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We present novel results for the three-gluon vertex, obtained from an extensive quenched lattice 
simulation in the Landau gauge. The simulation evaluates the transversely projected vertex, spanned on 
a special tensorial basis, whose form factors are naturally parametrized in terms of individually Bose-
symmetric variables. Quite interestingly, when evaluated in these kinematics, the corresponding form 
factors depend almost exclusively on a single kinematic variable, formed by the sum of the squares of 
the three incoming four-momenta, q, r, and p. Thus, all configurations lying on a given plane in the 
coordinate system (q2, r2, p2) share, to a high degree of accuracy, the same form factors, a property that 
we denominate planar degeneracy. We have confirmed the validity of this property through an exhaustive 
study of the set of configurations satisfying the condition q2 = r2, within the range [0, 5 GeV]. This 
drastic simplification allows for a remarkably compact description of the main bulk of the data, which is 
particularly suitable for future numerical applications. A semi-perturbative analysis reproduces the lattice 
findings rather accurately, once the inclusion of a gluon mass has cured all spurious divergences.

© 2023 Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The three-gluon vertex plays a central role in the intricate in-
frared dynamics of Quantum Chromodynamics (QCD) [1–3], and 
the detailed exploration of its salient nonperturbative features has 
attracted particular attention in recent years [4–29]. This ongoing 
search, based on the profitable synergy between lattice simula-
tions and continuum methods, has afforded a firmer grip on deli-
cate underlying patterns, establishing prominent connections with 
the emergence of a mass scale in the gauge sector of the theory 
[30–44]. In addition to its theoretical importance, the three-gluon 
vertex is a central component in a variety of phenomenological 
studies in the continuum. In particular, the outstanding feature of 
infrared suppression [5–27] displayed by its main form factors is 
instrumental for the formation of bound states with the right phys-
ical properties [44–52].

If we denote by q, r, and p, the three four-momenta entering 
into the three-gluon vertex, with q + r + p = 0, the correspond-
ing form factors are functions of q2, r2, and p2, or, equivalently, 
q2, r2, and the angle θqr formed between q and r. However, the 
analysis of lattice simulations in general kinematics is particularly 
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costly. Consequently, to date, SU(3) lattice studies have been re-
stricted mainly to special kinematics involving a single momentum 
scale, such as the “symmetric” (q2 = r2 = p2) and the “soft-gluon” 
(q2 = r2, θqr = π ) configurations [16–23]. In more general kine-
matics only very preliminary results are available [24], or they are 
specialized to the SU(2) gauge group [5,6].

Even though plenty has already been learned from the afore-
mentioned special configurations [16–27], it would be clearly ad-
vantageous to acquire lattice data for the pertinent form factors 
in more general kinematics. Such novel information would help 
us with the systematic refinement of continuum approaches, and 
could be decisive in validating the dynamical picture of gluon mass 
generation through the operation of the Schwinger mechanism in 
QCD [43,53–63].

In the present work we carry out a lattice simulation of the 
transversely projected three-gluon vertex, denoted by �αμν(q, r, p), 
using quenched SU(3) field configurations in the Landau gauge. 
�αμν(q, r, p) is expanded on a special basis comprised by four fully 
transverse and individually Bose-symmetric tensors. Consequently, 
the corresponding form factors must be functions of Bose sym-
metric combinations of the kinematic variables, the most relevant 
being s2 = 1

2 (q2 + r2 + p2), representing a plane in the coordinate 
system (q2, r2, p2).
 BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
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Our analysis is mostly restricted to kinematic configurations 
that satisfy the condition q2 = r2; due to their characteristic ge-
ometrical representation (see Fig. 1), they are dubbed “bisectoral”. 
The results obtained reveal a rather striking pattern: the form 
factors depend almost exclusively on a single variable, namely 
s2

b = q2 + p2/2, which is simply the s2 introduced above evaluated 
at q2 = r2. In fact, an exploratory study away from the bisectoral 
kinematics indicates the persistence of this singular feature: the 
form factors whose s2 variable lies on a given plane may be very 
accurately described by a common set of form factors. In what 
follows we refer to this property as “planar degeneracy”. It is im-
portant to mention that this particular pattern was first identified 
in the continuum analysis of [11].

