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Abstract: Chronic kidney disease (CKD) incidence is growing worldwide, with a significant per-
centage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement
therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy.
In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic
concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular
processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance
peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune
cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during
KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties
of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM
integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we
also analyze here the implications of this disease in CKD and KRT.

Keywords: peritoneal dialysis; inflammation; peritoneal fibrosis; immune system; kidney; COVID-19

1. Introduction

Chronic kidney disease (CKD) will become the fifth greatest global cause of death
by 2040 and the second cause of death before the end of the century in those countries
with longer life expectancy, as predicted by the Global Burden of Disease study and the
Spanish Society of Nephrology [1–3]. Current therapies only retards CKD progression and
many people present an increased risk of requiring kidney replacement therapy (KRT), of
cardiovascular complications, and of all death causes [2,3]. KRT includes peritoneal dialysis
(PD), hemodialysis, or renal transplantation. CKD has been identified as the most prevalent
risk factor for the lethal coronavirus disease 2019 (COVID-19) [4]. Renal complications in
severe acute respiratory syndrome (SARS) pandemic studies pointed out an active role of
viral infection in the worsening prognosis of patients suffering acute kidney injury (AKI).
Remarkably, the fatality rate of AKI patients with SARS viral infection is more than 90% [5].
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Current PD therapy is focused on solute (toxin) removal and fluid balance. The re-
peated infusion of peritoneal dialysis fluids (PDFs) into the peritoneal cavity not only
partially replaces renal function, but also induces an array of local and systemic untoward
effects. During PD therapy, the peritoneal membrane (PM) is continuously exposed to sup-
raphysiologic concentrations of glucose. In addition, the formation of glucose degradation
products (GDPs) during heat sterilization of PDFs is believed to be key factors in the limited
biocompatibility of PDFs. This chronic exposure to PDFs can induce several cellular and
molecular responses in the PM, including sterile inflammation, loss of the mesothelial cell
(MC) monolayer, submesothelial fibrosis, vasculopathy, and angiogenesis [6,7]. Moreover,
peritoneal infections, mainly by episodes of acute bacterial peritonitis, can also occur during
PD treatment and catheter maintenance [7]. All these events contribute to morphologic and
functional PM transformation and ultimately technique failure often found in long-term
PD patients [8]. On the other hand, the systemic effects of PDFs chronic exposure comprise
a metabolic, inflammatory, and immune-modulatory burden. The impact of this to patient
outcome has, however, not yet been properly delineated. Importantly, the newer PDFs,
including biocompatible glucose-based solutions, icodextrin, taurine, and other recently
proposed solutions based in alternative osmotic agents (stevia, xylitol, and L-carnitine),
as well as the addition of potentially protective compounds, such as alanyl-glutamine
supplementation, exert lower deleterious effects in the PM [9–13]. Despite PD therapy,
CKD patients remain at high risk of poor outcomes. Most notably, cardiovascular events
and markers of systemic inflammation are strongly associated with CKD patients [10,14].
The life expectancy of patients requiring KRT overall is inferior to that for most common
cancers, including those originating in the breast, lung, and colon [15].

In this review, we discuss novel data about the role of immune cells and inflammation
in the damage of the PM during PD therapy, both by infections and chronic exposure to
PDFs, as well as potential therapeutic strategies targeting inflammation, including some
aspects of current clinical treatments in CKD patients. Finally, given that CKD increases the
risk of death in COVID-19 patients, and in turn, COVID-19 can complicate kidney damage,
we also analyze here the implications of COVID-19 in KRT.

2. Cellular and Molecular Mechanisms Implicated in the Damage of the Peritoneum

Peritoneal damage depends on complex interactions between external stimuli, in-
trinsic properties of the PM, and subsequent activities of the local innate-adaptive im-
mune system [16]. In PD patients, repeated exposure of the PM to PDFs can induce a
local inflammatory response, that is mediated by the activation of different inflammatory
pathways, such as the NLRP3 inflammasome and the nuclear factor-kappa B (NF-κB)
pathways [17,18]. Several cell types are involved in this sterile inflammatory response,
including the MCs themselves, neutrophils, mast cells, monocytes/macrophages (MØs), T
lymphocytes, dendritic cells (DCs) and resident fibroblasts [16,19]. Furthermore, toll-like
receptors (TLRs) mediate sterile inflammation by recognizing damage-associated molecular
patterns (DAMPs) released by cellular stress [20]. In infectious conditions, there is an
overproduction of cytokines that is mainly regulated by a complex network involving
various immune cells [21]. PM is also potentially exposed to microorganisms’ infections
due to its proximity to the intestine from where in pathological conditions microorganisms
may reach the peritoneal cavity. Moreover, external factors may contribute to the entry of
microorganisms into peritoneum space, such as medical actions of catheter positioning and
maintenance, the practice of peritoneal dialysis, and abdominal surgery [22]. Postoperative
peritonitis accounts up to 65% of abdominal infection observed in intensive care unit pa-
tients [23], so it is considered the most frequent form of intra-abdominal infection [24]. In
PD patients, emergency treatment of this clinical complication by acute infections employs
standardized protocols and has a high success rate, but patients experiencing peritonitis
have increased technique failure and cardiovascular complication rates through ill-defined
mechanisms [14,24].
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2.1. Microorganisms Involved in Peritonitis Episodes during PD

Gram-positive bacteria of the skin play a major role in causing peritonitis episodes,
with a minor role of Gram-negative bacteria, presumably originating from the enteric
flora [25]. Viral infections of PM are scarcely reported in peritonitis cases due to the lack
of standard diagnosis tests. Despite this, the suspect of viral infection occurs when peri-
tonitis microbial culture results negative, an event occurring around 20% of the cases [26].
Literature reports cases of viral infection in peritonitis, such as coxackievirus B1 infec-
tion characterized by the presence of monocytosis in PD effluent [27]. It has also been
demonstrated that viral haemorrhagic septicaemia virus (VHSV) can infect the peritoneal
cavity, activating the expansion and differentiation of a particular class of resident IgM+
B cells [28]. Also, less studied are peritonitis caused by fungal infections. They account
for between 1 and 15% of all PD-associated peritonitis episodes, constituting a serious
complication for PD patients. Most of these episodes are caused by Candida species such as
Candida albicans [29,30].

