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Abstract: A full 3D numerical simulation of the two-phase flow made up of (bio)diesel and particles,
has been carried out to reproduce the deposition pattern of particles in a BOSCH automotive filter.
From a probability density function (PDF), a simple Eulerian-Eulerian two-phase model is proposed
for diesel and particles. The proposed formulation allows for a detailed description of the relationship
between the velocity and size of the particles. A Brinkman-Darcy approximation has been considered
for the flow through the filtering paper and is proved to be sufficient for the typical filter working
conditions. The new tool is able to reproduce the deposition pattern shown by the used filters.

Keywords: filter; two-phase flows; Eulerian probability density function; particle size distribution

1. Introduction

The “trial and error” method is still the usual way to design new filters. This method
is both time- and cost-consuming, as it implies the design and construction of various
experimental test grids and prototypes that render the process difficult or impossible to
systematize [1]. At the most basic level, filtration is the process of separation from a fluid
suspension of undesired (or desired) particles while passing through a porous medium
(the filtering medium). The filter design can vary widely depending on the application, in
terms of both the internal pore structure (microscale design) and how the filtering medium
is deployed (macroscale design). However, not just any simple design can be deemed fit
for this purpose. The challenge for the automotive industry is not only to design filters
with higher efficiency but also, with the ever-increasing limits in space, to design filters
with smaller physical sizes. The most common design used to achieve this tradeoff is the
single-pass pleated filtering media approach (see Figure 1a); such a design is subject to
study in this present paper.

In the automotive industry, computational fluid dynamics (CFD) simulation programs
are already an established tool in the R&D departments, aimed at reducing the development
and time costs of designing different vehicle parts, such as injectors, inlet and outlet
manifold design, exhaust systems, etc. Although these tools have been used for more than
20 years in the automotive world, CFD programs are still not standard tools for fuel filter
development. The first numerical tools have been created only recently, with the lack of
both appropriate models and algorithms being the factors behind this delay [2,3]. In order
to reduce prototyping cycles, it is convenient to have a specific numerical simulation tool
on hand that can model particle filtration during the design stage.

Processes 2023, 11, 1100. https://doi.org/10.3390/pr11041100 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11041100
https://doi.org/10.3390/pr11041100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-2384-5896
https://orcid.org/0000-0001-7472-7542
https://orcid.org/0000-0002-5821-1666
https://orcid.org/0000-0002-9379-1221
https://orcid.org/0000-0002-2311-7506
https://orcid.org/0000-0003-1978-0484
https://doi.org/10.3390/pr11041100
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11041100?type=check_update&version=1


Processes 2023, 11, 1100 2 of 16

(a)

(b)

Figure 1. (a) Bosch filter device with the external holder removed to see the filtering medium. The
flow enters vertically through the upper-side external slots and exits through the upper-side central
duct; (b) 3.3 M cell mesh with pressure drop and velocity pattern.

Modern injection systems are very sensitive to the possible presence of solid particles in
the fuel (diesel or gasoline) since these particles can damage the injectors due to corrosion,
abrasion, or other effects [4]. Therefore, it is necessary to guarantee a certain level of
particle cleanliness to ensure that injection systems work properly throughout the entire
operating lifetime.

Diesel fuels contain a higher amount of water than gasoline (up to 500 ppm). In the
case of biodiesel, this is even worse. Consequently, it is necessary to filtrate an extra amount
of water [5] since water can cause corrosion problems in the injectors. Fuel filters for diesel
engines have to be able to filtrate the particles contained in the fuel and separate the water
droplets, which normally are collected at the bottom of the filter and purged periodically.

In diesel filtering, the considered flow is made up of a liquid for the continuous
phase and a solid for the discrete phase. Other relevant situations in particle filtering
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in the automotive industry involve gas-solid combinations, such as in the exhaust gas
manifold [6].