Prompted by these key observations, a very simple formula [viz.
Eq. (28)] is proposed, which enables a faithful description of the 
entire range of bisectoral kinematics. The single dynamical compo-
nent of this formula is the soft-gluon form factor, whose behavior
in a wide range of momenta is very well understood [19–21]. Such 
a compact description affords considerable simplifications to a va-
riety of situations where the three-gluon vertex must be included 
in the dynamical analysis.

Finally, in order to acquire an analytic grasp on the observed 
patterns, we compute the dominant form factor from the corre-
sponding one-loop Feynman diagrams. It turns out that the results 
are plagued by collinear divergences, which completely distort any 
signal of planar degeneracy. However, once the gluon propagator 
employed has been supplemented with an effective mass, in con-
formity with its well established infrared saturation [30–36,64–76], 
one clearly observes the restoration of this property at a high de-
gree of accuracy.

2. Kinematic configurations

The starting point of our investigation is the quantity

Gαμν(q, r, p) = 1

24
f abc〈 Ãa

α(q) Ãb
μ(r) Ãc

ν(p)〉 , (1)

where 〈 Ãa
α(q) Ãb

μ(r) Ãc
ν(p)〉 denotes the three-point correlation 

function in Fourier space, composed by SU(3) gauge fields, Ãa
α , 

evaluated at the four-momenta q, r and p (see Fig. 1). Note 
that the above definition projects out the color structure of the 
three-point function proportional to f abc (with f abc f abc = 24), 
annihilating completely any contribution proportional to the fully 
symmetric dabc .

In general, an arbitrary kinematic configuration is described in 
terms of the three squared momenta, q2, r2, and p2. Equivalently, 
one may choose any two of the squared momenta and the an-
gle spanned between them, e.g., q2, r2, and θqr , with cos θqr =
(p2 − q2 − r2)/2

√
q2r2; completely analogous expressions hold for 

θrp and θpq .
A more symmetric description of the three-gluon kinematics 

arises from the properties of the irreducible representations of the 
permutation group [11]. Its simple geometric derivation is obtained 
by noting that, any configuration described by the Cartesian coor-
dinates (q2, r2, p2) may be rotated into (q̂2, ̂r2, p̂2), with

q̂2 =
(

r2 − q2
)

/
√

2 , (2a)

r̂2 =
(

2p2 − q2 − r2
)

/
√

6 , (2b)

p̂2 =
(

q2 + r2 + p2
)

/
√

3 . (2c)

The coordinate p̂2 = 2s2/
√

3 expresses the distance along the oc-
tant diagonal, while q̂2 and r̂2 locate the position on its perpen-
dicular plane, as shown in Fig. 1. This plane defines an equilateral 
2

Fig. 1. The kinematic configuration of the three-gluon vertex in Eq. (1), (left dia-
gram) represented by the Cartesian coordinates (q2, r2, p2), rotated to (q̂2, ̂r2, ̂p2), 
according to Eqs. (2) (right picture). Properly rescaled, such that planar coordi-
nates are a=r̂2/[√6p̂2] and b=q̂2/[√6p̂2], they define an unitary equilateral tri-
angle, whose incircle contains the class of configurations having the same angles. 
The bisectoral line (thick gray), and the particular soft-gluon (orange solid circle), 
symmetric (green) and p2=2q2=2r2 (violet) cases appear depicted. The other two 
soft-gluon limits (black) are also illustrated.

triangle of side 
√

6p̂2 within the positive octant. Then, momen-
tum conservation restricts the possible kinematic configurations; 
specifically, the variables q̂2, r̂2 and p̂2 must satisfy

q̂4 + r̂4 ≤ 1

2
p̂4 . (3)

Note that for fixed p̂2 (equivalently, fixed s2) Eq. (3) defines the in-
circle of the triangle in Fig. 1. Hence, all possible kinematic config-
urations are represented by the points contained within the cone 
defined by Eq. (3) around the p̂2-axis.

Let us next consider the class of kinematic configurations that 
share the same values for their angles (i.e. with common θqp =
c1 and θrp = c2). It turns out that every such class has a unique 
representative within the incircle of a unitary equilateral triangle, 
as in Fig. 1. Conversely, every point in the incircle of this triangle 
is the unique representative of such a class.

In particular, the bisectoral kinematics form a special ensemble 
of such configurations, defined by θqp = θrp = c1, ∀c1 ∈ [0, π ]; as 
the name suggests, all representative points lie on the bisectoral 
line drawn in Fig. 1 (thick gray line). Some special cases of bisec-
toral kinematics that will be discussed below are also illustrated: 
the soft-gluon, c1 = π/2 (orange points); the symmetric, c1 = 2π/3
(green point); and the case p2=2q2=2r2, c1 = 3π/4 (violet point).

