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Abstract: The study of allelopathic activity of plants and the isolation and characterization of the
responsible allelochemicals can lead to the development of environment friendly alternative ap-
proaches to weed control. Conyza species are invasive weeds that use allelopathic activity as part of a
successful strategy to outcompete neighboring plants. Broomrape weeds are parasitic plants that use
host-induced germination and the formation of a haustorium as strategies to infect host plants. The
control of broomrape infection in most affected crops is limited or non-existing. In the current study,
we investigated the allelopathic activity of Conyza bonariensis organic extracts in suicidal germination
and radicle growth of four broomrape species (Orobanche crenata, Orobanche cumana, Orobanche minor
and Phelipanche ramosa). A bioactivity-driven fractionation of Conyza bonariensis extracts led to the
identification of two germination-inducing molecules and two growth-inhibitory compounds. The
germination-inducing metabolites had species-specific activity being hispidulin active on seeds of
O. cumana and methyl 4-hydroxybenzoate active in P. ramosa. The growth-inhibitory metabolites
(4Z)-lachnophyllum lactone and (4Z,8Z)-matricaria lactone strongly inhibited the radicle growth of
all parasitic weed species studied. Some structure–activity relationships were found as result of the
study herein presented.

Keywords: Orobanche; Phelipanche; suicidal germination; radicle growth; parasitic plants; sustainable
crop protection

1. Introduction

Conyza weeds (Asteraceae) are invasive plants native to America, severely affecting
many crops worldwide [1]. Conyza bonariensis (L.) Cronq. is present in Spanish crops with
noxious effects on their yields [2,3]. Conyza species use allelopathy as part of a successful
strategy to outcompete neighboring plants [4–7]. Broomrape weeds (Orobanchaceae) are
root-parasitic plants of Orobanche and Phelipanche genera [8]. Some species of broomrapes
are among the most damaging weeds for agricultural production in a large number of crop
species. Among them, Orobanche crenata infects crops mainly in Fabaceae and Apiaceae.
Orobanche cumana infects sunflower plants. Orobanche minor has a range of host crops in
Asteraceae, Apiaceae, Solanaceae and other families. Lastly, Phelipanche ramosa infects
crops in Solanaceae, Brassicaceae, Cannabaceae, Fabaceae, Apiaceae and Asteraceae [8,9].
Broomrape weeds are obligated parasites that depend on their host crops for nutrient
and water supply, and therefore they are obliged to connect with host vasculature shortly
after germination [10]. To maximize the likelihood of host connection, their germination is
inhibited until perception of metabolites released by roots of potential hosts which ensures
the initiation of parasitic weed life cycle in the immediate vicinity of the host [11]. After
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germination, a tiny radicle emerges through the seed coat that grows towards the host root
and then forms a haustorium with functions of host attachment, penetration and vascular
connection [12].

In broomrape species, strigolactones are the main class of germination stimulants,
being characterized in more than twenty-five structural forms [13,14]. Strigolactones are
exuded by crop roots to mediate plant-microbial beneficial interactions [14,15], and collat-
erally they are used by broomrape weeds to locate the crop root vulnerable to infection.
Host-specific broomrapes respond to other chemical classes of germination stimulants. For
example, seeds of O. cumana germinate in response to sunflower-derived sesquiterpene
lactones, i.e., dehydrocostus lactone, costunolide, tomentosin and 8-epixanthatin, or the
eudesmanolide anhydrojudaicin [16–18]. Germination of P. ramosa populations adapted to
parasitize Brassicaceae crops responds to glucosinolate-breakdown products, particularly
to the isothiocyanates erucin, berteroin, 4-pentenyl isothiocyanate and 2-phenylethyl isoth-
iocyanate [19]. Germination in absence of a host or at a distance longer than 4 mm from
the host root is considered suicidal because the seedling exhausts its viability before infec-
tion [20,21]. After germination, inhibition of radicle growth impedes the formation of the
haustorium on the crop root avoiding crop infection [22]. The mechanisms of host-induced
germination and radicle growth towards host root can be targeted by chemical control
strategies through the use of natural products either stimulating suicidal germination or
inhibiting broomrape radicle growth that minimize infection of crops [22,23].