Filtering media must provide a certain level of efficiency depending on customer
requirements and/or particular industrial standards. In addition, the filter must have a
specific particle retention capacity. This capacity is defined by means of a change interval
or lifetime, which represents the guaranteed amount of kilometers before the filter gets
clogged due to the retained particles and has to be changed.

The use of either a filter with a wrong design or a filter medium that leads to lower
particle efficiency or a shorter lifetime, may have negative consequences, such as injector
damage or filter clogging. Therefore, the engine system must include a fuel filter, especially
for diesel engines, whose fuel contains a higher amount of particles.

From the numerical point of view, the simulation of multi-phase flows is not only
an interesting scientific challenge but, due to the number of industrial applications, such
as chemical reactors, combustion devices, medical inhalers, etc, it is also motivated by
economical and safety considerations. In the study of the single-pass filters for (bio)diesel-
from now on, diesel-vehicles, the difficulty is enhanced due to the presence of the fluid
flow through a porous medium coupled with the interaction between the filtering medium
and the particles. On the other hand, the flow rates in normal operating conditions render
small Reynolds numbers, i.e., laminar flow conditions. In any case, once the models have
been established, a code is needed to adequately discretize such models in the flow domain
and to numerically solve the resulting linear equations.

This paper presents one new CFD approach to solve the flow in a diesel filter device,
with the initial application to numerically reproduce the deposition pattern of particles shown
on a filter under real conditions. The paper is structured in various sections. In Section 1, a
brief description of an automotive diesel filter in a general situation is given. In Section 2,
a model is presented for the two-phase flow composed of diesel and particles, based on a
probability density function (PDF) approach [7] for the diluted phase position and size. In
Section 3, the Brinkman-Darcy approximation for the flow through the filtering paper [8]
is shown to be adequate for normal operating conditions of diesel filters. In Section 4, the
numerical results are depicted, which show a very good qualitative agreement in terms of the
deposition of particles on a used filter. Conclusions are drawn, and future work is suggested.

2. Eulerian-Eulerian Statistical Approach

In this section, the modeling approach of (solid) particles in a diesel flow is explained.
Water filtering has a different behavior and will be the subject of another study.

There are several alternatives for predicting the evolution of two-phase flows, depend-
ing on the approximation used to solve each phase. In Eulerian-Lagrangian approaches, the
continuous phase (diesel, in our case) is solved in the usual Eulerian frame. The dispersed
phase elements (solid particles, in our case) are tracked throughout the simulation, and
their interactions with the continuous phase are taken into account locally. These methods,
such as the Discrete Phase Model [9], are known to be able to reproduce accurately the
behavior of the system, but they can be numerically expensive, as a large number of discrete
elements must be used. Moreover, a mixed Lagrangian-Eulerian code is needed.

In Eulerian-Eulerian approaches, both phases are treated as being continuous after
introducing some kind of averaging procedure (time, space, ensemble, etc.) in the discrete
phase. The exact knowledge of the position of the particles is lost, which is, in principle, a
disadvantage for the modeling of the interaction between both phases, although, depending
on the averaging procedure, the necessary information for local interaction may be kept (as
in the present paper). As the formulation is purely Eulerian, the usual discretization and
numerical algorithms can be used in opposition to Eulerian-Lagrangian formulations.

In the present paper, an Eulerian-Eulerian approach is used. To choose the most
convenient average of the discrete phase, an analysis of the relevant interaction phenomena
in the present problem is pertinent. The void fraction of particles (the fraction of the total
volume occupied by particles) is extremely small. That means that both the particle-particle
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interaction and the influence of the particles on the diesel can be neglected. Therefore, the
flow of diesel can be solved independently. In the present case, the flow is laminar (the
Reynolds number is well below 200 in all cases), so there is no need for any turbulence
modeling, although other difficulties arise, as shown in Section 3.