2.2. Receptors and Ligands Implicated in the Infection of the Peritoneum

Innate pattern recognition receptors (PRRs) are the sensors implicated in PM damage
by infectious and endogenous causes. These include TLRs, a retinoic acid-inducible gene I
(RIG-I)-like receptors, NOD-like receptors, and C-type lectin receptors. The intracellular
signaling cascade activated by PRRs determines the expression of inflammatory mediators
acting in the elimination of pathogens and infected cells [31]. PRRs are able to recognize
molecules conserved among microbial species called pathogen-associated molecular pat-
terns (PAMPs) as well as DAMPs [20,32]. Among PRRs, TLRs play a critical role in the
innate immune response by specifically recognizing molecular patterns from a wide range
of microorganisms, including bacteria, fungi, and viruses. TLRs are responsible for sensing
invading pathogens outside of the cell and in intracellular endosomes and lysosomes [31].
Ten different TLRs in humans and twelve in mice have been identified so far. Each of them
recognizes different molecular patterns of microorganisms and self-components. TLR2
and TLR5 recognize Gram-positive bacteria [33], both more singularly than cross-talking
to better counteract bacterial infections [34]. TLR2 can recognize a large number of micro-
bial molecules in part by hetero-dimerization with other TLRs, such as TLR1 and TLR6,
or unrelated receptors, such as Dectin-1, CD36, and CD14. TLR5 recognizes flagellin, a
flagellum component in many motile bacteria [35]. TLR4 was initially identified as the
detector for lipopolysaccharide (LPS), inducing response against Gram-negative bacteria.
A set of TLRs, comprising TLR3, TLR7, TLR8, and TLR9, act in the intracellular space
to recognize nucleic acids derived from viruses and bacteria, as well as endogenous nu-
cleic acids in pathogenic contexts [31]. TLR3 mediates the recognition of viral stimuli
and is functionally expressed in peritoneal MCs [36]. TLR3 was demonstrated acting on
fibrosis onset, in particular on matrix-remodeling proteins as it is correlated in time- and
dose-dependent upregulation of matrix metalloproteinase (MMP) 9 and metalloproteinase
inhibitor 1 (TIMP1) [37]. Several studies have demonstrated the active role of TLRs in
modulating peritoneal fibrosis, particularly focusing on TLR2, critical for the recognition of
an S. epidermidis-derived cell-free supernatant, which has been extensively utilized to model
acute peritoneal inflammation [38,39]. Treatment with soluble Toll-like receptor 2, a TLR2
inhibitor, has also been shown to substantially reduce inflammation in an experimental
in vivo model of S. epidermidis infection [20].

2.3. Role of Polymorphonucleate Neutrophils in Acute Infection and Early Innate Response

Pathogen-associated infection in the peritoneum first promotes a wave of polymor-
phonuclear neutrophils recruited by chemoattractants of bacterial origin or by chemokines,
such as the C-X-C motif chemokine ligand (CXCL) 1 and CXCL8, produced mainly by
MCs and omental fibroblasts. Neutrophils can use high endothelial venules present in
anatomic structures called milky spots or fat-associated lymphoid clusters (FALCs) to enter
the peritoneal cavity under the guidance of CXCL1 [40] (Figure 1). Neutrophil influx in the
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peritoneal cavity causes an initial inflammatory response driven by neutrophil-secreted
proteases and reactive oxygen species (ROS). Secondly, once entered in peritoneum neu-
trophils undergo NETosis, which consists of the release of necrotic cell DNA forming a net
of aggregated neutrophils able to trap and sequester microorganisms in FALCs, thus limit-
ing their spreading [41]. Neutrophils also participated in the recruitment of mononuclear
infiltrates through secreting IL6Rα, a shed form of interleukin (IL)-6 receptor. The local
increase of IL-6Rα promotes an IL-6-mediated neutrophil clearance after mononuclear cell
recruitment through a mechanism called trans-signaling [42,43]. Apoptotic neutrophils are
phagocytized by MØs and to a lesser extent by the same MCs [44]. Necrotic neutrophils
and NETs promote the infiltration of mature MØs recruited also by locally produced
chemokines, such as CXCL8 and CCL2 [45]. Two other cytokines, IL-17A and interferon
(IFN)-γ, also regulate neutrophil functions, including their influx in the peritoneum and
clearance process [46].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 28 
 

 

2.3. Role of Polymorphonucleate Neutrophils in Acute Infection and Early Innate Response 

Pathogen-associated infection in the peritoneum first promotes a wave of polymor-

phonuclear neutrophils recruited by chemoattractants of bacterial origin or by chemo-

kines, such as the C-X-C motif chemokine ligand (CXCL) 1 and CXCL8, produced mainly 

by MCs and omental fibroblasts. Neutrophils can use high endothelial venules present in 

anatomic structures called milky spots or fat-associated lymphoid clusters (FALCs) to en-

ter the peritoneal cavity under the guidance of CXCL1 [40] (Figure 1). Neutrophil influx 

in the peritoneal cavity causes an initial inflammatory response driven by neutrophil-se-

creted proteases and reactive oxygen species (ROS). Secondly, once entered in peritoneum 

neutrophils undergo NETosis, which consists of the release of necrotic cell DNA forming 

a net of aggregated neutrophils able to trap and sequester microorganisms in FALCs, thus 

limiting their spreading [41]. Neutrophils also participated in the recruitment of mononu-

clear infiltrates through secreting IL6Rα, a shed form of interleukin (IL)-6 receptor. The 

local increase of IL-6Rα promotes an IL-6-mediated neutrophil clearance after mononu-

clear cell recruitment through a mechanism called trans-signaling [42,43]. Apoptotic neu-

trophils are phagocytized by MØ s and to a lesser extent by the same MCs [44]. Necrotic 

neutrophils and NETs promote the infiltration of mature MØ s recruited also by locally 

produced chemokines, such as CXCL8 and CCL2 [45]. Two other cytokines, IL-17A and 

interferon (IFN)-γ, also regulate neutrophil functions, including their influx in the perito-

neum and clearance process [46]. 

 

Figure 1. Acute infection and early innate response in the peritoneum. Mesothelial cells (MCs) can 

sense invading microorganisms through a specific subset of Toll-Like Receptors (TLRs). Pathogen 

infection stimulates MCs to produce chemokines, such as CXCL1 and CLXL8, which promote the 

recruitment of a first wave of neutrophils entering the peritoneal cavity and undergo to the process 

of NETosis. Cytokines and chemokines released both by MCs and Neutrophils during this first wave 

of the inflammatory process induce the recruitment of mononuclear phagocyte. Macrophages 

(MØ s) recruited in this area display different phenotype subtypes. M1 subtype shows pro-inflam-

matory and cytotoxic properties, whereas the M2 subtype presents an anti-inflammatory activity. 

Moreover, M2 MØ s play a key role in the clearance of neutrophils debris due to scavenger activity. 

To activate the adaptative immune response, M1 MØ s secrete CCL2, CCL5 and CXCL8 which acts 

as a chemoattractant for lymphocyte recruitment in the peritoneal cavity. 

Figure 1. Acute infection and early innate response in the peritoneum. Mesothelial cells (MCs) can
sense invading microorganisms through a specific subset of Toll-Like Receptors (TLRs). Pathogen
infection stimulates MCs to produce chemokines, such as CXCL1 and CLXL8, which promote
the recruitment of a first wave of neutrophils entering the peritoneal cavity and undergo to the
process of NETosis. Cytokines and chemokines released both by MCs and Neutrophils during
this first wave of the inflammatory process induce the recruitment of mononuclear phagocyte.
Macrophages (MØs) recruited in this area display different phenotype subtypes. M1 subtype shows
pro-inflammatory and cytotoxic properties, whereas the M2 subtype presents an anti-inflammatory
activity. Moreover, M2 MØs play a key role in the clearance of neutrophils debris due to scavenger
activity. To activate the adaptative immune response, M1 MØs secrete CCL2, CCL5 and CXCL8
which acts as a chemoattractant for lymphocyte recruitment in the peritoneal cavity.

2.4. Role of Polymorphonucleate Macrophages and Dendritic Cells in Acute Infection and
Chronic Inflammation

Peritoneal tissue-resident cells include MØs and DCs, as components of the peritoneal
immune system. They participate in the induction of inflammatory response, pathogen
clearance, tissue repair, and antigen presentation [47,48].