Two recent studies showed the potential of Conyza bonariensis root extracts to inhibit
the growth of the parasitic weeds of Orobanche, Phelipanche [23] and Cuscuta campestris
(Convolvulaceae) [24]. The Cuscuta bioactivity-driven fractionation of Conyza extracts
allowed the discovery of (4Z)-lachnophyllum lactone as the major active component [24].
In the light of this background, this manuscript focuses on the allelochemicals isolated
from C. bonariensis shoots and reports for the first time the characterization of their activity
against four of the most relevant species of broomrape weeds.

2. Results and Discussion
2.1. Organic Extractions of Conyza Bonariensis Shoots and Evaluation of Inhibitory Activity
on Broomrapes

Conyza bonariensis lyophilized shoots were extracted by maceration with a hydroalco-
holic solution as described in Section 3. Then, three different solvents (namely n-hexane,
dichloromethane, and ethyl acetate) were used in sequential order to obtain organic extracts
containing metabolites with different polarity. The allelopathic activity of these extracts
was analysed at 100 µg/mL using two independent bioassays: germination induction
and radicle growth bioassays. The germination stimulatory activity of Conyza extracts
was studied on seeds of four species of broomrapes (O. crenata, O. cumana, O. minor and
P. ramosa). This germination bioassay was performed diluting each test extract in distilled
water. Results are shown in Figure 1 A–C. As expected, null germination was observed
when seeds of all broomrape species were treated with negative control (distilled water).
Significant effect in germination was observed for Conyza extract (ANOVA, p < 0.001), for
broomrape species (ANOVA, p < 0.001) and for the interaction Conyza extract x broomrape
species (ANOVA, p < 0.001). Germination of O. crenata seeds were not induced by any of
the Conyza extracts tested. On the other hand, Conyza extracts induced the highest levels of
germination on seeds of O. cumana (15.3 ± 2.8%, 45.1 ± 2.9% and 31.4 ± 1.6% germination,
respectively, induced by n-hexane, dichloromethane and ethyl acetate extracts). Low but
significant germination was induced by n-hexane and dichloromethane extracts in O. minor
and P. ramosa seeds (Figure 1A,B) and by ethyl acetate extracts in O. minor seeds (Figure 1C).
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Figure 1. Allelopathic effects on suicidal germination (A–C) and radicle growth (D–F) of 4 broomrape
species: Orobanche crenata, Orobanche cumana, Orobanche minor and Phelipanche ramosa induced by
extracts prepared from sequential extractions with n-hexane (A,D), dichloromethane (B,E), and ethyl
acetate (C,F) of Conyza bonariensis shoots in each figure, bars with different letters are significantly
different according to the Tukey test (p < 0.05). Error bars represent the standard error of the mean.

The growth inhibitory activity of Conyza extracts was studied on radicles of the
four broomrapes species (O. crenata, O. cumana, O. minor and P. ramosa). As germination
of broomrape seeds is inhibited until detection of germination stimulants, the radicle
growth bioassay was performed mixing each test extract with the germination stimulant
GR24. Results are shown in Figure 1D–F. Significant effect in radicle growth inhibition
was observed for Conyza extract (ANOVA, p < 0.001), for broomrape species (ANOVA,
p < 0.001) and for the interaction Conyza extract x broomrape species (ANOVA, p = 0.023).
All extracts induced the highest growth inhibitory activity on radicles of O. cumana
(59.4 ± 3.3%, 63.7 ± 2.1%, and 42.0 ± 0.9% of inhibition, respectively, observed with treat-
ments of n-hexane, dichloromethane and ethyl acetate extracts) and O. minor (54.5 ± 9.3%,
68.7 ± 4.9% and 65.6 ± 2.7% of inhibition, respectively, observed with treatments of
n-hexane, dichloromethane and ethyl acetate extracts). All extracts induced moderate levels
of inhibition in P. ramosa radicles and low or negligible in O. crenata radicles (Figure 1D–F).