3. Transverse basis with Bose-symmetric form factors

The connection between the Gαμν(q, r, p) defined in Eq. (1) and 
the usual one-particle irreducible (1PI) three-gluon vertex function 
becomes manifest by setting

Gαμν(q, r, p) = g�αμν(q, r, p)�(q2)�(r2)�(p2) , (4)

with

�αμν(q, r, p) = I�α′μ′ν ′
(q, r, p)Pα′α(q)Pμ′μ(r)Pν ′ν(p) , (5a)

�(p2) = 1

24
δab Pμν(p)〈 Ãa

μ(p) Ãb
μ(−p)〉 ; (5b)

where � denotes the transversely projected vertex [11,19,27] while 
I � is the 1PI vertex shown schematically in Fig. 1. In addition, g
is the gauge coupling, �(q2) the scalar component of the gluon 
propagator, obtained from the corresponding two-point correlation 
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function; and Pμν(p) = gμν − pμpν/p2 stands for the standard 
transverse projector. Evidently, qαGαμν = rμGαμν = pνGαμν = 0.

Note that the vertex I �αμν consists of a pole-free component, 
to be denoted by �αμν , and a term V αμν comprised by longitudi-
nally coupled massless poles of the type qα/q2, rμ/r2, and pν/p2

[77–79]. V αμν triggers the Schwinger mechanism [53,54,80,81]
but drops out from the r.h.s. of Eq. (5a), where only �αμν con-
tributes.

Next, recall that �αμν(q, r, p) is usually written in the standard 
Ball-Chiu (BC) basis [2,3], according to

�αμν(q, r, p) =
10∑

i=1

Xi(q
2, r2, p2) 	

αμν
i (q, r, p)

+
4∑

i=1

Yi(q
2, r2, p2) tαμν

i (q, r, p) , (6)

where the explicit expressions of the four transverse tensors ti
and the ten non-transverse tensors 	i are given, for instance, in 
Eqs. (3.4) and (3.6) of [26].

Bose symmetry entails that, after factoring the fully antisym-
metric color tensor f abc out of the correlation function, both 
�αμν(q, r, p) and �

αμν
(q, r, p) reverse their sign under the ex-

change of Lorentz indices and momenta between any two of the 
incoming gluons, e.g. {α,q} ↔ {μ, r}. Since �

αμν
(q, r, p) is com-

pletely transverse, it could be expanded directly in the basis of 
tensors ti , which, however, do not individually reverse sign un-
der such an exchange. Alternatively, one may construct a basis of 
transverse tensors λ̃i according to

λ̃
αμν
1 = Pα

α′(q)Pμ
μ′(r)Pν

ν ′(p)
[
	
α′μ′ν ′
1 + 	

α′μ′ν ′
4 + 	

α′μ′ν ′
7

]
, (7a)

λ̃
αμν
2 = 3

2s2
(q − r)ν

′
(r − p)α

′
(p − q)μ

′
Pα

α′(q)Pμ
μ′(r)Pν

ν ′(p) , (7b)

λ̃
αμν
3 = 3

2s2
Pα

α′(q)Pμ
μ′(r)Pν

ν ′(p)
[
	
α′μ′ν ′
3 + 	

α′μ′ν ′
6 + 	

α′μ′ν ′
9

]
,

(7c)

λ̃
αμν
4 =

(
3

2s2

)2 [
tαμν

1 + tαμν
2 + tαμν

3

]
, (7d)

transforming as λ̃i → −λ̃i under a Bose transformation. Employing 
this latter basis, we have

�
αμν

(q, r, p) =
4∑

i=1

�̃i(q
2, r2, p2) λ̃

αμν
i (q, r, p) , (8)

with the form factors satisfying the special relations

�̃i(q
2, r2, p2) = �̃i(r

2,q2, p2) = �̃i(q
2, p2, r2). (9)

Thus, in the basis { ̃λi }, Bose symmetry enforces the invariance of 
the form factors under any exchange of momenta; consequently, 
the form factors must be functions of three Bose-symmetric com-
binations of q2, r2, and p2, such as the s2 introduced earlier. This 
particular property, not shared by the corresponding form factors1

of the basis { ti } makes the basis in Eqs. (7) especially suitable for 
our analysis, as will be seen below. Note furthermore that λ̃1 cor-
responds to the tree-level case of the transversely projected vertex, 
a particularly helpful feature when implementing the renormaliza-
tion prescription.