On the other hand, the effect of the fluid on the particles should be considered, along
with the gravity field. The key parameter is the particle size since the forces acting on
the particles are directly related to their size. At this point, it should be stated that only
spherical particles are to be considered in this study. Of the various forces that can act on
the particles, such as drag, history (Basset), and buoyancy, the drag is considered the most
relevant under the present highly diluted conditions. The effect of gravity/buoyancy may
also be important for the bigger particles, given the density difference between the fluid
and the particles, so it should be taken into account as well. As the density of the particles
used to verify the filter quality is constant, the buoyancy is proportional to the cube of the
radius. In the end, the particle radii and velocities are the only relevant magnitudes needed
to characterize their evolution.

With these simplifying assumptions, the transport equations of the magnitudes char-
acterizing the discrete phase as a function of the particle radius may be obtained. In strictly
obtaining this, a probabilistic description should be considered. The reason is that boundary
conditions for the particles are only known in a probabilistic sense. One knows that the
particles entering the filter follow a specified size distribution, but no information about
the specific position, velocity, or size of any single particle in the flow is available. Even
this statistical information about the discrete phase at the boundaries is rather incomplete,
although some plausible assumptions make this limited information sufficient. The details
are found in Appendix A.

The resulting transport equations are, however, quite intuitive; firstly, we have a
continuity-like equation to express the conservation of the number density for the particles
of each radius (there is no agglomeration or wear of the particles):

∂n(r, x; t)
∂t

= − ∂

∂xj

[
up

j (r, x; t)n(r, x; t)
]

(1)

where n(r, x; t) is the expected number density of particles of the size r at position x, and
up(r, x; t)is their corresponding velocity. Secondly, the momentum conservation adopts
the form of the evolution of the velocity of small spherical particles in a laminar flow,
considering only the dominant terms, drag, and buoyancy in our case [10]:

(ρp + 0.5ρ)
4πr3

3
dui

p

dt
= (ρ− ρp)

4πr3

3
gi (2)

−3ρπrν(ui
p − ui)

−9ρπr2

4
‖ui

p − ui‖(ui
p − ui)

where ρp and ρ are the densities of the particles and the fluid, respectively; 4πr3/3 is the
volume of a spherical particle with diameter r; ν is the kinematic viscosity; u is the fluid
velocity; and d/dt stands for the total time derivative of the velocity of the particle, that
is to say, its total acceleration or its Lagrangian time derivative. In Equation (2), the left
term represents the linear momentum variation of a spherical particle and its added mass
(because of the equivalent volume of fluid, which moves with the particle), whereas, on
the right side, there is first a buoyancy contribution and, next, a drag contribution up to
the second order to the relative velocities (the velocity of the particle relative to that of the
fluid) with an approximation valid for those velocity particles whose Reynolds number,
based on the relative velocity, is less than one, or the theoretical observed drag.

Values for the fluid properties and particle sizes are taken from those of Shell Fluid
41 doped with the fine test dust A2 ISO 12103-1. The details are shown in Table 1.
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Table 1. Flow properties and geometrical data. The intake area is the area of the annulus of the filter,
taking out the small section of the internal separating walls. Filtering paper K11B40A. Fluid values
for Shell Fluid 41. Fine test dust A2 ISO 12103-1 approximated by a Weibull distribution.

Geometrical Inflow area 9.13 cm2

Filter height 89.7 mm
Outer annulus diameter 80 mm
Inner annulus diameter 70 mm
Exit duct diameter 25 mm

Filtering Media Permeability K 2.81× 10−13

Porosity ε 0.517
Paper thickness L 0.65 mm

Flow Flow rate 120 L/h
Fluid density 850 kg/m3

Fluid kinematic viscosity 13.6 cSt
Particle density 2650 kg/m3

Dust concentration 50 mg/L

Prob. density function β x(β−1)

xre f β e−
(

x
xre f

)β

Size parameter xre f = 14.3 µm
Shape parameter β = 1.1

The boundary conditions at the inlet are given by the expected density number for
each particle size following a prescribed Weibull probability density function for the A2
dust, which is equally distributed in space and with particles that match the fluid velocity at
the domain entry. At the exit, zero gradient conditions are used, while non-slip conditions
are prescribed at walls. Notice that the void fraction information is known from n(r, x; t).

