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Improved gating of a chimeric a7-5HT3A receptor upon mutations
at the M2–M3 extracellular loop
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Abstract Acetylcholine-evoked currents of the receptor chi-
mera a7-5HT3A V201 expressed in Xenopus oocytes are strik-
ingly small when compared to the amount of a-bungarotoxin
binding sites detected at the oocyte membrane. Since the chime-
ric receptor is made of the extracellular N-terminal region of the
rat a7 nicotinic acetylcholine receptor and the C-terminal region
of the mouse 5-HT3A receptor, which includes the ion channel,
we hypothesized that communication between these two regions
was not optimal. Here, we show that mutating to aspartate sev-
eral adjacent positions in the M2–M3 extracellular linker in-
creases current amplitudes to different extents, thus confirming
the important role of this region on receptor gating.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Cys-loop receptors are ligand-gated ion channels that medi-

ate fast synaptic transmission in nerve and muscle cells (re-

viewed in [1,2]). Agonist binding to the receptor triggers a

signal that must be transmitted to the channel gate through

conformational changes [3]. The a7-5HT3A receptor (V201

hereafter) is a chimera which has been very useful for studying

the electrophysiological properties of ligand-gated receptors

[4,5]. This chimera is made of two different receptors: (a) the

extracellular N-terminal region of the rat a7 nicotinic acetyl-

choline receptor (nAChR) until Val201, including the acetyl-

choline (ACh) and a-bungarotoxin (a-Bgt) binding sites

and (b) the C-terminal region of the mouse 5-HT3A receptor

(5-HT3AR), which includes the ion channel forming transmem-

brane segments and the large cytoplasmic loop [4]. Accord-

ingly, ACh activates channels whose properties mimic the

ones of 5-HT3ARs. Previous studies have shown that func-

tional coupling requires compatibility at the interface of the

binding and pore domains [6]. Strikingly, when V201 receptors

were expressed in Xenopus oocytes we observed that ACh-

evoked currents were very small when compared to the
Abbreviations: ACh, acetylcholine; nAChR, nicotinic acetylcholine
receptor; a-Bgt, a-bungarotoxin; 5-HT3AR, serotonergic receptor,
subtype 3A

*Corresponding author. Fax: +34 965919561/47.
E-mail address: salvador.sala@umh.es (S. Sala).

0014-5793/$32.00 � 2005 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2005.12.010
amount of a-Bgt binding sites detected at the oocyte mem-

brane. We hypothesized that communication between the

two regions of the different receptors was not optimal, perhaps

because the M2–M3 linker, which is contributed by the 5-

HT3AR, was not able to adequately receive the signal from

the a7 nAChR extracellular region. This incapacity could be

due to the absence of a negatively charged residue at the

M2–M3 linker, since we have shown previously that the nega-

tively charged Asp266 residue in the M2–M3 linker of a7 nAC-

hRs [7] and an equivalent residue in other neuronal nAChRs

[8] are involved in coupling agonist binding and gating. There-

fore, to test this hypothesis we introduced an aspartate residue

at different adjacent positions of the V201 M2–M3 linker and

characterized the resultant channels.
2. Materials and methods

2.1. Generation of mutants of the V201 chimera
The V201 cDNA was gently provided by Dr. K.T. Dineley and

cloned in a derivative of the pSP64T vector [9] containing part of
the pBluescript polylinker. To generate the mutants, we annealed sin-
gle-stranded oligonucleotides with the desired sequences and proper
single strand ends which could be easily ligated to the ends generated
by restriction enzymes present in the original cDNA sequence such as
NaeI (corresponding to amino acids P261 and A262), KpnI (amino
acids G265 and T266) and AccI (amino acids V271 and Y272).
Wild-type rat a7 was also used in some occasions for the sake of com-
parison.

2.2. Oocyte expression
Capped mRNA was synthesized in vitro using SP6 RNA poly-

merase, the mMESSAGE mMACHINE kit (Ambion) and the
pSP64T derivative mentioned above. Defoliculated Xenopus leavis
oocytes were injected with 5 ng of total cRNA in 50 nl of sterile
water. All experiments were performed within 3–4 days after cRNA
injection.