1 Denoted by Y i , the form factors of �
αμν

(q, r, p) in the ti basis obey the 
constraints [26]: Y 1(q, r, p) = Y 1(r, q, p), Y 2(q, r, p) = Y 2(q, p, r), Y 3(q, r, p) =
Y 3(p, r, q), Y 2(q, r, p) = Y 1(r, p, q), and Y 3(q, r, p) = Y 1(p, q, r).
3

The form factors �̃i may be then projected out from �αμν
,

�̃i(q
2, r2, p2) = Pαμν

i (q, r, p)�αμν(q, r, p) , (10)

with the projectors

Pαμν
i (q, r, p) =

4∑
j=1

M̃−1
i j (q2, r2, p2)λ̃

αμν
j (q, r, p) , (11)

defined in terms of the inverse of the 4 ×4 matrix, whose elements 
result from the contraction of the basis tensors,

M̃i j(q
2, r2, p2) = λ̃

αμν
i (q, r, p) λ̃ j αμν(q, r, p) . (12)

In summary, the transition from the typical two- and three-point 
lattice correlation functions to the scalar form factors proceeds by 
first deriving the transversely projected three-gluon vertex with 
the aid of Eqs. (1), (4), (5), and then employing Eqs. (10)-(12) to 
extract from it the corresponding form factors.

4. Special kinematics

We next focus on the bisectoral configurations, q2 = r2 for any 
p2. In that case, the subspace spanned by �αμν

reduces its dimen-
sion down to 3; the determinant of the matrix (12) is therefore 
vanishing, making the matrix M̃i j non-invertible. Indeed, a full ten-
sor basis is obtained by

λ
αμν
i (q, r, p) = lim

r2→q2
λ̃
αμν
i (q, r, p) (13)

for i=1,2,3, while, after introducing the dimensionless parameter 
z := p2/s2

b , we have

lim
r2→q2

λ
αμν
4 =

3∑
i=1

f i(z)λ
αμν
i (q, r, p) , (14)

with

f1(z) = 9

16
z (1 − z) , f2(z) = 9

32
z − 3

8
, f3(z) = 3

8
z . (15)

Then, we can replace the 4 × 4 matrix (12) by its 3 × 3 block in 
the limit r2 → q2,

M̃i j(q
2, r2, p2) ⇒ Mij(q

2, p2) = M̃i j(q
2,q2, p2) (16)

for i = 1, 2, 3; and, after inverting the reshaped matrix, apply the 
result to Eqs. (10), (11) to eventually deliver the three scalar form 
factors for the bisectoral case. According to Eq. (14), they can be 
related to the ones in the most general kinematics as

�i(q
2,q2, p2) = �̃i(q

2,q2, p2) + f i(z) �̃4(q
2,q2, p2) , (17)

with i = 1, 2, 3.
We next consider two kinematic configurations depending on 

a single variable, namely the so-called symmetric and soft-gluon 
limits; they are obtained from the bisectoral configurations by im-
posing the conditions p2 = q2 and p2 = 0, respectively (green and 
orange points in Fig. 1). Note that in both cases the determinant 
of the Mij(q2, p2) defined in Eq. (16) vanishes; the corresponding 
ranks are 2 and 1, respectively.

In the symmetric limit, θqr =θrp=θpq=2π/3, the inversion of the 
2 × 2 block of the matrix (12) determines the two basis tensors, 
whose form factors are given by

�
sym
1 (q2) = lim

p2→q2

[
�1(q

2,q2, p2) + 1

2
�3(q

2,q2, p2)

]
, (18a)

�
sym
2 (q2) = lim

p2→q2

[
�2(q

2,q2, p2) − 3

4
�3(q

2,q2, p2)

]
. (18b)
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In the soft-gluon case, θqr → π ; however this limit can be ap-
proached in different ways, according to θrp → θl and θpq → π −
θl; specifically, the bisectoral definition corresponds to θl = π/2. 
Notwithstanding this, a careful analysis reveals that no ambiguity 
exists [20,21], and that a single form factor emerges, given by

�
sg

(q2) = lim
p2→0

[
�1(q

2,q2, p2) + 3

2
�3(q

2,q2, p2)

]
. (19)

Note that the form factors �sym
1,2 and �sg

have been introduced and 
evaluated in [20,21].