MØs are plastic cells involved in different diseases, playing both essential protective
and pathological roles [47,48]. MØs can present two different phenotypes, named M1
and M2, which exert different properties and functions. Briefly, M1 MØs are involved in
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amplifying the first phase of the inflammatory process creating a gradient of chemotactic
cytokines, such as CXCL8, C-C motif chemokine ligand (CCL)-2, and CCL5, necessary
for the recruitment of other leukocytes. This process is concomitant to cytokine-driven
up-regulation of adhesion molecules expression (ICAM-1 and VCAM-1) on the surface of
MCs, which facilitates leukocyte adhesion to MCs. Instead, M2 MØs actively counteract
the inflammatory process through the production of soluble anti-inflammatory mediators,
and the clearance of debris such as apoptotic or necrotic products, due to their scavenger
activity [49].

MØs can be considered the major resident immune population in the PM where they
play an essential for maintaining tissue homeostasis [50], being the predominant cell type
found in dialysis effluent [51,52]. Under inflammatory or infection conditions, a depletion
of resident peritoneal MØs populations has been reported [53], a phenomenon known
as Macrophage Disappearance Reaction (MDR) [54]). In contrast, reducing the influx of
monocytes derived MØs or depleting all MØs populations usually prevents injury in
experimental models of peritoneal damage [55]. Primary peritoneal M2 MØs exhibited
superior anti-inflammatory potential than immobilized cell lines. Interestingly, a high
number of MØs, neutrophils, or a higher ratio of MØs/DCs can be associated with severe
and recurrent episodes of peritonitis [51]. Moreover, peritoneal resident M2 MØs have
been demonstrated to have an active role in attenuating the cytokine storm in severe acute
infections [56].

A recent study showed that chronic exposure to PDFs alters resident MØs homeostatic
phenotype, including the lost expression of anti-inflammatory and efferocytosis markers
and enhanced inflammatory response [57]. Another study demonstrated the role of M1
instead of M2 MØs in peritoneal damage by depleting and transplanting different MØs
populations into PDF-exposed mice [58]. In contrast, another study reported increased
expression of the M2 MØs markers CD206, transforming growth factor-beta (TGF-β), Ym-
1, and Arginase-1 in experimental PDF exposure, together with fibrosis markers, which
were recovered by clodronate-liposome-mediated MØs depletion [59]. In a peritoneal
damage model induced by sodium hypochlorite, inflammatory M2 MØs switch to CCL-17-
expressing profibrotic phenotype to promote fibroblasts activation [60].

In patients on continuous ambulatory PD (CAPD), a decrease in peritoneal MØs
function has been observed [61], together with alterations in MØs heterogeneity (i.e.,
different maturation and activation states), which have been associated with different PD
outcomes [51]. Moreover, peritoneal MØs isolated from patients under CAPD during
peritonitis episodes exhibit increased proinflammatory cytokines expressions, such as IL-
1β and tumoral necrosis factor (TNF)-α, compared to macrophages from CAPD patients
without peritonitis [62]. Additional studies showed that peritoneal CD206+CD163+ M2
MØs are present in PD effluents of PD patients with peritonitis and that these MØs
contribute to peritoneal fibrosis by stimulating fibroblast cell growth and increasing the
production of the soluble factor CCL-18 [63]. Thus, the role of MØs during PDF-induced
peritoneal damage depends on the pathological context and MØs subtype. Therefore,
therapeutic approaches targeting the overall MØs population must be evaluated as resident
peritoneal MØs play a key role in peritoneal immunity.

2.5. Role of Th17 Lymphocytes and Its Effector Cytokine IL-17A in Acute Infection and
Chronic Inflammation

Th17 cells are a type of differentiated T helper lymphocytes characterized by a specific
secretome including cytokines of the IL-17 family, mainly IL-17A, its effector cytokine,
and other Th17-specific cytokines, such as IL-22, IL-26, and CCL20 [64]. Th17 plays a key
role in the response against pathogens but is also implicated in the pathogenesis of many
inflammatory and autoimmune diseases, including psoriasis, rheumatoid arthritis, and
multiple sclerosis [65]. Besides Th17 cells, IL-17A can be secreted by various leukocyte
subpopulations, including neutrophils, Th1, and γδ-T lymphocytes and its expression corre-
lated with the duration of the PD treatment and with the extent of peritoneal inflammation
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and fibrosis [46,66]. In peritoneal biopsies of PD patients, IL17-positive cells were identified
as Th17 cells, γδ lymphocytes, mast cells, and neutrophils, and were positively correlated
with peritoneal fibrosis [66].

Several experimental evidence shows the involvement of Th17/IL17A in acute peri-
toneal damage. In a murine model of intraperitoneal sepsis with abscess formation, an
increase in the number of Th17 cells in the peritoneal cavity was observed, whereas the
treatment with a neutralizing antibody against IL-17A prevented the abscesses forma-
tion [67]. Curiously, in peritonitis induced by S. aureus delivery and caecal ligation and
puncture (CLP) in mice, γδ T lymphocytes, instead of Th17 cells, were found as the main
source of IL-17A [68]. In the CLP model, intraperitoneal IL-17A and other cytokine levels
were increased and IL-17A neutralization reduced proinflammatory cytokine levels and
improved mice survival [69]. As commented before, IL-17A regulates several neutrophil
functions [46]. In cultured human MCs, IL-17A has been shown to activate different inflam-
matory pathways, mainly the canonical NF-κB pathway and its downstream cytokines,
such as granulocyte-colony stimulating factor (G-CSF) and growth-regulated alpha pro-
tein (GROα, also known as CXCL1), the latter involved in neutrophil infiltration into the
peritoneum [70,71].

Besides its role in acute infections, Th17/IL-17A axis is also involved in chronic
inflammation of the PM. In mice models of PDF exposure, a predominance of Th17 cells over
Treg cells has been observed in the peritoneum [72], as well as activation of the transcription
factors involved in Th17 differentiation retinoic acid-related orphan receptor (RORγt) and
Signal transducer and activator of transcription 3 (STAT3) [66]. Moreover, exposure to
PDF induces local production of Th17-related cytokines (IL-17A and IL-6), together with
a correlation between peritoneal IL-17A protein levels and membrane thickness [66]. In
addition, studies conducted in gene mice deficient for CD69, a leucocyte protein that
modulates Th17 cell differentiation, the chronic exposure to PDFs highly increased the
Th17 response and IL-17A production leading to exacerbation of the inflammatory and
fibroproliferative response [73,74]. In these PDF-exposure models, the treatment with
neutralizing anti-IL-17A antibodies improved peritoneal damage [66,74]. Other study of
PDF-exposure in uremic mice showed that conventional PDF treatment increased CD4+/IL-
17+ cells in the peritoneal cavity [75], while a biocompatible low-GDP bicarbonate/lactate-
based PDF increased peritoneal recruitment of M1 macrophages and decreased number of
CD4+/IL-17+ cells, which were associated with better preservation of PM integrity [75].
These experimental studies support the detrimental effect of an enhanced Th17 response
and IL-17A expression in the PDF-exposed peritoneum, whereas Th17 modulation and
IL-17 targeting could be an effective therapeutic approach for peritoneal damage.

In peritoneal effluents from patients on PD using different conventional PDF, IL-17A
has been found to increase, together with other cytokines such as IL-6, IL-1β, TNF-α,
and TNF-like weak inducer of apoptosis (TWEAK) [76–78]. In peritoneal biopsies from
PD patients, IL-17A-positive cells were found in the submesothelial zone overlapping
with inflammatory and fibrosis areas. Interestingly, IL-17A levels in the effluents were
significantly higher in long-term PD patients after 3 years of dialysis [66]. On the other
hand, during peritonitis episodes IL-17A peritoneal effluents levels may reach a huge
increase [79], showing the involvement of IL-17A in chronic and acute peritoneal damage.