2.3. [125I]a-bungarotoxin binding assays
Specific surface expression of [125I]a-Bgt binding sites was tested

with 10 nM [125I]a-Bgt as described [9]. Briefly, oocytes located in
24-well plates were incubated in Barth�s buffer with 10 nM [125I]a-
Bgt for 2 h at 18 �C in a final volume of 300 ll. At the end of the
incubation, unbound [125I]a-Bgt was removed, oocytes were passed
to 6-well plates, washed five times with 4 ml Barth buffer and bound
radioactivity was counted. Non-specific binding was determined using
non-inoculated oocytes.

2.4. Electrophysiological recordings
Electrophysiological recordings were done as described previously

[10]. Functional expression of each construct was estimated as the peak
ionic current evoked by 1 s application of 1 mM ACh at �80 mV, and
no correction per desensitization was made. All experiments were done
at room temperature (22 �C).
blished by Elsevier B.V. All rights reserved.
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2.5. Data analysis
Dose–response curves were fitted using a nonlinear least squares

algorithm to the Hill equation: I/Imax = 1/[1 + (EC50/C)
nH], where

EC50 is the agonist concentration that elicits the half-maximal re-
sponse, nH is the Hill coefficient and C is the agonist concentration.
The curves were also fitted to the steady-state solution of a four state
linear model: RM RLM RL2 M OL2 where the first two transitions
are assumed to be identical binding steps with a binding constant
B = k1/k�1 and the last one is a gating transition with a gating constant
G = b/a, i.e.

I=Imax ¼ 1=½1þ 1=Gþ 2=ðG � B � CÞ þ 1=ðG � ðB � CÞ2Þ�

Statistical significance of the difference between two means was eval-
uated by computing the P-level of the two-sided t-test with the pro-
gram Prism, GraphPad Software, Inc.
3. Results and discussion

3.1. Involvement of M2–M3 loop in the functional efficiency of

V201 receptors

ACh-evoked currents of rat a7 and V201 receptors ex-

pressed in Xenopus oocytes were similar in peak amplitude

(Fig. 1A). By contrast, the amount of a-Bgt binding sites de-

tected at the oocyte membrane was more than 60-fold larger
Fig. 1. Decreased function in a7-5HT3A V201 receptors and effect of
exchanging residues in the M2–M3 linker. (A) Currents obtained by
applying a pulse of 1 mM ACh at the time indicated by the arrow. The
duration of the pulse was 0.4, 1.5 and 2 s for a7, V201, and V201 with
the change of IGT for SDSV (IGTfi SDSV), respectively. (B)
Normalized values of peak currents (white bars), [125I]a-Bgt binding
(black bars), and the ratio between current and a-Bgt binding for each
receptor (grey bars). All data have been normalized to the mean values
corresponding to V201. (C) Sequence of the M2–M3 linker in rat a7
subunits and V201. Numbering corresponds to a7. The box shows the
residues in the middle of the M2–M3 linker that are different in each
subunit.
when V201 receptors were expressed. Previous studies have

shown that the dissociation constant of a-Bgt for rat a7
receptors was 0.4 nM [11] whereas for chick V201 receptors

was close to 1 nM [12], and so we used 10 nM that would be

enough to label more than 90% of the V201 binding sites.

Surprisingly however, our determination of Kd for the rat

V201 receptor was 8.8 ± 1.8 nM, thus the real number of

binding sites for V201 receptors is probably even greater

by a factor of two. As a consequence, the function of the

V201 receptors as measured by the current to a-Bgt binding
ratio was considered far from being optimal (Table 1 and

Fig. 1B).

Although a direct comparison between a7 and V201 chan-

nels might not be rigorous, as their channel-forming sections

are made of different receptors and their activation and

desensitization kinetics are very different, we considered the

possibility that one of the reasons for the low current levels

observed in V201 receptors could be an inadequate signal

transmission between the extracellular domain of the a7
nAChR and the channel and related domains of the 5H-

T3A receptor.