Finally, we need to implement multiplicative renormalization 
by introducing the standard renormalization constants,

�R(q2) = Z−1
A �(q2), GR(q, r, p) = Z−3/2

A G(q, r, p),

gR = Z 3/2
A Z−1

3 g, �i R(q2,q2, p2) = Z3�i(q
2,q2, p2) ,

(20)

relating bare and renormalized quantities. We specialize here for 
the bisectoral kinematics although the results can be extended to 
general kinematics. The momentum subtraction (MOM) scheme 
[82] is then applied by imposing that renormalized correlation 
functions must acquire their tree-level expressions at the subtrac-
tion point μ2 (all the renormalized quantities should be under-
stood as depending implicitly on μ2). In the case of the gluon 
propagator the unique choice is simply �−1

R (μ2) = μ2. Instead, for 
the three-gluon vertex the renormalization condition must be im-
plemented for a specific kinematic configuration; our particular 
choice is that of the soft-gluon kinematics, implying

Zμsg
3 �1(μ

2,μ2,0) = �1 R(μ2,μ2,0) = 1 . (21)

Thus, projecting out the tree-level component of the three-gluon 
correlation function, one is left with

Pαμν
1 GR αμν(q, r, p)

∣∣
μsg = gsg

R �2
R(μ2)�R(0) , (22)

with μsg := {q2 = r2 = μ2, p2 = 0}. Then, the strong coupling 
in the soft-gluon scheme, gsg

R = Z 3/2
A (Zμsg

3 )−1 g , remains defined 
through Eq. (22); while Zμsg

3 is obtained from Eq. (21) and im-
plies

�i R(q2,q2, p2) = �i(q2,q2, p2)

�1(μ2,μ2,0)
, (23)

for i = 1, 2, 3, owing to multiplicative renormalizability.
Note that, had we chosen a different kinematic configuration to 

fix the renormalization condition for the three-gluon vertex as, for 
instance μsym := {q2 = r2 = p2 = μ2}, we would have been left 
with

Zμsym
3 �1(μ

2,μ2,μ2) = 1 ; (24)

and thereby

gsym
R = Z 3/2

A

Zμsym
3

g = Zμsg
3

Zμsym
3

gsg
R = �1(μ

2,μ2,μ2)

�1(μ2,μ2,0)
gsg

R , (25)

which relates the coupling in two different schemes.

5. Vertex form factors from lattice QCD

In order to obtain lattice results for the three-gluon vertex in 
extended kinematics, we compute the three- and two-points func-
tions of Eqs. (1) and (5b) by sampling Monte-Carlo ensembles 
of quenched lattice gauge-field configurations produced with the 
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Table 1
Gauge-field configurations (number 
in the fourth row) produced with 
the Wilson action, a bare coupling 
defined by β (first row) in L4 lat-
tices (second row). The scale setting 
is made, as described in Ref. [87], 
by way of a relative calibration 
based on the scaling of gluon prop-
agators supplemented by the intro-
duction of physical units at β=5.8 
reported in [88] (lattice spacings in 
the third row).

β L4/a4 a (fm) confs

5.6 324 0.236 2000
5.8 324 0.144 2000
6.0 324 0.096 2000
6.2 324 0.070 2000

n action (see Table 1 for set-up details). The hypercubic arti-
 associated with the breaking of the rotational symmetry O(4) 
 to H(4) are cured by applying the so-called H4-extrapolation 
6] when the number of available H4 orbits and data permits 
therwise, we average over all H4 orbits sharing the same mo-
um in the continuum limit. Next, we derive the transversely 
cted 1PI vertex, Eqs. (4) and (5a), and project out the form 
rs �̃i following Eqs. (10)-(12). Finally, we apply the renor-
ation prescription given in Eq. (23), choosing μ=4.3 GeV as 
ubtraction point; in what follows, the suffix “R” will be sup-
ed from all renormalized quantities. All computed errors are 

ly statistical, obtained through the application of the “Jack-
 method”.
iven our choice of tensor basis, the scalar form factors can 
depend on three Bose-symmetric combinations of momenta. 