Altogether, these pieces of evidence support the contribution of Th17 cells and IL-17A-
producing cells to peritoneal inflammation associated with dialysis.

2.6. Other Cells Implicated in the Peritoneal Response to Infections: Mastocytes and Natural
Killer Cells

The role of mastocytes, another resident leukocyte population, in peritoneal damage
is controversial. A study performed in a mast cell-deficient rat model demonstrated that
mast cells increase omental thickness and adhesion formation favoring leukocyte recruit-
ment [80]. Studies performed in PD patients showed an increased number of mastocytes
in samples from different inflammatory and fibrotic peritoneal diseases, including PD
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and encapsulating peritoneal sclerosis (EPS) [81]. Studies in peritonitis demonstrated that
natural killer (NK) cells have a role in neutrophil apoptosis and subsequent inflammation
resolution [82,83]. For example, kidney dysfunction with induction of fibrosis and CKD
progression correlates with activation of tubulointerstitial human CD56bright NK [84]. How-
ever, studies on humans are limited. NK cells in combination with IL-2 can cause peritoneal
fibrosis in patients with malignancies [85].

3. Resident Peritoneal Cells: Activation of Proinflammatory and
Immunomodulatory Signals

Peritoneum is composed of a monolayer of MCs with an epithelial-like cobblestone
shape covering a continuum of the peritoneal cavity. Respect to its huge extension and
its unique localization in the abdominal cavity, the peritoneum is a favorable site for the
encounter of antigens and for the subsequent generation of the immune response. Resident
MCs have a mesodermal origin, and their differentiation is controlled by the transcription
factor Wilms’ tumor 1 (WT1) [86,87]. MCs can undergo a process called mesothelial to
mesenchymal Transition (MMT) in which they acquire mesenchymal features such as
mobility and tissue invasion. The intrinsic plasticity of these cells is linked to their ability
to acquire mesenchymal-like features in response to a variety of proinflammatory and
profibrotic stimuli. Almost all the pro-inflammatory factors described in the previous
section may promote the induction of MMT in MCs. This dedifferentiation process permits
MCs to acquire morphological and functional features making these cells indistinguish-
able from myofibroblasts of other origin. High throughput experiments have correlated
the expression of profibrotic and proinflammatory cytokines, such as TGFβ1, vascular
endothelial growth factor A (VEGFA), and IL-6 to the induction of MMT [20,88–90]. In fact,
activated MCs are major producers of those cytokines, whose concentrations are elevated
especially during peritonitis, and have been associated with ultrafiltration decline and
protein loss [25,91]. The secretion of these cytokines impacts fibrosis, angiogenesis, and the
inflammatory response.

The first phases of the peritoneal immune response not only involve resident peritoneal
leucocytes [92,93]. MCs composing parietal and visceral peritoneum play an active role
in the response to infections first directly responding to extracellular mediators released
by microorganisms [94]. Human peritoneal MCs (HPMCs) express a specific subset of
TLRs composed of TLR1, TLR2, and TLR3, with a moderate or scarce level of TLR4 and
TLR10 [33]. A comparison of peritoneal MCs from murine and human origin responsiveness
revealed important differences between the two species. The major difference consists of
the unresponsiveness of HPMCs to TLR4 ligands, unlike murine peritoneal MCs (MPMCs).
However, TLR4 is expressed by human MØ stably residing in the PM, and their response
may contribute to inflammation leading to fibrosis [95,96]. Instead, HPMCs and MPMCs
showed similarities in TLR1/2, TLR2/6 and TLR5 ligand responsiveness [95,96].

MCs are the main constituent of FALCs, whose frequency and size increase in the
peritoneum of patients undergoing PD [97,98]. Besides MCs, FALCs are composed of MØs,
and B1 cells. B1 cells have the potential to produce natural antibodies that provide a first
protection against bacterial infections [99]. The chemokine CCL19 produced by structural
components of FALCs is extremely relevant for monocyte recruitment during inflamma-
tion, activating a crosstalk that promotes T cell dependent-B cell immune response [100].
Thus, FALCs play a main role both in the regulation of polymorphonuclear (PMN) and
mononuclear cell recruitment in the first phase of inflammation, as well as in the subsequent
induction of the adaptive immunity.

Neutrophils, for example, use high endothelial venules present in FALCs to enter
the peritoneal cavity, guided by the chemotactic signal of CXCL1 [40]. The production of
CXCL1 as well as other chemoattractant CXCL8 by the peritoneal stroma is enhanced by
inflammatory cytokines such as IL-1β and to a lesser extent, TNFα [101]. Stimulation of
MCs with IL-1β or LPS, for example, also induces the production of a number of cytokines
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and chemokines including IL-6, TNFα, CCL2, CCL3, favoring mononuclear cell recruitment
and activation [102].

Peritoneal mesothelium-derived chemokines have been recently proposed as potential
therapeutic targets. In this sense, CXCL1 induced in MCs in response to IL-17 exposure
displays angiogenic activity and can subsequently control the vascular remodeling in dia-
lyzed peritoneum [103]. The observation of PD patients exhibiting high CXCL1 expression
and subsequent density of microvessels opens to new intervening prospective acting to
preserve long-term PM integrity and function.

Another important source of extracellular mediators engaged in peritoneal immunity
are resident fibroblasts, embedded in the submesothelial stroma. Their role is mainly asso-
ciated with the development of peritoneal fibrosis induced by chronic inflammation [104].
However, human peritoneal fibroblasts (HPFBs) upon stimulation with macrophage or
T lymphocyte-derived proinflammatory cytokines, such as IL-1β, TNFα and IFN-γ, se-
crete large quantities of interleukins and chemokines (CCL2, IL-8/CXCL8, IL-6, CXCL1,
CCL5) [101,105–108]. Therefore, HBFBs control trans-peritoneal chemotactic gradients
during peritonitis, crucial when MCs are damaged and exfoliated.

4. Cellular Senescence in the Peritoneum

Cellular senescence is a cellular program initiated by various forms of stress that
further may jeopardize the integrity of the genome. It occurs after a period of vigor-
ous proliferation and is characterized by irreversible growth arrest, altered morphology,
and different patterns of gene expression. Growth arrest in senescent cells is related to
the upregulation of at least two major tumor suppressor pathways: the p53/p21 and
p16INK4a/pRB [109]. The known triggers of senescence include telomere dysfunction,
oncogene activation, reactive oxygen species, and epigenomic damage [110]. As a response
to injury, such as shortened telomeres which are recognized as double-strand breaks (DSBs),
the DNA damage response (DDR) is initiated leading the cell to replicative senescence [111].

Senescent cells remain viable and metabolically active. However, changes in gene
expression lead to different secretion of numerous cytokines, chemokines, growth factors,
proteases, and extracellular matrix proteins, a feature known as the senescence-associated
secretory phenotype (SASP) [112]. The induction of SASP on the transcriptional level is
regulated mainly by C/EBP (CCAT/Enhancer Binding Protein) and NF-κB transcription
factors. C/EBPβ has been shown to regulate many SASP components, such as IL-1β, IL-8,
IL-6 or CXCL1/GROα [113]. In addition, the SASP is positively regulated by the NF-κB
that controls the transcription of many genes encoding proinflammatory cytokines. This
regulation applies to IL-6 and IL-8 which are viewed as the most prominent mediators of the
SASP [112]. The secreted SASP modifies the tissue microenvironment and is able to promote
the senescence phenotype to neighboring cells in a paracrine manner [114,115]. It is well
established, that peritoneal MCs when entering replicative senescence in vitro, secrete large
amounts of proangiogenic (VEGF, CXCL1), proinflammatory (IL-6, IL-8, MCP-1/CCL2)
and the profibrotic factors TGF-β and connective tissue growth factor (CTGF/CCN2),
precisely known as the SASP components (Figure 2) [116]. Different preclinical studies have
demonstrated that these components of the SASP can significantly contribute to adverse
peritoneal remodeling during PD by promoting MMT and angiogenesis [46,103,117,118].