3. Diesel in the Paper Filter: Darcy-Brinkman Approximation

From the diesel point of view, as the flow inside the filter is not affected by the particles
during this short time (the permeability evolves very slowly in comparison to the flow
characteristic time), a single-phase flow in a porous medium is to be studied. This is the
object of the present section.

We use the approximations of Ochoa-Tapia and Whitaker [11] as the most convenient
way to describe the flow in the free and porous medium:

∂ui
∂t

+
∂uiuj

∂xj
= −1

ρ

∂P
∂xi

+
∂

∂xk

(
ν

∂ui
∂xk

)
(3)

1
ε

∂ui
∂t

+
1
ε2

∂uiuj

∂xj
= −1

ρ

∂P
∂xi

+
∂

∂xk

(
ν

ε

∂ui
∂xk

)
− ν

K
ui, (4)

where P is the fluid pressure without the hydrostatic contribution, ε is the porosity (the
empty volume fraction available for the fluid), and K is Darcy’s permeability in units of
[L]2. The flow is assumed to be incompressible and to have a constant density; that is
to say, the null divergence constraint is applied on the velocity field, ∇ · u = ui,i = 0.
The gravitational effects on the fluid may be considered canceled with the hydrostatic
pressure gradient.

In Equation (4), the velocity is really a superficial volume average,

ui ≡ 〈ui〉S =
1
V

∫
V

ui dV = ε
1

Vf ree

∫
V

ui dV = ε〈ui〉I , (5)

whereas the pressure is an intrinsic volume average.

p ≡ 〈p〉I =
1

Vf ree

∫
V

p dV =
1
ε

1
V

∫
V

p dV =
1
ε
〈p〉S. (6)
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These two types of averages, related by the porosity ε, are chosen because they match the
velocity and pressure variables, respectively, from Equation (3) at the interface [11]. For this
reason, no average operator is written explicitly in the paper.

It should be noted that in Equation (4), one could add a second-order term, the
Forchheimer correction, to its right side, as follows: [12]

− F
K1/2 (ujuj)

1/2ui (7)

where F is a non-dimensional coefficient. However, the usual velocity magnitudes present
in the filtering problem with which we are dealing are small enough, and this leads to
neglect of Forchheimer’s correction from the formulation. One should also be aware that
the permeability is, in general, a second-order tensor, so K−1ui should really be K−1

ij uj.
Again, the filtering paper is assumed to be isotropic at least along its flow-normal direction;
that is to say, K−1

ij uj = K−1un, and the work can be performed with a scalar permeability.
Averages are computed over a mesoscopic (larger than the pore size, smaller than the

large-scale variations of the fluid) porous zone. In this sense, the previous equations should
be understood as valid on that scale.

The fluid and porous zones may be integrated as two different domains using
Equations (3) and (4), respectively, plus the incompressibility constraint, which is linked
by a proper boundary condition [13] as follows:

u f = up (8)

Pf = Pp

ν
∂u f

∂xi
ni = ν

ε
∂up
∂xi

ni

where n represents the vector normal to the fluid-porous interface, and the sub-indexes f
and p stand for the fluid and porous media at the interface, respectively.

There is also the possibility of modeling the coupling between the porous and fluid media
by assuming that the whole computational domain represents a heterogeneous fictitious porous
medium [14] where ε = 1 and k = ∞ in the free zones. This approach is justified [14] at least
in the Stokes case (without advection). Equation (4) is applied in the full domain with the
incompressibility constraint [15] and variable values of ε and K, with a gradient singularity at
the inner interface between the porous and fluid media. That is the approach followed in the
present paper.

4. Numerical Results

Due to the purely Eulerian approximation applied, the two-phase formulation proposed
here has been incorporated into a standard CFD solver, OpenFOAM. OpenFOAM [16] is a
software package that solves partial differential equations discretized on 3D unstructured
meshes by finite volume methods. It is open-source, so the code can be modified to the needs
of each particular problem. Usually, some of the available pre-configured solvers are used as
a template and adapted, as in the present filtering problem. A computational fluid dynamics
SIMPLE algorithm was appropriate for the present case.