2.2. Isolation of Pure Metabolites (1–7) from the Organic Extracts and their Chemical Identification

Once the activity of the organic extracts was confirmed, they were further puri-
fied as described in Section 3. Seven pure metabolites (1–7, Figure 2) were isolated and
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identified as (4Z)-lachnophyllum methyl ester (1, 26.0 mg), (4Z)-lachnophyllum lactone
(2, 45.9 mg), (4Z,8Z)-matricaria lactone (3, 9.3 mg), (4E,8Z)-matricaria lactone (4, 3.8 mg),
methyl 4-hydroxy-3-methoxybenzoate (5, 9.8 mg), methyl 4-hydroxybenzoate (6, 13.8 mg)
and hispidulin (7, 9.6 mg) (Figure 2). Specifically, the purification of the n-hexane extract
provided compounds 1–4, the CH2Cl2 extract provided compounds 2 and 5–7, and the
EtOAc extract provided compounds 5–7.
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Figure 2. Compounds isolated from Conyza bonariensis shoot extracts.

The structures of the isolated compounds were confirmed by NMR spectroscopy and
MS and by comparison with the data reported in the literature (see Section 3.3). The 1H
NMR spectrum and the molecular ion peak of compound 1 indicated the obtaining of
(4Z)-lachnophyllum methyl ester, a compound previously found in C. bonariensis [25],
whose structure would correspond with that of the opening of a furanone lactone. Instead,
compounds 2–4 were lactones constituted by a 2-furanone ring bonded to an unsaturated
chain. The signals assigned to the hydrogen atoms of the chain in the 1H NMR spectra, and
the close molecular ion peak values obtained for these three compounds (m/z: 161–163),
indicated that compounds 2–4 differed from each other in the level of unsaturation or in the
geometry of the double bonds. Thus, compound 2 was identified as (4Z)-lachnophyllum
lactone [24], whereas compounds 3 and 4 were analogues of compound 2 containing a
double bond in positions C8 = C9, whose structure corresponds with that of matricaria
lactone. By comparing the 1H NMR spectra of compounds 3 and 4 with the data available
in the literature for matricaria lactone, the main difference observed was that H-5 appeared
0.43 ppm higher in compound 3. Thus, it was concluded that compounds 3 and 4 were
geometric isomers at their C4 = C5 double bonds, being identified as (4Z,8Z)-matricaria
lactone (3) and (4E,8Z)-matricaria lactone (4) [26,27].

The 1H NMR spectra of compounds 5 and 6 indicated that both compounds were benzene-
derived aromatic compounds. Attending also at their molecular ion peak values, it was
confirmed that both compounds contain a hydroxyl and a methyl ester group in para positions
and that compound 5 shows an additional ortho-methoxy group. They were identified as
methyl 4-hydroxy-3-methoxybenzoate (5) [28] and methyl 4-hydroxybenzoate (6) [29].

The experimental NMR spectra and molecular ion peak of compound 7 were in
agreement with that of a flavonoid containing three hydroxyl groups and one methoxy
group as substituents. It was identified as hispidulin by comparison of its data with that
already reported for this flavonoid [30,31]. It is worth noting that hispidulin is a flavonoid
with anti-inflammatory and antioxidant properties [32]. It has potential use as an anticancer
drug [33], also being found with activity as a quorum sensing inhibitor with application
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in the control of infections caused by Pseudomonas aeruginosa [34] and with activity on
phytotoxic assays on the root and seedling growth and on the seed germination of crop
species of radish, cucumber and onion [35].

