗ K̄ .

On the other hand, in Ref. [25] the authors also calculate
the binding for the D̄∗K ∗ state, and for 0+ they find bindings
of the order of 1−5 MeV in the range of � values consid-
ered. Yet, the actual 0+ state X0(2866) considered as a D̄∗K ∗
molecule is bound by about 34 MeV. On the other hand,
going from 0+ D̄∗K ∗ system to the B∗K ∗ one, the binding
energies do not change much in [25], while in our case they
are increased by about a factor of three, in agreement with
general arguments found in different works [30–34] regard-
ing the scaling with the mass of the heavy meson. As to the
small widths of [25], obtained by using coupled channels,
the factor (mB∗/mK ∗)2 of Eq. (31) for the A mechanism
of decay, demanded to obtain a coupling of B∗ to Bπ con-
sistent with lattice results [60] and heavy quark symmetry
[56], is partly responsible for the large widths obtained in the
present work and is apparently missing in [25]. This could
partly explain the large differences in the widths. The use of
different cutoffs in the amplitudes has also something to do
about it. One should note that concerning the widths, the use
of coupled channels and our method including the box dia-
grams of Fig. 7 are basically equivalent. For instance, using
B̄∗ K̄ ∗ and B̄ K̄ as coupled channels one automatically gen-
erates the diagrams of Fig. 7a which produces an imaginary
part in the B̄∗ K̄ ∗ → B̄∗ K̄ ∗ amplitude, and consequently
a width in the generated bound state. The coupled channel
method, in addition, includes also rescattering of the B̄ K̄
components but, at the energy of the B̄∗ K̄ ∗ bound state, the
B̄ K̄ channel is more than 400 MeV away from the B̄ K̄ pole
and hence the rescattering of B̄ K̄ has a negligible effect.

The prospective work of [25] has its value showing that
states are only obtained in I = 0 and providing an idea of
where one can observe new states. The present work, relating
the D(∗) K̄ (∗) and B̄(∗) K̄ (∗) systems through arguments of
heavy quark symmetry [28,29] and using the experimental

values for the mass and width of the X0(2900) should provide
accurate results which should encourage the experimental
search for the different states observed.

4 Conclusions

We have studied the interaction B̄ K̄ , B̄∗ K̄ , B̄ K̄ ∗ and B̄∗ K̄ ∗
in s-wave and isospin 0 using the techniques of the chiral
unitary approach to resum the multiple final state interaction
implied in the unitarization procedure through the Bethe–
Salpeter equation. The basic potentials are based on the dom-
inant vector exchange interaction (plus contact terms in the
B̄∗ K̄ ∗ case), obtained from suitable Lagrangians from the
local hidden gauge symmetry formalism to deal with vector
mesons, extended to the bottom sector in a way successfully
tested in many previous works. The main source of uncer-
tainty in the present work is the value of the regulator of the
logarithmically divergent meson–meson loop function enter-
ing the unitarization formalism, accounted for by means of a
three-momentum cutoff, which is obtained from reproducing
the experimental pole position of the X0(2900) state in the
D̄∗K ∗ interaction. We find poles for all the B̄(∗) K̄ (∗) chan-
nels and for all the range of reasonable values of the cut-
off considered. We also evaluate the widths of the generated
states through the inclusion of the main sources of imaginary
part, that is, the width of the K̄ ∗ (or the electromagnetic B̄∗
decay in the B̄∗ K̄ case since this is the only possible source)
and the box diagrams containing B̄ K̄ and B̄∗ K̄ intermediate
mechanisms for the B̄∗ K̄ ∗ systems.

Despite the uncertainty obtained, it is a grounded and
sound conclusion of the present study that these exotic states
must exist and thus it should spur experimental efforts to try
to find them.
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