most obvious is s2 = 1
2

(
q2 + r2 + p2

)
, obtained directly from 

otated coordinate in Eq. (2c); two more can be built, for in-
e, through the symmetrization of Eqs. (2a) and (2b). Although 
ree variables are in principle required for a full kinematic de-
tion of the vertex form factors, our lattice results indicate that 
s2 is relevant, while the dependence on the two others is 
ely suppressed. Note that this particular results are consistent 
 the findings of the study presented in [11].
ccording to the above observation, all kinematic configurations 
 on a plane p̂2=cte. share the same form factors. This is rather 
ng, because, a priori, Bose symmetry alone can only enforce 
quality between the form factors of the few kinematic config-
ons that are connected by simple permutations of momenta. 

egree of validity of this exceptional property is illustrated in 
2-4 for the form factors of the bisectoral kinematics.
 particular, Fig. 2 displays �1 in the three kinematic con-

ations highlighted in Fig. 1: the agreement at equal s2 is 
asted to the considerable disparity seen at equal q2. Even 

gh fairly apparent to the naked eye, the coincidence of val-
chieved when using s2 instead of q2 is even more impressive 
 expressed in numbers. Specifically, given two sets of data 
i, δi(y)} and {xi, zi, δi(z)}, sharing N common values of x, one 
define χ2/datum = N−1 ∑N

i=1(yi − zi)
2/(δ2

i (y) + δ2
i (z))2. This 

ition allows us to measure the “dispersion” of the symmet-
d p2=2q2 configurations from the soft-gluon data, which act 
r reference set. Initially, this computation yields two pairs of 

bers; then, the elements of each pair are weighted according 
e number of points contained in each set, and finally aver-
. The final result is χ2/datum=66.4 for the data in the lower 

is method is known to effectively remove the hypercubic artifacts in the case 
h the propagator and soft-gluon kinematics [21,87]; therefore, it has been 
pplied on them in the present work.
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Fig. 2. [Upper plot.-] The scalar form factor �1 R as a function depending only on 
the symmetric combination of momenta s for the three classes of configurations 
displayed in Fig. 1: p2 = 0, r2 = q2 (orange solid circles); p2 = r2 = q2 (green); 
p2 = 2r2 = 2q2 (violet). The renormalization point is μ=4.3 GeV. [Bottom.-] Data 
are displayed also in terms of q2, for the sake of comparison.

Fig. 3. Lattice data obtained from the gauge-field configurations of Table 1 for the 
scalar form factor �1 R (q2, r2, p2), plotted in terms of s. Data for all the kinematic 
configurations obeying q2 = r2 (lying on the grey line in Fig. 1) have been dis-
played, except the noisiest ones for kinematic configurations very close to symmet-
ric and soft-gluon cases (the projection matrix takes eigenvalues which approach 
zero). Both cases have been individually treated after reducing the tensor basis, as 
explained, and the results displayed with black and red solid circles. The renormal-
ization point is μ=4.3 GeV.

Fig. 4. The same as in Fig. 3 for �2(q2, r2, p2) (upper) and �3(q2, r2, p2) (lower). 
In the former case the black solid squares stand for the form factor derived in the 
symmetric limit.

panel of Fig. 2, and χ2/datum =3.9 for those in the upper. Thus, 
with the aid of this procedure, we conclude that plotting the data 
as a function of s2 increases the “overlap” between the curves by 
a factor of 17.

Quite remarkably, this pattern persists for all bisectoral configu-
rations shown in Fig. 3, where approximately 4000 data points are 
included. Furthermore, the form factor �2, depicted in the upper 
panel of Fig. 4, although amounting to about one tenth of �1, also 
depends solely on s2. Finally, the �3 shown in the lower panel is 
compatible with zero within the errors.

In addition, even though a systematic exploration is pending, 
a random scanning of the allowed kinematic region beyond q2=r2

confirms the above results for �̃i , with i=1,2,3, while �̃4 remains 
negligible. The latter indicates that, according to Eqs. (17), �̃i ≈ �i . 
All the above findings justify the following approximate relations

�̃1(q
2, r2, p2) ≈ �1(s2, s2,0) ≈ �

sg
(s2) , (26a)

�2(q
2, r2, p2) ≈ �̃2

(
2s2

3
,

2s2

3
,

2s2

3

)
≈ �

sym
2

(
2s2

3

)
; (26b)

where �sg
and �sym

2 denote the soft-gluon and symmetric form 
factors given in Eqs. (19) and (18b), respectively. Armed with these 
results, we can derive the key relation

�
αμν

(q, r, p)=�
sg

(
s2

)
λ̃
αμν
1 (q, r, p)+�

sym
2

(
2s2

3

)
λ̃
αμν
2 (q, r, p),

(27)

which serves as an excellent approximation for the transversely 
projected three-gluon vertex.