Furthermore, an intriguing feature of senescent HPMCs was described. In those cells,
both markers typical for mesenchymal and epithelial phenotype were observed, which
usually indicates a partial MMT process [119]. Thus, there is a possible phenotypical
connection between senescence and MMT and inflammatory factors that can induce either
of the processes.
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Figure 2. Cellular senescence is triggered by different kinds of stimuli, some resulting in Double-
Strand breaks (DSBs). This activates the DNA-Damage Response (DDR), in which γH2AX may
repair the DNA. However, prolonged damage leads to Cell-Cycle Arrest (CCA) due to p16, p53, and
p21 upregulation. Then, the cell gene expression is reprogramed, starting to release the senescence-
associated secretory phenotype (SASP), mainly regulated by C/EBP (CCAT/Enhancer Binding
Protein) and NF-κB (nuclear factor-κB), and enriched with numerous factors such as interleukins,
chemokines, profibrotic and proangiogenic mediators. These metabolic changes can contribute
to several pathological processes in the peritoneal cavity, such as Mesothelial-to-Mesenchymal
transition (MMT), angiogenesis, and secondary senescence, or spreading cellular senescence to
neighboring cells.

There is increasing evidence suggesting that senescent cells contribute to both organis-
mal ageing and age-related pathologies, and accumulation of senescent cells may promote
both degenerative and hyper-proliferative disorders, whose incidence rises exponentially
with age [109]. The occurrence of cellular senescence in the peritoneum in vivo is poorly
documented. It was found that impaired viability and function of HPMCs exposed to
glucose-containing PDF was predominantly related to the presence of GDPs and, further to
the presence of glucose [120]. However, more recent studies have shown that glucose can
lead to the destruction of the integrity of HPMCs, triggering apoptosis and inhibiting cell re-
generation [121]. Detailed examination of the mesothelium of rats treated intraperitoneally
with high loads of glucose revealed the presence of enlarged senescence-like cells [122].
Cells expressing senescence-associated-β-galactosidase (SA-β-Gal), a well-defined marker
of senescence, were also found in freshly explanted human omenta [123], in MCs imprints
from mice exposed to PDFs [124] or in MCs derived from PD effluents [125]. A more recent
study conducted on omental arterioles of patients treated with PDFs revealed that a high
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concentration of glucose degradation products in the peritoneum lead to upregulation of
p16 and disruption of lamin A/C in nuclear envelope [126].

Taken together, these data indicate that by producing several extracellular mediators
within the SASP, the senescent cell population contributes to the immunomodulation of the
peritoneal environment during PD.

5. Potential Anti-Inflammatory Treatments in the Preservation of the PM Integrity

Many preclinical data have already demonstrated the beneficial effects of current
clinical treatments of CKD patients in the preservation of PM integrity. Therefore, we
will briefly review here whether the current clinical treatments of CKD patients exert anti-
inflammatory effects, as well as the data supporting the effect of some of these drugs in the
preservation of the PM.

5.1. Current Clinical Treatments in CKD Patients That Exert Anti-Inflammatory Actions

Although many preclinical studies targeting inflammation have described kidney
protective effects, most of the promising anti-inflammatory drugs undergoing clinical
testing for CKD [127–129], have failed or clinical development has stopped and to date,
no anti-inflammatory drug is in clinical use [129]. However, drugs in clinical use display
anti-inflammatory properties that at least in some cases are the direct result of their mech-
anism of action. Interestingly, most of these observations have been made in diabetic
kidney disease (DKD), i.e., in an environment characterized by high glucose concentra-
tions [129] and, thus, may be relevant for PM injury in the setting of high concentrations
of glucose or GDPs. Renin-angiotensin-aldosterone system (RAAS) inhibitors, including
angiotensin-converting enzyme (ACE) inhibitors (ACEIs) and angiotensin receptor blockers
(ARBs), are prescribed as antihypertensive drugs and for kidney protection in diabetic and
non-diabetic kidney disease [130–132]. Moreover, they preserve residual kidney function
in PD patients [133]. Many preclinical studies have demonstrated anti-inflammatory effects
of both drug families, through inhibition of Angiotensin II-induced deleterious effects,
including the activation of key inflammatory-related mechanisms, including oxidative
stress, NF-κB, janus kinase (JAK)/signal transducer and activator of transcription (STAT)
and TLRs pathways [132]. More recently, clinical trials have shown kidney and cardio-
vascular protection by sodium-glucose cotransporter-2 (SGLT2) inhibitors in both diabetic
and non-diabetic kidney disease [134,135]. Currently, guidelines support the use of SGLT2
inhibitors on top of RAAS blockade in diabetic and non-diabetic kidney disease [132,136].
The nonsteroidal mineralocorticoid receptor antagonist (MRA) finerenone also improved
kidney and cardiovascular outcomes in DKD, even in patients already on RAS blockade
and SGLT2 inhibitors [137,138]. Again, clinical guidelines support their use in DKD [132].
Additionally, aldosterone synthase inhibitors are under clinical development [139]. Both
SGLT2 inhibitors and MRAs have decreased kidney inflammation in vivo [140–142].

The endothelin receptor antagonists (ERA) reduced inflammatory macrophage infil-
tration in preclinical studies [143]. While the ERA Atrasentan improved kidney outcomes
in DKD, it failed to improve cardiovascular outcomes and clinical development for this
indication was stopped [144–146]. However, the dual ARB-ERA Sparsentan has shown
promising results for proteinuric kidney disease [147] and the combination of RAS blockade,
SGLT2 inhibition, and ERA is undergoing clinical trials in DKD since the protection from
heart failure offered by SGLT2 inhibition is expected to make ERA safer and the kidney
protective effect may be additive [148].

Complement represents a key part of the innate immune response and has been
involved in nephropathies ranging from acute kidney injury to DKD [149–152] Several
complement-targeting therapies are in clinical use for kidney disease, including undergoing
clinical trials for an expanding number of nephropathies. Eculizumab and Ravulizumab,
targeting C5, are used for hemolytic uremic syndrome while Avacopan, a C5a receptor
inhibitor, is used for antineutrophil cytoplasmic antibody (ANCA)-associated vasculi-
tis [153,154]. Targeting cytokines has been widely investigated in autoimmune diseases, but
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only a few studies have addressed human CKD [129], among them, IL-17A has emerged as
an interesting candidate [155].

5.2. Anti-Inflammatory Actions of Current Clinical Treatments for CKD in the Preservation of the
PM Integrity

In preclinical studies, administration of RAAS inhibitors (such as Aliskiren, Valsartan,
Enalapril, and Lisinopril) by different routes is able to reduce peritoneal thickening and
improve peritoneal function in PDF exposure models in rats [156–159]. Components of
the RAAS are constitutively expressed within peritoneal MCs and are upregulated during
acute inflammation and chronic exposure to PDFs [160]. The high glucose concentration,
low pH, and the formation of GDPs in PDFs have all been associated with peritoneal
RAAS modulation. Besides, activation of the RAAS contributes to MMT of MCs, resulting
in progressive fibrosis of the PM. This process also leads to increased VEGF production,
promoting peritoneal angiogenesis. Functionally, these changes reduce the ultrafiltration
capacity of the PM, leading to PD technique failure [160].