To represent the porous filter, a specific permeability value has been chosen by fitting
the pressure drop of a clean filter. This means that a snapshot of the behavior of the filter
at a particular time has been used. In fact, a different value does not change the general
pattern of the flow of particles, whose study is the main objective of this paper.

A typical filtering element without clogging is depicted in Figure 1a. The numerical
results for the pressure drop through the filter and the vertical component of the flow
velocity are presented in Figure 1b. An optimized all-hex 3.3 M cell mesh is used for this
purpose. A mesh detail from a cut through the filtering media is presented in Figure 2a
whilst the flow through the filtering media is detailed in Figure 2b. The mesh in the
normal direction of the interface(s) (free media (blue wireframe)/porous media (green/pink
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wireframes)) has been kept at a comparable size on either side of the interface(s). A WENO-
like approach for pressure/velocity has been used in the treatment of the interface to avoid
the under- and overshoots in the velocity profile.

(a)

(b)

Figure 2. (a) Mesh detail in a plane through the filtering device (normal to z-direction); (b) velocity
vectors and pressure drop detail through the same plane.

As can be observed in Figures 1b and 2b, most of the pressure drop takes place in
the filtering media. The two-layer composition of the filtering media, the hydrophobic
(melt-blown), and the cellulose are highlighted in Figure 2b with green and pink wire-
frames, respectively. However, for the performed 3D numerical simulation, both media
were assigned the same properties (permeability and porosity), as given in Table 1. The
computational domain was reduced to a sixth of the full filtering device by taking into
account its cylindrical symmetry, as depicted in Figure 3, thus enabling reasonable comput-
ing times to be achieved (under two hours CPU time on an Intel Core i7-7700K four cores
4.2 GHz).
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Figure 3. Flux of particle mass arriving at the filtering media.

It is worth pointing out that horizontal velocities tend to become normal across the
filter medium, whilst, inside the free medium, they tend to align with the porous-free
interface, as can be seen in Figure 2b. This effect is a natural, expected consequence of
the presence of a Darcy medium (the filter) with low permeability. High lateral pressure
gradients parallel to the porous-free medium interface would imply (see Equation (3)) high
fluid accelerations and high velocities inside the free medium, which, in turn, would render
the flow incompatible with mass conservation and the provided boundary conditions. As
a result, most of the pressure drop inside the porous medium must be normal to those
interfaces. With the typical values of permeability in the studied filter, the dominant
contributions to the flow inside the porous medium (see Equation (4)) are the pressure
gradient and the Darcy one, which cancel each other almost exactly. With regard to the
free medium, the presence of a porous-free interface acts as a barrier that leads the flow to
try to surround it, until it impinges upon the inner corners of the filter folds. Of course,
there is a certain amount of flow passing through the filter before the folds as can be seen
in Figure 2b.

In Figure 3, the total mass per unit area and the arrival time at the clean filter are shown.
The qualitative agreement with Figure 4 is obvious, and the pattern is well explained using
the same considerations as in the previous paragraph: the porous-free interface leads most
of the incoming flow towards the folds of the filter through which, subsequently, more
particles are going. Eventually, and in longer calculations than those reported in this paper,
the flow would be diverted from the folds and become more evenly distributed along the
filter: particle deposition starts at the inner side of the folds and propagates upstream from
there (see Figure 4).
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Figure 4. Unfolded view of a typical stained filter and comparison with numerical results.

It should be noticed that the real conditions are not known. This includes, among
other things, the type of diesel used, its cleanliness, its particle distribution, its vibrations,
etc. Those effects should distort somehow the deposition pattern, which is preserved,
nevertheless, in its general characteristics. This is so that the main features of the flow,
described above, are not fundamentally affected by those effects.