We [7,8] and others [13–16] have shown that certain residues

at the M2–M3 loop are important for linking receptor binding

and gating and, therefore a comparison of these regions was

made in a7 and V201 receptors (Fig. 1C). Interestingly,

whereas the sequences P261A262T263 and P268L269I270 (number-

ing according to the a7 subunit) were common for both recep-

tors, the sequence in between was totally different, i.e, SDSV in

rat a7 vs. IGT in V201. Moreover, this sequence contains the

aspartate residue D265 previously characterized by us [7]. For

this reason, we substituted the IGT sequence of the V201

receptor by the SDSV sequence corresponding to the a7 sub-

unit. The resultant receptors showed increased current ampli-

tudes (Fig. 1A) and slightly lower surface expression

(Fig. 1B), so that the ratio of current amplitude in lA to a-
Bgt binding sites in fmol/oocyte increased almost twofold in

the IGT fi SDSV mutant compared to V201. There was also

an increase in the activation rate of the mutated chimeric

receptor although it was still much slower than a7 (Fig. 1A

and Table 1).
3.2. Mutations to aspartate improve the function of V201

receptors

We further explored the involvement of these residues in

receptor function by mutating each one in turn to aspartate.

The effect of mutation I264D was to increase the magnitude

of the current without affecting expression levels (Fig. 2A),

thus the current to a-Bgt binding ratio increased compared

to V201. The current increased even further when the mutation

to aspartate was made on the glycine residue, mutant G265D,

again without much change in a-Bgt binding, thus increasing
the current to a-Bgt binding ratio fourfold compared with

the V201 receptor. When the threonine residue was mutated

to aspartate, mutant T266D, expression levels were reduced

by a factor of thirty whereas the current was only reduced

by a factor of two (the Kd for a-Bgt of these mutant receptors

was 1.0 ± 0.6 nM, data not shown), as a consequence, the

function of those mutants was even better than the previous

ones. By contrast, the double mutant G265D/T266D (that

we refer simply as GT fi DD), did not increase the function

further. In fact it had the opposite effect, because the decrease



Table 1
Current amplitude, level of expression, efficiency and activation kinetics of the receptors

Receptor Peak current (lA)
ACh 1 mM

[125I]a-Bgt binding
(fmol/oocyte)

Ratio: Current/a-Bgt
binding lA/(fmol/oocyte)

Rise time
10–90% (ms)

a7 0.77 ± 0.18 0.49 ± 0.05 1.68 ± 0.39 (79, 9)a 49 ± 9 (31)b

V201 1.03 ± 0.22\\ 33.5 ± 2.7\\\ 0.033 ± 0.008 (47, 7)\\ 293 ± 28 (29)\\\

IGTfi SDSV 1.37 ± 0.09\ 24.4 ± 0.4 0.056 ± 0.005 (15, 2) 204 ± 46 (15)\\\

I264D 3.4 ± 0.9\\\ 43 ± 10 0.09 ± 0.03 (28, 4)\ 522 ± 44 (28)\\\

G265D 3.3 ± 0.3\\\ 23.8 ± 1.5 0.14 ± 0.02 (14, 2)\\\ 552 ± 60 (14)\\\

T266D 0.43 ± 0.15\\\ 1.09 ± 0.04\\\ 0.39 ± 0.13 (16, 2)\\\ 410 ± 92 (14)\\\

GTfi DD 0.049 ± 0.002\\\ 2.1 ± 0.9\\\ 0.025 ± 0.01 (15, 2) N.D.

Statistical differences: *P < 0.05, **P < 0.01, ***P < 0.001.
V201 compared with a7, all the others compared with V201.
aNumbers in parentheses in this column indicate (number of oocytes, number of different donors).
bNumber in parentheses in this column indicate (number of oocytes).

Fig. 2. Increase of function by single mutations to aspartate. (A)
Currents obtained by applying a 1.5 s pulse of 1 mM ACh for different
mutant receptors as indicated by the letters below the corresponding
record. (B) Normalized values of peak currents (white bars), [125I]a-Bgt
binding (black bars), and the ratio between current and a-Bgt binding
for each receptor (grey bars). All data have been normalized to the
mean values corresponding to V201.

Fig. 3. Current–voltage curves for V201 and aspartate mutants. (A)
Voltage and current traces obtained in a typical experiment. The upper
record is the membrane potential, held at �80 mV, then stepped to
+40 mV and maintained for 10 ms, and then ramped down from +40
to �100 mV in 100 ms, finally, after 10 ms more it is stepped back to
the holding potential of �80 mV. The lower records are current traces,
the first one is the leak record obtained without applying ACh, and the
second one is obtained when ACh 1 mM is applied at the time
indicated by the arrow. (B) Open current–voltage relationships for
V201 and the mutants G265D and T266D. For each receptor the lines
are averages from four different oocytes and the error bars are the
standard errors.
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in the peak current by a factor of 21 was larger than the reduc-

tion of a-Bgt binding, by a factor of 16. Thus the function of

this double mutant was even worse than that of V201 and we

can conclude that the effect observed in the single mutants is

not additive. Due to the small values of the peak currents,

we could not determine the activation kinetics of the

GT fi DD receptors.