2.3. Bioactivity of the Isolated Compounds (1–7) on Broomrapes

Allelopathic effects of compounds 1–7 were analysed on four broomrapes species
(O. crenata, O. cumana, O. minor and P. ramosa) at 1 and 0.1 mM using two independent
bioassays: germination induction and radicle growth inhibition bioassays. The germination
bioassay was performed diluting each molecule in distilled water. As expected, null
germination was observed when seeds of all broomrape species were treated with negative
control (distilled water). High germination activity was observed by the positive control,
the synthetic strigolactone GR24 (71.1 ± 1.4%, 63.5 ± 1.2%, 80.5 ± 2.0% and 74.9 ± 1.3%
of germination of O. crenata, O. cumana, O. minor and P. ramosa, respectively). Among the
isolated compounds, methyl 4-hydroxybenzoate (6) and hispidulin (7) showed significant
stimulatory activity. Specifically, compound 6 was active on P. ramosa when applied at
1 mM (58.1 ± 3.0% of seed germination) and at 0.1 mM (26.7 ± 1.9% of seed germination),
though null germination was observed for the rest of broomrape species studied (data not
shown). The absence of methyl 4-hydroxy-3-methoxybenzoate (5) activity showed that the
p-methoxy group has a direct influence on the loss of the activity observed for compound 5
in comparison with compound 6. Similar loss of activity in flavonoid-induced Gigaspora
rosea germination was observed by Scervino et al. [36]. Compound 7 showed significant
stimulatory activity on O. cumana when applied at 1mM (31.2 ± 2.7% of seed germination)
and at 0.1 mM (5.3 ± 14% of seed germination), whereas null germination was observed
in the rest of broomrape species studied. Suicidal germination of root parasitic weeds
has been previously reported to be induced by the isoflavone uncinanone B isolated from
Desmodium uncinatum [37].

The growth inhibitory activity of compounds 1–7 was studied on radicles of O. crenata,
O. cumana, O. minor and P. ramosa. As germination of broomrape seeds is naturally inhibited
until detection of germination stimulants, the radicle growth bioassay was performed
mixing each test compound with the germination stimulant GR24. Results are shown
on Figure 3. Significant effect in radicle growth inhibition was observed for the type of
compound (ANOVA, p < 0.001), for broomrape species (ANOVA, p < 0.001), for compound
concentration (ANOVA, p < 0.001) and for the interaction compound x broomrape species
(ANOVA, p < 0.001) or the interaction compound x concentration (ANOVA, p < 0.001). The
(4Z)-lachnophyllum lactone (2) and (4Z,8Z)-matricaria lactone (3) were the most active
compounds both at concentrations of 1 mM (Figure 3A–D) and 0.1 mM (Figure 3E–H). In all
broomrape species tested, compound 3 showed the strongest inhibition activity on radicles
(Figure 4), with inhibition values over 80% in most of the cases. At 1mM, inhibition values
close to 100% were observed for O. cumana, O. minor and P. ramosa. The activity showed
by compound 2 is also worth highlighting, with inhibition values over 70% in most of the
cases. These results, together with that recently reported against C. campestris [24], support
the potential of (4Z)-lachnophyllum lactone (2) as a promising allelochemical for parasitic
weed control.
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Figure 3. Growth inhibition induced by (4Z)-lachnophyllum methyl ester (1); (4Z)-lachnophyllum lactone
(2); (4Z,8Z)-matricaria lactone (3), (4E,8Z)-matricaria lactone (4); methyl 4-hydroxy-3-methoxybenzoate
(5); methyl 4-hydroxybenzoate (6); hispidulin (7); applied at 1mM (A–D); and 0.1mM (E–H); in
radicles of O. crenata (A,E); O. cumana (B,F); O. minor (C,G); and P. ramosa (D,H); bars with different
letters are significantly different according to the Tukey test (p < 0.05). Error bars represent the
standard error of the mean.
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Figure 4. Treatments with control (A–D) and compound (4Z,8Z)-matricaria lactone (3) applied
at 0.1mM (E–H) on radicles of O. crenata (A,E); radicles of O. cumana (B,F); radicles of O. minor
(C,G); and radicles of P. ramosa (D,H).