In Figures 5–7, the same quantity, or the particle number flow through a clean filter,
is depicted but for progressively larger sized particles. One can notice the increase in
gravitational effects as the particles grow in size. This effect may be noticed in Figure 4,
and, in the total mass simulation, Figures 3 and 7, as well; there is not only a tendency
for particles to accumulate starting from the folds but also from its bottom area where
the larger sized particles aggregate. The most interesting feature of these simulations is
that both these cited effects may be explainable without resorting to long calculations with
variable permeability. In a clean filter with uniform properties, the flow is diverted so as
to increase the flow of filtered particles through the areas that, eventually, would become
more clogged.
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Figure 5. Flux of particle mass for particles with diameters of less than 10 µm.

Figure 6. Flux of particle mass for particles with medium-sized diameter (30 ≤ d ≤ 40 µm).
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Figure 7. Flux of particle mass for particles with diameters in the upper range of the distribution
(≥70 µm).

Quantitative Comparisons

Although some small-scale distribution measurements are available [17], there are no
experiments to date that provide measurements of the spatial distribution of the mass of
particles absorbed in filters, such as the one studied in this article. In order to quantify the
good qualitative agreement observed between the flow pattern computed through a clean
filter and its observed amount of particle deposition, one further step has been considered,
and the findings are presented in Figure 8. As long as clogging does not significantly affect
the filter properties, the spatial distribution of the mass absorption will essentially remain
unchanged; only the local values will increase proportionally with time. Therefore, if we
normalize by the maximum value, the distribution is independent of time. It is recalled
that this is valid for relatively early times in the life of the filter, that is to say, as long as the
effect of clogging can be neglected.

For the filter, the picture (Figure 4 or Figure 8a) has been taken with a camera with a
linear response, and it is assumed that there is also a linear relationship between the gray
intensity level and the absorbed mass. This last assumption will be revisited later in this
section. In addition, a linear relationship is established between the numerical results and
the gray level of their representation (the grayscale version of the left side of Figure 4). The
gray levels are normalized in the [0, 1] range, with 1 representing the clearest value and 0
the most opaque one.
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(a)

(b)

Figure 8. Intensity profile: (a) averaging zone; (b) comparison. Notice the effect of the pleats that are
in contact with the upper side of the real device, which yields a double-peaked profile.

Due to the inherent noisiness of the data, and in order to perform a valid comparative
analysis, one has to perform some kind of spatial averaging. A representative area deter-
mined by the red and green lines of Figure 8a and its counterpart of the numerical data have
been considered for a two-step averaging procedure, resulting in the intensity data profiles
represented in Figure 8b. Firstly, the intensity profile was extracted by sweeping across
the red line and averaging along the green line. Secondly, the moving averages of a size
(15 px), which preserves the main features of the profiles, are calculated over the intensity
data obtained in the first step. The experimental irregularities in the pattern for the higher
and lower peaks of the profile reflect the impossibility of having perfect pleats without
deformations or any contact between their inner sides. The percentage difference between
the integrated values of the two curves (shaded areas in Figure 8b), which represent the
total mass of particles absorbed by the filtering area considered, amounts to 8.43%. This
relatively small difference is consistent with the assumption of the linearity that exists
between the gray level and the absorbed mass.

5. Conclusions

The full 3D simulations of particle filtering inside an automotive filter have been
presented, in which the continuous phase governing the equations is supplemented with
transport equations for the particle size distribution. The deposition pattern of particles on
a BOSCH filter used under real conditions has been qualitatively reproduced with good
quantitative behavior during the initial phases of clogging. This shows the potential of
this tool. In future work, a model relating pressure drop with particle clogging should be
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developed in order to estimate the evolution of permeability and predict the lifetime of the
filtering element.
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Appendix A

For a statistical description of the discrete phase, in which the particles are moving
in the diesel, the appropriate quantity is the droplet density function first introduced to
describe the droplets’ evolution in a spray [18,19]. The droplet density function n(v, r, x; t)
is defined such that

n(v, r, x; t) dv dr dx

is the expected number of particles with velocities in the interval (v, v + dv), radii in the
interval (r, r + dr), and positions in the interval (x, x + dx). This function contains all the
statistical information needed to describe our system.