The form factors �sg
and �sym

2 have been studied in detail in 
a series of recent articles [19–21]. In fact, due to the established 
dominance of �sg

over �sym
2 , Eq. (27) may be further simplified to

�
αμν

(q, r, p) ≈ �
sg

(
s2

)
λ̃
αμν
1 (q, r, p) , (28)

providing an exceptionally compact approximation for �αμν
(q, r, p)

in general kinematics.
Given that �sg

is the sole dynamical ingredient in Eq. (28), we 
depict it in Fig. 5; there one may appreciate the characteristic loga-
rithmic divergence at the origin, induced by the ghost loops (upper 
panel), and the mild dependence on the angle θ (lower panel).
5
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Fig. 5. The form factor �sg
(s2), displayed in terms of q2 and r2, with p2 fixed by 

cos θqr = π/2 (upper panel); and in terms of q2 and θqr for q2 =r2 and any allowed 
p2 (lower panel).

6. One-loop analysis with a gluon mass

In order to gain some basic insights on the origin of the planar 
degeneracy of �1(q2, r2, p2), we compute this particular form fac-
tor at the one-loop level, through the diagrams shown in Fig. 6. 
In the bisectoral configurations, where p2 = 2q2(1 + cos θ) and 
s2 = q2(2 + cos θ), with θ := θrq , the result can be expressed in 
the form

�1(q
2,q2, p2)

= 1 + 3αs

[
17

48π
ln

(
s2

μ2

)
+ w1 ln (1 + cos θ) + w2

]
, (29)

where the wi are finite functions of θ (see Fig. 6 and supplemen-
tary material). It turns out that the wi are nonvanishing at θ = π
(p2 = 0); consequently, �1 diverges logarithmically at the s2 = 0
and θ = π limits.3 Note, however, that the nonperturbative fate 
of these two divergences is entirely different: while the former is 
intimately related with the masslessness of the ghost, a feature 
that persist nonperturbatively [30,31,89–91], the latter disappears 
when the bona-fide nonperturbative behavior of the gluon propa-
gator [30–33,43], characterized by the emergence of a gluon mass, 
is taken minimally into account.

To study this last point in some detail, let us first point out that 
the divergence at θ = π implies a pronounced deviation from the 
planar degeneracy observed on the lattice; indeed, as θ approaches 
π , �1(q2, q2, p2) cannot possibly depend on s2 alone.

To quantify the deviation from the planar degeneracy within 
different computational frameworks, we introduce the function

d(s2, θ) =
[
�1(q

2,q2, p2) − �sg(s2)
]
/�sg(s2) , (30)

3 Due to the divergence of the perturbative �1 at p2 = 0, we apply the renormal-
ization condition Eq. (21) to �sg = �1 + 3/2�3, which is found to be finite, instead 
of �1. Applied nonperturbatively to the lattice form factors, both prescriptions are 
equivalent as long as �3 is found to be compatible with zero.
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which, in the case of exact planar degeneracy, vanishes for every 
value of θ . In what follows we evaluate d(s2, θ) in three different 
ways: (i) calculating the one-loop diagrams of Fig. 6; (ii) calculating 
the same diagrams as in (i), but using massive gluon propagators, 
i.e. �(q2) → (q2 + m2)−1, with m = 350 MeV, a value motivated by 
general theoretical results (e.g., see Ref. [43]); and (iii) using the 
lattice data displayed in Fig. 3. When including a massive propa-
gator, Eq. (29) acquires a more complicated structure expressing a 
more intricate dependence on s2 and θ . The results of these three 
cases are summarized in Fig. 7, where they are depicted as func-
tions of the angle θ . Specifically:

(i) The d(s2, θ) corresponding to the one-loop calculation, for 
the representative value of s = 1 GeV, is displayed as a black 
continuous curve; evidently, d(s2, θ) is small for θ � 3π/4, but di-
verges as θ → π .