By comparing the activity of compounds 2 and 3 with that of the other tested com-
pounds (Figure 3), a remarkable improvement, especially when tested at the lowest con-
centration (0.1 mM), can be observed. Methyl 4-hydroxybenzoate (6) also showed to be
moderately active at reducing radicle growth inhibition at 1 mM for O. cumana, O. minor
and P. ramosa, with inhibition values around 60% (Figures 3B–D and 5).
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At this concentration, formation of papillae at the tip of the treated radicles was also
observed in O. cumana (Figure 5B–D), while a smooth radicle tip without papillae was
observed in O. cumana radicles treated with control (Figure 5A). The activity of radicle
growth inhibition and papillae formation of compound 6 was lost at a concentration of
0.1 mM. Low or negligible activity was observed for the rest of the tested compounds at all
concentrations tested (1, 4, 5 and 7).

From the structural point of view, it could be concluded that the high inhibition activity
levels showed by the lactones (4Z)-lachnophyllum lactone (2) and (4Z,8Z)-matricaria
lactone (3) decrease to a high extent when the lactonic ring is opened (compound 1). This
conclusion is in agreement with the results reported in a previous study for the same
compounds in inhibition growth bioassays on monocot and dicot species [26]. Comparing
the activity levels of compounds 3 (4Z) and 4 (4E), a strong effect of the geometry of the
C4 = C5 double bond can also be attributed to the loss of activity of compound 4. These
conclusions obtained for compounds 1–4 can be completed by a comparison with their
respective lipophilicity values, calculated by the CLogP algorithm, to provide some glimpse
of their different behavior. Respectively, these CLogP values are 2.71 (1), 2.46 (2) and 2.00
(3 and 4). It can be observed that the lower activity of compound 1 could be related
to its higher lipophilicity, possessing a different solubility than compounds 2–4. When
comparing the geometric isomer compounds 3 and 4, similar CLogP values are calculated.
This result indicates that the great difference of activity between both compounds would
be related to a different reactivity and not to different levels of solubility.

Finally, the results obtained for the aromatic compounds 5 and 6 allow us to conclude
that the presence of the p-methoxy group is related to a decrease of the inhibition activity.
This structural relationship, as previously mentioned, was also observed in the germination
induction bioassay.

3. Materials and Methods
3.1. General Experimental Procedures

1H and 13C NMR spectra were recorded at 500/125 MHz on a Bruker 500 AVANCE
NEO spectrometer (Karlsruhe, Germany) or at 400/100 MHz on a Bruker 400 Anova
Advance. The spectra were recorded using CDCl3 or (CD3)2CO, and the same solvents
were used as internal standards. Electrospray ionization mass spectra (ESIMS) were
performed using the LC/MS TOF system AGILENT 6230B (Agilent Technologies, Milan,
Italy), HPLC 1260 Infinity. Column chromatography (CC) was performed using silica gel
(Kieselgel 60, 0.063–0.200 mm, Merck, Darmstadt, Germany). Thin-layer chromatography
(TLC) was performed on analytical and preparative silica gel plates (Kieselgel 60, F254, 0.25
and 0.5 mm, respectively, Merck, Darmstadt, Germany). The spots were visualized via
exposure to UV light (254 nm) and/or iodine vapours and/or by spraying first with 10%
H2SO4 in MeOH and then with 5% phosphomolybdic acid in EtOH, followed by heating at
110 ◦C for 10 min. Sigma-Aldrich Co. (St. Louis, MO, USA) supplied all the reagents and
the solvents.