Findings on experimental animal models suggest that part of the renoprotective effects
of SGLT2 inhibition may be related to anti-inflammatory actions in the kidney [161]. Thus,
its potential anti-inflammatory effect might also be taken advantage of at the peritoneal
level. Remarkably, SGLT2i may have multiple benefits for CKD patients undergoing PD in
terms of glycemic, atherosclerotic process, and peritoneal deterioration control [162]. In
this regard, SGLT2 is expressed in MCs and in skeletal muscle. Dapagliflozin, an SGLT2
inhibitor, significantly reduced effluent TGF-β concentrations, peritoneal thickening, and
fibrosis, as well as microvessel density, resulting in improved ultrafiltration in a mouse PD
model. In vitro, Dapagliflozin reduced monocyte chemoattractant protein (MCP)-1/CCL2
release under high-glucose conditions in human and murine peritoneal MCs [163].

Endothelin (ET)-1 and its receptors are expressed in the PM and result in upregulated
during PDFs exposure. In a PD model, administration of an ERA, either Bosentan or
Macitentan, markedly attenuated PD-induced MMT, fibrosis, angiogenesis, and peritoneal
functional decline [164].

Some MRAs have been tested to prevent peritoneal inflammation and fibrosis in
animal models. Spironolactone was shown to reduce both processes in a rat model of PD on
intraperitoneal injection of dialysates and LPS, and another rat model based on mechanical
scraping of the peritoneum. Furthermore, peritoneal function assessed by the peritoneal
equilibration test was significantly improved by spironolactone [165,166]. Eplerenone was
administered to rats with intraperitoneal exposure to LPS, and the results were compared
with those obtained in animals treated with PDFs or PDFs + LPS. Interestingly, ultrafiltration
and transperitoneal osmotic diffusion were significantly impaired by LPS and restored by
eplerenone. Increased value of the mass transfer area coefficients for creatinine values was
also recovered by Eplerenone [167].

5.3. Novel Anti-Inflammatory Treatments in Experimental PD

In the last years, novel therapeutic agents have been assayed in preclinical models of
peritoneal damage. These approaches have been shown to reduce peritoneal damage and
membrane thickening by targeting different components and molecular pathways involved
in the inflammatory response (Figure 3).
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exposure during PD.

5.3.1. Inhibition of Classical Proinflammatory Cytokines and Chemokines

NF-κB signaling pathway is one of the most activated inflammatory pathways in
response to damage to the peritoneum. Very recent studies have shown that the treat-
ment with the NF-κB inhibitor Parthenolide improved peritoneal damage induced by PDF
exposure [168,169]. This improvement included decreased peritoneal levels of inflam-
matory cytokines, such as IL-6, TNF-α, and MCP-1, and suppression of TGF-β/SMAD
signaling activation. Another pathway involved in peritoneal inflammation and injury
induced by PDFs is the JAK2/STAT3 signaling [170]. In cultured HPMCs and MPMCs,
the JAK2/STAT3 inhibitor WP1066 prevented MMT induced by IL-6 and DOK silencing,
respectively [171,172]. PDF exposure also led to TNF-α signaling activation, including
increased levels of TNF-α and significant upregulation of TNF Receptor 1 (TNFR1) on the
mesothelial cell surface [18]. In transgenic mice expressing human TNFR1, the peritoneal
inflammation and fibrosis induced by PDF exposure was attenuated using a monoclonal
antibody (H398) that selectively blocks human TNFR1 [173]. In a model of chlorhexidine
gluconate (CG)-induced damage, CCL8 was the most upregulated chemokine in the peri-
toneum and the functional blockade of CCL8 using a CCR8 inhibitor (R243) prevented PM
thickness and macrophage infiltration into the peritoneum [174].

5.3.2. Glycogen Synthase Kinase 3 Beta Inhibition

Glycogen synthase kinase 3 beta (GSK3β) has been associated with inflammation
and fibrogenesis in different tissues [175,176]. In PDF-exposed mice, a peritoneal hyper-
activity of GSK3β (characterized by increased GSK3β expression and reduced inhibitory
phosphorylation at serine 9) has been found [177]. Accordingly, the therapeutic targeting
of GSK3β by Salvianolic Acid A improved peritoneal fibrosis together with attenuated
expression of the inflammatory cytokines IL-1 β, TNF-α, and MCP-1, prevented activa-
tion of NF-κB signaling pathway, reinforced the nuclear factor-erythroid 2-related factor 2
(NRF2) antioxidant response, and diminished oxidative injury [177]. Moreover, lithium
chloride (LiCl), a known GSK3β inhibitor, has been shown to be cytoprotective in peritoneal
damage. LiCl-supplemented PDF promoted morphological preservation of MCs and the
submesothelial zone in chronically PDF-exposed mice by suppressing αB-crystallin [178].
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5.3.3. Cyclooxygenase-2/ Prostaglandin-E2 Pathway Blockade

The cyclooxygenase-2 (COX-2)/prostaglandin-E2 (PGE2) pathway is a key player in
PDF-induced PM inflammation [179]. Celecoxib, an inhibitor of COX-2 activity, has been
shown to improve PM ultrafiltration capacity and prevent peritoneal fibrosis, inflamma-
tion, and angiogenesis in murine models and PD patients [179–181]. On the other hand,
the blockade of PGE2 receptor 4 (EP4) with ONO-AE3-208, an EP4 receptor antagonist,
diminished the activation of NLRP3 inflammasome and phosphorylation of p65 NF-κB
subunit together with decreased peritoneal fibrosis and improved peritoneal dysfunction
in a PD model in rats [182].

5.3.4. Targeting Autophagy

Autophagy is a vital mechanism to maintain cell homeostasis under physiological con-
ditions, but it is also involved in the physiopathology of several diseases [183]. In long-term
PD, autophagy promotes fibrosis and apoptosis in the peritoneum [184]. In two different
murine models of PDFs and CG damage, autophagy was found highly activated [185]. In
these models, autophagy inhibition with 3-methyladenine (3-MA) successfully prevented
peritoneal damage, noted by downregulation of TGF-β/SMAD signaling and the EMT
transcription factors Slug and Snail, repressed activation of epidermal growth factor recep-
tor (EGFR)/extracellular signal-regulated protein kinases 1

2 (ERK1/2) signaling pathway,
decreased STAT3/NF-κB-mediated inflammatory response and macrophage infiltration,
and prevented β-catenin-mediated peritoneal angiogenesis [185]. In contrast, another
study showed that treatment with trehalose, an autophagy inducer, has beneficial effects on
CG-induced peritoneal fibrosis, including decreased levels of α-SMA, Collagen I α1, and
Snail, but with no effect on SMAD or mitogen-activated protein kinase (MAPK) signaling
pathways [186]. In accordance with this, other researchers reported that mice treated with
high glucose-PDF showed decreased expression levels of the autophagy-related proteins
Beclin-1 and microtubule-associated proteins 1A/1B light chain 3B (LC3-II) and upregu-
lated expression of p62; while the treatment with 1,25(OH)2D3, the active form of vitamin
D, attenuated peritoneal damage by enhancing autophagy [187,188]. In this line, parical-
citol, an analog of vitamin D and a specific activator of vitamin D receptors (VDR), has
been shown to fully recover the loss of ultrafiltration capacity induced by PDF exposure in
rats, together with a decrease in ECM thickening and reduced angiogenesis [189]. In mice,
paricalcitol reduced PDF-induced peritoneal by modulating Th17 and Treg response [190].
Rapamycin, another known autophagy inducer, has been shown to exert protective effects
of PDF exposure models, these effects include a reduced PM thickness, decreased peritoneal
fibrosis, improved PM transport function [191], reduced angiogenesis and lymphangio-
genesis [192], decreased MMT and endothelial-to-mesenchymal transition [192,193] and
improved lipid metabolism [194].