Using conditional statistics, we can express this function as

n(v, r, x; t) = n( r, x; t) P(v|r, x; t), (A1)

where n(r, x; t) is the expected number density of particles with the radius r and position x
at time t, and P(v|r, x; t) is the probability density function (PDF) of the particle velocity,
conditional on the radius r and position x at time t. For the present analysis, we will derive
transport equations for the two quantities on the right-hand side of Equation (A1) to obtain
the statistical information of the discrete phase.

First, the expected number density n(r, x; t) is analyzed. This is the probable density
of the particles found in the small region dx dr. It can be easily expressed by means of the
Lagrangian PDF Pxp+r+(x, r; t) of the particle radius r+ and position xp+ (where the sign +
is used to indicate the Lagrangian frame) [20]:

Pxp+r+(x, r; t) =
n(x, r, t)

N
, (A2)

where N is the total number of particles in the domain, which is supposed to have negligible
fluctuations. Integration of the number density n over a finite region in (x, r) space would
then provide the probable number of particles in that region.

Remember that the statistical information of n(r, x; t) is equivalent to that provided by
P(x, r; t) once the total number of particles is known. As N should be a piece of provided
information, next, a transport equation will be derived for P(x, r; t).
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From the theoretical point of view, the description based on this PDF comes from a
description of an ensemble average (the average of a set of identical systems). Its transport
equation can be derived by standard methods [20]:

∂P(r, x; t)
∂t

= − ∂

∂xj

dxp+
j

dt
|x, r

P(r, x; t)

 (A3)

− ∂

∂r

[(
dr+

dt
|x, r

)
P(r, x; t)

]
−JP(r, x; t)

where the overline represents an ensemble averaging, and the terms inside the parentheses
are conditional-averaged quantities (in the ensemble average approximation). J is the net
flux of the probability of the PDF P(r, x; t) crossing the boundaries of the definition domain
of the PDF. Notice that the term in J takes this form to guarantee that the integration of
the PDF in the probabilistic space is always equal to one. In the present case, the domain
in the physical space would be the zone of the device upstream from the paper filter,
and the “radius” space would be all the (positive) sizes except zero. In fact, the PDF is
implicitly conditional on being defined in the described region [20], as we are not interested
in particles outside that domain or with meaningless size. No increase or decrease in the
size of the particles, including coalescence or breaking up, should be considered, given the
low void fraction of particles in diesel. An accumulation is to occur for sure in the paper
filter, but this is outside our domain.

In steady-state situations, the last term in Equation (A4) is null, as the same number
of particles that enter the definition domain should leave it (either by being trapped in
the paper filter or crossing to the other side), so the net flux is zero. In the present case,
the PDF transport equation could be considered in a quasi-steady state. The reason is
that the effect of the particles on the filter changes very slowly compared to the fluid flow
characteristic times, which means that temporal variations of the paper filter properties can
be neglected in the transport equation. That is, for the duration of a car ride, changes in the
filter properties are negligible.

Should this PDF be described in the Lagrangian frame, it would be represented
numerically by particles evolving in the flow in a Monte Carlo simulation. This is essentially
what an Eulerian-Lagrangian description does. In the present case, our interest lies in the
use of an Eulerian-Eulerian formulation, so the PDF is represented as a set of notional
Eulerian fields [7]. Notice that the information obtained is identical for both representations.
In fact, in this case, the traditional distinction between Eulerian-Lagrangian and Eulerian-
Eulerian is really a distinction between two numerical algorithms to solve what essentially
is the same quantity, the PDF of the particle radius (and position).

For the particular situation described in this paper, as the flow is laminar, by using
the Eulerian-Eulerian approach, we will end up with non-stochastic Eulerian transport
equations for the particle-related magnitudes, whose derivation is the purpose of this
appendix. That does not mean that we know exactly the position of every particle in the
flow, as the boundary conditions are only known in a probabilistic sense.