3.2. Plant Material

Specimens of Conyza bonariensis were harvested at the phenological stage of emergence
of the inflorescence in spring of 2022 in Cordoba, southern Spain (coordinates 37.856 N,
4.806 W, datum WGS84). After harvesting, C. bonariensis shoots were immediately car-
ried to the laboratory and frozen with liquid nitrogen, stored at −80 ◦C, subsequently
lyophilized and the dry material stored until use at 4 ◦C in the dark. Broomrape seeds were
collected from mature plants of Orobanche crenata infecting pea plants in Spain, Orobanche
cumana infecting sunflower plants in Spain, Orobanche minor infecting red clover plants in
France and Phelipanche ramosa infecting tobacco plants in France. Dry parasitic seeds were
separated from capsules using a sieve of 0.6 mm mesh size and then stored dry at room
temperature in the dark until use for this work.
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3.3. Isolation and Identification of Metabolites from Conyza bonariensis Shoots

A total of 240 g of Conyza bonariensis shoots were extracted, following a previously
reported protocol often used for the extraction of plant material [38]. In particular, the
shoots were ground and extracted by 1.7 L H2O/MeOH (1/1, v/v), under stirred conditions
at room temperature for 24 h. The hydroalcoholic suspensions were centrifuged at 7000 rpm
and extracted with n-hexane (3 × 800 mL), CHCl3 (3 × 800 mL) after removing methanol
under reduced pressure, with EtOAc (3 × 500 mL). Each extract was dried over anhydrous
Na2SO4, then filtered, and the solvent was evaporated under reduced pressure. The
extraction was carried twice, and each organic extract was combined, yielding 169.1 mg
(n-hexane), 276.1 mg (CHCl3) and 295.9 mg (EtOAc).

The n-hexane organic extract was purified by CC on Si-gel, eluted with CHCl3/i-
propanol (9/1, v/v), yielding seven homogeneous fractions (F1-F7). The residue of F2
(41.7 mg) was purified by TLC eluted with n-hexane/EtOAc (9/1, v/v), yielding five groups
of homogeneous fractions (F1.1-F1.5). The residue of F1.4 (47.1 mg) was purified by TLC
eluted with n-hexane/EtOAc (95/5, v/v), yielding a pure compound identified as (4Z)-
lachnophyllum methyl ester (1, 10.1 mg). The residue of F3 (93.0 mg) was purified by TLC
eluted with n-hexane/EtOAc (4/1, v/v), yielding four groups of homogeneous fractions
(F3.1-F3.4). F3.1 yielded a further amount of compound 1 (15.9 mg, for a total amount of
26.0 mg). The residue of F3.2 was identified as (4Z)-lachnophyllum lactone (2, 32.6 mg),
the residue of F3.3 was identified as (4E,8Z)-matricaria lactone (4, 3.8 mg), while F3.4 was
identified as (4Z,8Z)-matricaria lactone (3, 9.3 mg).

The CH2Cl2 organic extract was purified by CC on Si-gel, eluted with CHCl3/i-
propanol (95/5, v/v), yielding nine homogeneous fractions (F1-F9). The residue of F1
(32.2 mg) was further purified by TLC eluted n-hexane/EtOAc (4/1, v/v), yielding a further
amount of (4Z)-lachnophyllum lactone (2, 13.3 mg, for a total amount of 45.9 mg). The
residue of F4 (42.6 mg) was purified by TLC eluted with CHCl3/i-propanol (9/1, v/v),
yielding two pure compounds identified as methyl 4-hydroxy-3-methoxybenzoate (methyl
vanillate, 5, 4.8 mg) and as methyl 4-hydroxybenzoate (6, 6.4 mg). The residue of F5
(34.6 mg) was purified by TLC eluted with CHCl3/i-propanol (98/2, v/v), yielding a pure
compound identified as hispidulin (7, 6.2 mg).