5.3.5. Targeting Mitochondrial Dysfunction and Oxidative Stress

Several studies have reported that oxidative stress and mitochondrial dysfunction
play an essential role in PDF-associated peritoneal damage [195,196]. In human peri-
toneal MCs, high glucose PDF induced excessive ROS production and lipid peroxidation
with oxidative DNA damage [197]. In mice, PDF exposure downregulated the adenine
monophosphate (AMP) activated protein kinase (AMPK)- peroxisome proliferator activated
receptor-gamma coactivator-1 alpha (PGC-1α) signaling pathway, including decreased
expression of p-AMPK, PGC-1α, nuclear factor-erythroid 2-related factor (NRF)-1, NRF-2,
and the mitochondrial transcription factor A (TFAM), as well as reduced levels of mitochon-
drial DNA and damaged mitochondrial structure in the peritoneum [198]. In this model,
treatment with metformin, an AMPK agonist, improved all these parameters and inhibited
apoptosis of peritoneal MCs with the consequent improvement of peritoneal fibrosis [198].
Moreover, mitochonic acid-5 (MA-5), an indole-3-acetic acid derivative, has been shown
to improve mitochondrial dysfunction and peritoneal damage in a model of peritoneal
fibrosis induced by CG [199]. In this study, MA-5 was able to decrease α-SMA-positive
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myofibroblasts, TGF-β-positive cells, F4/80-positive macrophages, MCP1-positive cells,
and 4-hydroxynonenal (4-HNE)-positive cells was considerably decreased in addition to
increased ATP synthase subunit alpha (ATP5A1)-positive and uncoupling protein-2 (UCP2)-
positive cells [199]. Another study showed that molecular hydrogen, which selectively
scavenges cytotoxic ROS and acts as an antioxidant, administrated in hydrogen-rich PDF
successfully inhibited the peritoneal fibrosis progress induced by high glucose PDF by
removing intracellular ROS and inhibiting the activation of the phosphatase and tensin
homologue deleted on chromosome 10 (PTEN)/protein kinase B (AKT)/ (mammalian
target of rapamycin) mTOR signaling pathway [200]. On the other hand, protein kinase
C (PKC) is known to induce oxidative stress by induction of ROS production mediated
by NADPH oxidases [201]. In a mice model of chronic exposure to high-glucose PDF, the
blockade of PKCα by intraperitoneal administration of the conventional PKC inhibitor
Go6976 or genetic deficiency prevented peritoneal damage, including reduction of proin-
flammatory, profibrotic, and proangiogenic mediators such as MCP-1, TGF-β, and VEGF,
respectively [202].

5.3.6. Modulation of Epigenetic Mechanisms

Increasing evidence has demonstrated the involvement of epigenetic mechanisms regu-
lating gene expression in several diseases, including CKD and peritoneal damage [203,204].
These epigenetic mechanisms include DNA methylation, posttranslational histone modifi-
cations, and non-coding RNAs [203].

Regarding DNA methylation, only one study reported aberrant gene methylation in
peritoneal damage. In this study, increased protein levels of DNA methyltransferase 1
(DNMT1) were observed in the peritoneum of rats treated with CG, together with hyperme-
thylation of Ras GTPase activating-like protein 1 (RASAL1) gene and decreased RASAL1
protein levels [205]. Notably, the treatment with the demethylating agent 5′-azacytidine
restored RASAL1 methylation and expression, together with the improvement of peritoneal
fibrosis [205].

In addition, alterations in different histone-modifying enzymes have also been re-
ported in peritoneal damage [204]. In a model of peritoneal fibrosis induced by methylgly-
oxal (MGO) in mice, the H3K9 methyltransferase G9a has been found to increase, whereas
G9a blockade using the BIX01294 inhibitor decreased submesothelial zone thickness, fi-
brosis, and infiltration of monocytes, TGF-β levels, and PM function [206]. Similarly,
the inhibition of the H3K4 methyltransferase SET7/9 using Sinefungin also improved
MGO-induced peritoneal fibrosis in mice [207]. Moreover, in mice models of CG- and
PDF-exposure, the blockade of the H3K27 methyltransferase enhancer of zeste homolog 2
(EZH2) using 3-deazaneplanocin A (3-DZNeP) reduced peritoneal fibrosis by preventing
the activation of several profibrotic signaling pathways, including TGF-β/SMAD3, Notch1,
and epidermal growth factor (EGF), together with decreased inflammation noted by less
STAT3 and NF-κB phosphorylation and reduced lymphocyte and macrophage infiltra-
tion [208]. In vitro, hyperacetylation of H3 histone was observed in HPMCs during high
glucose-induced MMT, and treatment with the histone acetyltransferase (HAT) inhibitor
C646 reversed MMT of HPMCs via blocking TGF-β1/SMAD3 signaling [209].

However, no in vivo experiments have been reported so far using this inhibitor. Con-
versely, several studies demonstrated the role of histone deacetylases (HDACs) in the
control of peritoneal fibrosis. In cultured PD effluent-derived MCs, treatment with MS-
275, an HDAC1-3 inhibitor, restored an epithelial signature after PDF-induced MMT. This
included downregulation of the mesenchymal markers MMP2, collagen type 1 alpha 1
(COL1A1), plasminogen activator inhibitor (PAI)-1, and TGFβ1 and its receptor type 1
(TGFβRI); upregulation of the epithelial markers E-cadherin and occludin, and the loss of in-
vasive features [210]. Moreover, treatment with MS-275 as well as HDAC1 genetic silencing
induced the expression of WT1, a transcription factor controlling MC differentiation [211].

In vivo, the delivery of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor,
prevented the progression of CG-induced fibrosis in mice, noted by reduced submesothelial
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thickness and type III collagen accumulation, and less FSP1- and α-SMA-positive cells in the
peritoneum [212]. Additionally, the treatment with Tubastatin A, a highly selective HDAC6
inhibitor, in PDF-exposed mice, prevented submesothelial zone thickness and decreased
expression of collagen type I, α-SMA, and TGF-β1, and inhibited the phosphorylation
of SMAD3, EGFR, STAT3, and p65 NF-κB [213]. In a model of CG-induced peritoneal
fibrosis, Tubastatin A also prevented damage, including reduced fibrosis and inhibition of
M2 macrophages polarization by suppressing the activation of TGF-β/SMAD3, PI3K/AKT,
STAT3, and STAT6 pathways [214].