Interestingly, the increase in function of the three single mu-

tants was not accompanied by an increase in the activation

kinetics as the activation time was even larger than that for
V201. Moreover, neither the selectivity nor the voltage depen-

dence of the open mutated receptors were changed, as deter-

mined by the reversal potential and rectification ratio

obtained in experiments with ramp voltages (Fig. 3).

3.3. Mutations to aspartate decrease acetylcholine EC50 and

increase nH

To determine whether the mutations had affected the sensi-

tivity to ACh, we obtained concentration response curves

(Fig. 4). In these experiments, we compared V201 with the

two single mutants that showed the largest improvement in

function, i.e., G265D and T266D. For all three receptors,

1 mM ACh was almost an equivalent concentration because

it was very close to the saturating value. The mutated receptors



Fig. 4. ACh concentration–current curves. Peak currents were nor-
malized to the value of 1 mM ACh. Solid lines are fits to the Hill
equation with the following (Imax, EC50, nH) values: (1.06 ± 0.01,
109 ± 6 lM, 1.4 ± 0.1) for V201 (open circles); (1.03 ± 0.01,
57 ± 2 lM, 1.6 ± 0.1) for G265D (solid circles); and (1.02 ± 0.01,
31 ± 1 lM, 1.8 ± 0.1) for T266D (solid squares). Dotted lines are fits to
the steady-state solution of the four states kinetic model with an
arbitrary scale factor and a fixed value of the binding constant equal
for all receptors. The inset shows the dependence of the resulting EC50

(solid dots) and Hill coefficients (open dots), on the current to a-Bgt
binding ratio, for the three receptors. The scale for the Hill coefficient
is linear, and the other two are logarithmic. The solid line across the
EC50 values is the fit of the data to an inverse square root function. The
line across the nH values is just a spline line.
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had concentration–response curves shifted to the left com-

pared with V201, having the one with the most improved func-

tion (T266D) the smaller EC50 value. In fact, this correlation

of EC50 with function can be well fitted by an inverse square

root function as shown in the inset in Fig. 4. This result is what

predicts the four state model as a consequence of an increase in

receptor efficacy, i.e. an increase in the gating constant (b/a).
We also observed an increase in the Hill coefficient in the

mutations with improved function. This dependence of the Hill

coefficient on the current/a-Bgt binding ratio is also shown in

the inset. Again, the increase in nH is also predicted by the

model, simply as a consequence of an increase in the gating

constant [17].

An additional test confirms that function improvement re-

sults from an increase in receptor gating without changing

the ability to bind the ligand. In Fig. 4, we show that the

dose–response data can be fitted by the steady-state solution

of the simple four state kinetic model described in Section 2

(dotted lines), even with the restriction of keeping the binding

constant fixed and equal for all three receptors.

Single channel conductances as low as 0.76 pS have been re-

ported for 5HT3A receptors [18], whereas values as high as

48 pS have been reported for rat a7 receptors [19], thus sug-

gesting that this could be a major determinant of the low effi-

ciency of the V201 receptors. In fact, replacement of three

arginine residues unique to the large cytoplasmic region of

the 5-HT3A subunit by their 5-HT3B subunit counterparts

strongly increases single-channel conductance [18]. In addition

to this factor, our results suggest that the gating mechanism

may be flawed in V201 receptors, due to the lack of an aspar-

tate residue in the M2–M3 linker that is conserved in a7 sub-

units of nAChRs. This emphasizes the importance of the
connection between the extracellular domains of the a7 sub-

unit, probably loops 2 and 7, see [20], and the M2–M3 linker,

and its independence of the surrounding domains that make

up the 5-HT3A channel. Moreover, improvement of channel

function is observed with the residue located at three different

positions of the mentioned region, suggesting that the coupling

admits a certain degree of flexibility with respect to the loca-

tion of the negative charge. On the other hand, the quantitative

differences observed between the mutants suggest that location

of the aspartate residue at one of them (T266) has the optimal

coupling.
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