The EtOAc organic extract was purified by CC on Si-gel, eluted with CHCl3/i-propanol
(95/5, v/v), yielding six homogeneous fractions (F1-F6). The residue of F1 (37.6 mg) was
further purified by TLC eluted with CHCl3/i-propanol (98/2, v/v), yielding a further
amount of methyl 4-hydroxy-3-methoxybenzoate (5, 5.0 mg, for a total amount of 9.8 mg)
and of methyl 4-hydroxybenzoate (6, 7.4 mg, for a total amount of 13.8 mg). The residue
of F2 (12.6 mg) was purified by TLC eluted with CHCl3/i-propanol (98/2, v/v), yielding
further amount of hispidulin (7, 3.4 mg, for a total amount of 9.6 mg).

(4Z)-Lachnophyllum methyl ester (1): 1H NMR spectrum (Supplementary materials
Figure S1) was in agreement with data previously reported [25]. ESI MS (+) m/z: 177
[M+H]+ (Figure S2).

(4Z)-Lachnophyllum lactone (2): 1H NMR spectrum (Figure S3) was in agreement
with data previously reported [24]. ESI MS (+) m/z: 163 [M+H]+ (Figure S4).

(4Z,8Z)-Matricaria lactone (3): 1H NMR spectrum (Figure S5) was in agreement with
data previously reported [26]. ESI MS (+) m/z: 161 [M+H]+ (Figure S6).

(4E,8Z)-Matricaria lactone (4): 1H NMR spectrum (Figure S7) were in agreement with
data previously reported [27]. ESI MS (+) m/z: 161 [M+H]+ (Figure S8).

Methyl 4-hydroxy-3-methoxybenzoate (5): 1H NMR spectrum (Figure S9) was in
agreement with data previously reported [28]. ESI MS (+) m/z: 183 [M+H]+ (Figure S10).

Methyl 4-hydroxybenzoate (6): 1H NMR spectrum (Figure S11) was in agreement with
data previously reported [29]. ESI MS (+) m/z: 153 [M+H]+ (Figure S12).

Hispidulin (7): 1H NMR and 13C NMR spectra (Figures S13 and S14) were in agreement
with data previously reported [30,31]. ESI MS (+) m/z: 301 [M+H]+ (Figure S15).
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3.4. Bioactivity on Parasitic Weed Seeds

Allelopathic effects of each Conyza bonariensis extract and isolated compounds were
tested on broomrape seeds in two independent bioassays conducted according to previous
protocols [39]. First, seeds of four broomrape species, Orobanche crenata, Orobanche cumana,
Orobanche minor and Phelipanche ramosa, were surface-sterilized by immersion in 0.5% (w/v)
NaOCl and 0.02% (v/v) Tween 20, for 5 min, rinsed with sterile distilled water, and dried in
a laminar airflow cabinet. Previous to germination induction, broomrape seeds require to
be conditioned using a warm stratification. Approximately 100 seeds of each broomrape
species were individually placed on each of a total of 105 glass fiber filter paper discs (GFFP)
(Whatman International Ltd., Maidstone, UK) of 9 mm-diameter, each one moistened with
50 µL of sterile distilled water, and placed in Petri dishes sealed with parafilm in incubators
at 23 ◦C for 10 days.

For the assay of suicidal germination, for each broomrape species 42 GFFP discs
containing conditioned seeds were placed onto a sterile sheet of filter paper to remove the
conditioning water and transferred dry to new 9 cm sterile Petri dishes. Stock solutions
of each Conyza extract and purified metabolite were dissolved in dimethyl sulfoxide and
then individually diluted in sterile distilled water up to an equivalent concentration of
100 µg/mL in the case of the extracts and 1 mM in the case of purified metabolites (1–7).
Triplicate aliquots of treatments containing only sterile distilled water supplemented with
2% dimethyl sulfoxide were used as a negative control, and the synthetic germination
stimulant GR24 supplemented with 2% dimethyl sulfoxide was used as a positive control.