Micro RNAs (miRNAs) are the most studied non-coding RNAs. Different miRNAs
have been found in PD effluents and have been associated with peritoneal function and
damage parameters [215]. Most of them have been studied in vitro, whereas few studies
have been performed on in vivo models. In fibroblastic MCs from PD patients, miR-769-5p
has been demonstrated to directly target TGFBRI, SMAD2/3, and PAI-1 expression and
to promote the reacquisition of epithelial-like features [211]. Among miRNAs studied
in in vivo models, miR-21-5p blockade using an inhibitor anti-miRNA-21-LNA reduced
PM thickness, decreased the expression of the fibrosis markers Col1a1, Fsp1, and Fn1,
and increased the expression of the anti-inflammatory response transcription factor PPAR-
α [216]. Moreover, treatment with an inhibitor of miR-296-3p improved peritoneal fibrosis
and angiogenesis in a high glucose PDF-exposure model in mice [172]. On the other hand,
the expression of miR-302c, a miRNA that negatively correlated with CTGF and MMT
markers in MCs from PD effluents of patients, was found to be downregulated in the
peritoneum of PDF-exposed mice and the transfection of a lentivirus containing mmu-miR-
302c protected the PM from PDF-induced fibrosis improving CTGF, Collagen type I, and
α-SMA levels [217].

6. COVID-19 in CKD Patients under KRT and in Mesothelium

At the end of 2019, a novel coronavirus (CoV) designated as SARS-CoV-2 emerged in
the city of Wuhan, China, and caused an outbreak of unusual viral pneumonia. It is now
well assessed that SARS-CoV-2 first infects epithelial cells of the upper respiratory tract
(nasal passages and throat) and especially lungs (bronchi and alveoli), where alveolar type
I and type II cells are believed to mediate the first encounter with the virus; the subsequent
infection of alveolar macrophages is determinant in mediating the amplification of the
inflammatory and immune responses [218]. SARS-CoV-2 pathogenesis, characterized by
clinical phenotypes spanning from asymptomatic infection to mild disease with symp-
toms related to airways tract implication, severe pneumonia, acute respiratory distress
syndrome (ARDS), and multiple organ failure, has been largely studied during the last
three years [219]. Several studies pointed out the role of viral secondary targets implied in
the worsening of the pathology. The virus can penetrate in the blood circulation resulting
in secondary organ infection. A molecular investigation on COVID-19 autopsies demon-
strated the presence of SARS-CoV-2 secondary infection in several organs, detecting high
viral positivity in the nasopharynx (90.4%) followed by bilateral lungs (87.30%), peritoneal
fluid (80%), pancreas (72.72%), bilateral kidneys (68.42%), liver (65%) and even in the brain
(47.2%) [220]. Literature reports the kidney as one of the most probable secondary organs
for SARS-CoV-2 infection [221–224].

Mechanistically, SARS-CoV-2 entrance in the host cell is mediated by ACE2 as a
main receptor, although ACE2-independent entry has been demonstrated [218]. Molecular
analysis in human tissues exhibited higher expression of ACE2 in the kidney than in the
lung [225–227]. One of the causes of kidney injury in COVID-19 patients can be ascribed
to a specific immunological effector response, such as specific T lymphocytes, induced by
the virus or by the interaction between viral antigens with specific antibodies [228,229].
SARS-CoV-2 implication in the complication of kidney pathologies was also demonstrated
by cohort studies [230–233]. To overcome SARS-CoV-2 effects in kidney deterioration,
hemodialysis has been proposed [234]. Importantly, CKD, after old age, is the factor that
most increases the risk of death in COVID-19 patients [4].
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COVID-19 also affects patients on KRT. Some studies have demonstrated susceptibility
to infection in patients undergoing PD, although the reported cases are less frequent than in
hemodialyzed patients [235]. However, PD could represent a more practical and safer KRT
method for CKD patients, considering a home-safer option during the pandemic crisis [236].
In this sense, a recent cohort population study of PD patients pointed out that this KRT
does not increase the risk of infection for SARS-CoV-2. Most of the infected patients
studied successfully developed specific viral antibodies and get recovered from COVID-19,
maintaining PD treatment [237]. Remarkably, SARS-CoV-2 infection positively correlated
with PD failure, suggesting a possible effect of the virus on the PM [238]. Although it is
conceivable that the PM is a secondary infected organ in SARS-CoV-2 pathogenesis, there is
no in vivo direct evidence so far of MCs infection by the virus. Despite this, MCs have been
found to express SARS-CoV-2 specific receptors/co-receptors ACE2, transmembrane serine
protease 2 (TMPRSS2), A disintegrin and metalloproteinase 17 (ADAM17), and neuropilin
1 (NRP1) [239].

M2 MØs has been previously discussed for their immunomodulatory/anti-inflammatory
activity during peritoneum infections. Accordingly, treatment with extracellular vesicles
(EVs) generated in response to SARS-CoV-2 infection reduced the expression of inflamma-
tory cytokines, such as TNF-α and IL-6, released in vitro and in vivo, attenuating oxidative
stress and multiple organs (lung, liver, spleen, and kidney) damage in endotoxin-induced
cytokine storms [56]. Moreover, M2 peritoneal MØs were also demonstrated to release
high levels of ACE2 in EVs and this could represent a decoy strategy to prevent SARS-
CoV-2 infection [56]. Similarly to MØs, pleura MCs have been demonstrated to produce
anti-inflammatory cytokines in vitro in response to SARS-CoV-2 viral infection [239]. In
fact, IL-10 and TNFRs were shown to represent a predominant cytokine response in SARS-
CoV-2 MCs infected cells, over proinflammatory cytokines such as IL-1β, TNFα, and IL-6.
This overproduction of anti-inflammatory cytokines could have systemic relevance due to
the extension of the pleura surface (2000 cm2 in an average adult male) as a homeostatic
mechanism of dampening the inflammatory response during infection.

The availability of SARS-CoV2 vaccines brought new hope and changed the perspec-
tive of the COVID-19 pandemic. COVID-19 vaccination was demonstrated to reduce severe
complications related to SARS-CoV-2 infection [240]. However, since the generation of a
specific immune response is needed for a positive response to vaccinations, the efficacy of
vaccinations may be diminished in patients with CKD, due to a possible impairment of
the immune system in these patients [241]. With respect to kidney transplant recipients, it
was reported that most of them could not generate a protective humoral immunity after
standard protocols of SARS-CoV-2 vaccination due to the fact that they require treatments
with immunosuppressive drugs [242]. However, seroconversion is not an accurate mea-
sure of response, since some patients who were not able to produce antibodies still had
a detectable vaccine-specific T-cell response, which might be sufficient to prevent severe
COVID-19 [243,244]. Importantly, infection or a third dose of mRNA vaccine was demon-
strated to elicit neutralizing antibody responses against SARS-CoV-2 in kidney transplant
recipients [245].

Thus, the availability of SARS-CoV2 vaccines changed the natural history of the
COVID-19 pandemic strongly reducing severe life-threatening complications. However,
in immunocompromised patients such as transplanted patients, vaccination may fail to
induce a protective immune response. In this case, personalized vaccination regimens
and/or alternative pharmacological treatment are urgently needed.

7. Conclusions

Immune cells are responsible for PM damage during repeated exposure to PD fluids
not only during bacterial or viral infections but also in sterile conditions. Different already
used drugs in CKD with anti-inflammatory properties have been proposed here as interest-
ing options to serve the dual purpose as clinical treatments for CKD and to help preserving
PM integrity during PD treatments in these patients.
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The irruption of the SARS-CoV-2 pandemic constituted a new challenge in the treat-
ment of CKD patients. CKD increases the risk of death in COVID-19 patients, but also
SARS-CoV-2 viral infection can complicate kidney damage by different mechanisms. In
this condition, the home-based PD practice could represent a more practical and a safer
KRT method for CKD patients.
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