From Equations (A2) and (A4), a conservation equation for the number density
n(r, x; t) is obtained (notice that the last term in Equation (A4) compensates for the one
appearing from the time derivative of N [20]):

∂n(r, x; t)
∂t

= − ∂

∂xj

dxp+
j

dt
|x, r

n(r, x; t)

 (A4)

− ∂

∂r

[(
dr+

dt
|x, r

)
n(r, x; t)

]
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In the previous equation, the terms that are conditional on position x can be replaced
by their Eulerian counterparts:

∂n(r, x; t)
∂t

= − ∂

∂xj

[(
up

j|r
)

n(r, x; t)
]

(A5)

− ∂

∂r

[(
ṙ|r
)

n(r, x; t)
]

In Equation (A6), the variable x should be taken in the physical space, no longer in the
probabilistic space. The velocity of the particle up and the radius variation ṙ, as Eulerian
quantities, are now functions not only of time but also space.

We have already mentioned that the overline means some kind of ensemble average;
for example, we can imagine a set of repeated equivalent systems (filters with diesel and
particles). In the case of turbulent flows, as turbulence is a chaotic dynamical system,
each individual system will evolve in a different way. In the present case, however, the
flow is laminar, which means that the flow is not chaotic, so all the systems would evolve
in an identical way. As a consequence, we can safely remove the “overline” from the
previous equation. As, in this case, the particles do not change size, Equation (A6), which
is particularized for the particles inside the diesel, is rewritten as:

∂n(r, x; t)
∂t

= − ∂

∂xj

[
up

j (r, x; t)n(r, x; t)
]

(A6)

Once the differential equation for n(r, x; t) is set up, the boundary conditions should
be prescribed. As the number density is a statistical magnitude, only statistical information
is needed. Hence, it is not necessary to prescribe the individual position of each particle,
just some kind of PDF information about the boundary.

Now, the second term of the right-hand side of Equation (A1), P(v|r, x; t), is analyzed.
This is the probability density of having a particle velocity value v conditional on its radius
r and position x at time t. In the present case, being a laminar flow with no particle
interaction, this is not a stochastic magnitude: the velocity evolution just depends on those
magnitudes under the problem conditions. Its value up(r, x; t)) is obtained in our problem
by solving the transport equation of a small spherical particle in a laminar flow, considering
only the dominant, drag, and buoyancy terms [10]:

(ρp + 0.5ρ)
4πr3

3
dui

p

dt
= (ρ− ρp)

4πr3

3
gi (A7)

−3ρπrν(ui
p − ui)

−9ρπr2

4
‖ui

p − ui‖(ui
p − ui)

where ρp and ρ are the densities of the particle and the fluid, respectively; 4πr3/3 is the
volume of a spherical particle with a diameter r; ν is the kinematic viscosity; up is the
particle velocity; u is the fluid velocity; and d/dt stands for the total time derivative of the
velocity of the particle, that is to say, its total acceleration, or its Lagrangian time derivative.
In Equation (A8), the left term represents the linear momentum variation of a spherical
particle and its added mass (because of the equivalent volume of fluid, which moves with
the particle), whereas, on the right side, there is first a buoyancy contribution and, next,
a drag contribution up to the second order to the relative velocities (the velocity of the
particle relative to the velocity of the fluid) with an approximation valid for those velocity
particles whose Reynolds number, based on the relative velocity, is less than one, or the
theoretical observed drag.

Notice that several of these transport equations for the velocity should be solved, once
for each radius representative r considered in the particle size distribution.
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At this moment, we have a complete and closed system to calculate all of the variables
of interest (before entering the paper filter). To calculate the flux of particles entering the
filter, we multiply the velocity particle perpendicular to the filter surface times the particle
number for each radius. With this knowledge, the flux of the “volume” or mass of the
particles (they do have a constant density) is immediately deduced.
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