For the assay of radicle growth inhibition, for each broomrape species 63 GFFP discs
containing the conditioned seeds were placed onto a sterile sheet of filter paper to remove
the conditioning water and transferred dry to new 9 cm sterile Petri dishes. Broomrape
seeds require the induction of germination with a germination stimulant and therefore for
radicle growth bioassays, the test compound is applied to broomrape seeds mixed with
the synthetic germination stimulant GR24. Stock solutions of each extract and purified
metabolite were dissolved in dimethyl sulfoxide and then diluted using an aqueous solution
of GR24 up to a concentration of 100 µg/mL in the case of the Conyza extracts and at
concentrations of 1 and 0.1 mM in the case of purified metabolites 1–7. For each assay,
triplicate aliquots of each sample were applied to GFFP discs containing conditioned
seeds of each broomrape species. Triplicate aliquots of treatments only containing GR24
supplemented with 2% dimethyl sulfoxide were used as a control.

Treated seeds were incubated in the dark at 23 ◦C for 7 days, and the percent of
germination and radicle growth was determined for each GFFP disc, using a stereoscopic
microscope (Leica S9i, Leica Microsystems GmbH, Wetzlar, Germany). For suicidal ger-
mination assays, the activity of each extract and purified metabolite was determined by
counting the percent of germinated seeds for each GFFP disk. For the characteristic of
radicle growth inhibition activity of each extract and purified metabolite, the value used
was the average of 10 randomly selected radicles per GFFP disc [40]. The percentage of
radicle growth inhibition of each treatment was then calculated relative to the average
radicle growth of control treatment.

3.5. CLogP

CLogP were calculated using ChemOffice v20.1 (PerkinElmer, Waltham, MA, USA) by
means of the appropriate tool in ChemDraw Professional [41].

3.6. Data Analyses

All bioassays were performed using a completely randomized design. Percentage
data in Orobanche assays were approximated to normal frequency distribution by means
of angular transformation and subjected to analysis of variance (ANOVA) using SPSS
software for Windows (SPSS Inc., Chicago, IL, USA). The significance of mean differences
among treatments was evaluated by the Tukey test. The null hypothesis was rejected at the
level of 0.05.
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4. Conclusions

This study shows the potential of some of the metabolites produced by C. bonariensis to
be studied in depth as allelochemicals for the control of parasitic weeds of the broomrape
species. Methyl 4-hydroxybenzoate (6) and hispidulin (7) showed to be active for inducing the
germination of P. ramosa or O. cumana, so both compounds would be of interest to be used in
the suicidal germination strategy. In order to explore the possibilities of the isolated compounds
as growth inhibitors, it was found that (4Z)-lachnophyllum lactone (2) and (4Z,8Z)-matricaria
lactone (3) strongly inhibited the radicle growth of all parasitic weed species studied. Since
compound 2 was isolated in a higher yield, this allelochemical represents a special promising
and accessible tool for the management of broomrape pests. From the structural point of view,
the change of geometry to 4E and the opening of the lactone ring of compounds 2 and 3 have
been found detrimental for their growth inhibitory activity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules27217421/s1; Figure S1: 1H-NMR spectrum of 1 (CDCl3, 500 MHz); Figure S2: ESI
MS spectrum of 1; Figure S3: 1H-NMR spectrum of 2 (CDCl3, 500 MHz); Figure S4: ESI MS spectrum
of 2; Figure S5: 1H-NMR spectrum of 3 (CDCl3, 500 MHz); Figure S6: ESI MS spectrum of 3; Figure S7:
1H-NMR spectrum of 4 (CDCl3, 500 MHz); Figure S8: ESI MS spectrum of 4; Figure S9: 1H-NMR
spectrum of 5 (CDCl3, 500 MHz); Figure S10: ESI MS spectrum of 5; Figure S11: 1H-NMR spectrum of
6 (CDCl3, 500 MHz); Figure S12: ESI MS spectrum of 6; Figure S13: 1H-NMR spectrum of 7 (CDCl3,
500 MHz); Figure S14: 13C-NMR spectrum of 7 (CDCl3, 125 MHz); Figure S15: ESI MS spectrum of 7.
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