(ii) The d(s2, θ) obtained using massive gluons are shown as vi-
olet dashed, blue dotted, and red solid curves, for s = 0.25 GeV, 
s = 1 GeV and s = 4 GeV, respectively. Clearly, the inclusion of a 
gluon mass not only makes d(s2, θ) finite at θ = π , but also re-
duces its overall (absolute) size relative to its massless counterpart 
of case (i). We note that the point-by-point deviation from the pla-
nar degeneracy grows as s increases. However, within the range of 
s that we have considered, the deviation remains below 5%, except 
in the vicinity of θ = π , where it peaks at 16% for s = 4 GeV.

(iii) The d(s2, θ) extracted from the lattice data, as in Figs. 3, 4, 
is displayed with a given color identifying data from the same β
(see Table 1), each covering a different domain of momenta: data 
for β=5.6 (violet) represent momenta below 1.5 GeV, β=5.8 (green) 
below 2.5 GeV, β=6.0 (blue) below 3.7 GeV, and β=6.2 (orange) 
below 5 GeV. Since for θ=2π/3 (symmetric) or θ=π (soft-gluon) 
the matrix Mij(q2, p2) defined in Eq. (16) takes zero eigenvalues, 
the data points near these angles are plagued by large statistical 
noise, and have thus been excluded. Note that the deviation from 
planar degeneracy is compatible with zero within the errors, ex-
cept if θ=π is approached, where data from ensembles reaching 
larger momenta are seen to deviate more, following the same ten-
dency displayed in case (ii), and remaining compatible with the 
calculations with massive gluons. In fact, lattice data approaching 
θ=π clearly differ from the result with massless gluons, the bulk of 
data in this region lying significantly above the curve. We empha-
size that the bisectoral kinematic domain has been sampled with, 
approximately, 4000 data, 700 of which are located within the in-
terval θ ∈ (5π/6, π), thus furnishing ample statistical validation to 
the above statements.

This analysis suggests that the approximate planar degeneracy 
of �1 may hinge on the emergence of a mass scale in the gauge 
sector of QCD, as described in the works cited earlier.

7. Conclusions

In the present lattice study we have explored the transversely 
projected three-gluon vertex for general kinematics, with particu-
lar emphasis on the bisectoral configurations, defined by the condi-
tion q2 = r2. When expressed in a Bose-symmetric basis, the vertex 
form factors depend predominantly on the special variable s2; the 
simple geometric interpretation of this property leads to the no-
tion of “planar degeneracy”.

In addition, if the tensor basis is chosen such that the tree-level 
tensor is one of its elements, the corresponding form factor clearly 
dominates over the others. This allows for a simplified represen-
tation of the vertex in terms of the tree-level tensor and a single 
form factor, whose extended kinematic behavior can be reduced to 
that of the soft-gluon case, as captured by Eqs. (27) and (28).

A systematic lattice study exploring the entire kinematic do-
main is currently underway; the preliminary analysis indicates that 
the planar degeneracy persists, at a high level of accuracy, beyond 
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Fig. 6. [Upper panel] Feynman diagrams contributing to the three-gluon vertex at one-loop; crossed diagrams are not shown. [Lower panel] The functions w1(θ) and w2(θ)

for the resulting form factor given by Eq. (29).
Fig. 7. The function d(s2, θ), defined in Eq. (30), for fixed values of s2 from one-loop 
calculations and for the available momentum range from the lattice data of Fig. 3. 
The black solid curve shows the standard perturbative result for s2 = 1 GeV. The 
results with a massive gluon are shown as violet dashed, blue dotted and red solid 
curves, for s = 0.25 GeV, s = 1 GeV and s = 4 GeV, respectively. The evaluations 
were done using αs = 0.27, μ = 4.3 GeV and m = 350 MeV for the gluon mass. 
The lattice data near θ=2π/3 and θ=π are excluded because there the matrix of 
Eq. (16) takes zero eigenvalues.

the bisectoral configurations. The conclusive confirmation of these 
findings would induce vast simplifications to a number of physical 
applications that depend on the detailed knowledge of the three-
gluon vertex. In such cases, the use of formulas Eqs. (27) and (28)
could reduce substantially the numerical effort required.

Let us finally emphasize that, at present, the near “planar de-
generacy” is an empirical observation corroborated by a large num-
ber of lattice data and a one-loop calculation minimally supple-
mented by a gluon mass. However, no deeper understanding of its 
origin is available to us. It would be clearly important to unravel 
the mechanism underlying this particular property and establish 
possible connections with other fundamental aspects of QCD.
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