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Role of Eckhaus instability and pattern cracking in ultraslow dynamics of Kerr combs
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The Eckhaus instability is a secondary instability of nonlinear spatiotemporal patterns in which high-wave-
number periodic solutions become unstable against small-wave-number perturbations. Here we show that this
instability can take place in Kerr combs corresponding to subcritical Turing patterns upon changes in the laser
detuning. The development of the Eckhaus instability leads to the cracking of patterns and a long-lived transient
where the peaks of the pattern rearrange in space due to spatial interactions. In the spectral domain, this results
in a metastable Kerr comb dynamics with timescales that can be larger than 1 min. This time is, at least, seven
orders of magnitude larger than the intracavity photon lifetime and is in sharp contrast with all the transient
behaviors reported so far in cavity nonlinear optics that are typically only a few photon lifetimes long (i.e., in
the picosecond to the microsecond range). This phenomenology, studied theoretically in the Lugiato-Lefever
model and the observed dynamics is compatible with experimental observations in Kerr combs generated in
ultra-high-Q whispering-gallery mode resonators.
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Kerr optical frequency combs are obtained through pump-
ing a high-Q whispering-gallery mode (WGM) cavity with
a resonant laser [1]. In the past decade, the experimental
and theoretical studies of these combs have permitted major
advances in photonics (see review articles [2–5]). From the
applications standpoint, Kerr combs have been developed for
time-frequency metrology, ultrastable microwave generation,
spectroscopy, and optical communications, just to name a few.
From the fundamental perspective, Kerr combs have provided
an ideal platform to investigate light-matter interactions in
confined media. It has been shown that a wide variety of
dissipative structures could be excited in the WGM resonators,
being either stationary (azimuthal stripe or roll patterns, cav-
ity solitons, platicons) or nonstationary (breather solitons,
spatiotemporal chaos, and rogue waves). The primary bifur-
cations leading to these various patterns have also been the
focus of a detailed analysis in the literature [6–13]. However,
only a limited attention has been also devoted to secondary
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bifurcations, which lead to the destabilization of the stationary
patterns [13–16].

In this paper we study theoretically the Eckhaus (EC) in-
stability of stripe patterns in one dimension, which emerges
when a pattern loses its stability against small-wave-number
perturbations (see Refs. [17–19]). The Eckhaus instability
has long been studied in fluid mechanics [20,21], liquid
crystals [22], nonlinear optics [13,14,23–25], or systems
with delayed feedback [26]. Experimental observations are,
however, much more limited since large aspect-ratio pat-
terns are required, whereas being difficult to attain in most
systems. The Eckhaus instability can also be induced by
spatial inhomogeneities [24,27], an effect that has been ob-
served experimentally in a liquid-crystal layer with optical
feedback [23]. Other secondary instabilities and parametric
perturbations may also hinder Eckhaus instabilities [21,22].
Counterintuitively, despite their relatively small size, WGM
resonators can output large aspect-ratio stripe patterns with
tens or even hundreds of peaks [28], making the system
more susceptible to develop small-wave-number (or long-
wavelength) instabilities.

The theoretical analysis of the Eckhaus instability starts
with the Lugiato-Lefever equation (LLE) [29], which is an
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FIG. 1. Bifurcation lines of the homogeneous solutions and the
stripe pattern with L = 55 in the parameter space (α, F ). The ho-
mogeneous steady state (HSS) is stable below the modulational
instability (MI) (yellow line for α < 2) and below the SNb line for
α > 2. The pattern is stable above the EC line and below the SNP2

or the finite-wavelength Hopf (FWH) line, whichever comes first.
The dashed line shows the ramp of parameters applied to the pat-
tern, starting from (α, F ) = (1, 1.05) to (3.8, 2) beyond the Eckhaus
instability.

accurate model to analyze the laser field dynamics in Kerr-
nonlinear WGM resonators [30–32]. The slowly varying
complex amplitude of the normalized intracavity field ψ (θ, τ )
obeys the equation,

∂ψ

∂τ
= −(1 + iα)ψ − i

β

2

∂2ψ

∂θ2
+ i|ψ |2ψ + F, (1)

where θ ∈ [−π, π ] is the azimuthal coordinate along the ring
of the resonator, and τ = t/2τph is the time scaled to the pho-
ton lifetime. The normalized parameters of this equation are
the continuous-wave pump field F , the frequency detuning
between laser and pumped resonance frequencies α, and the
group-velocity dispersion β [31].

Equation (1) has homogeneous steady-states ψs implicitly
given by ρs[1 + (ρs − α)2] = F 2 with ρs = |ψs|2. The solu-
tion is trivalued for α >

√
3. The line SNb (respectively, SNt )

in Fig. 1 corresponds to the saddle-node bifurcation where
lower (respectively, upper) and middle branches meet so that
SNb and SNt unfold from the cusp at α = √

3 [6,7]. For
α <

√
3 the solution is monovalued. In what follows we refer

to the lower homogeneous steady state as HSS.
In the anomalous regime (β < 0) and for α < 2, ρs = 1

is the MI threshold above which the HSS is unstable to per-
turbations with wave-number L in the neighborhood of Lu =√

(2/β )(α − 2ρs) (see Fig. 1). Stripe patterns with different
wave numbers can emerge although typically the one with
wave-number Lu dominates since it has the largest growth
ratio. The wave-number L of the pattern determines the integer
number of azimuthal stripes, or rolls, fitting the inner periph-
ery of the disk. In the spectral domain, these stripe patterns
correspond to the so-called primary combs where the teeth
have a L × free-spectralrange (FSR) separation [6,7,33]. Pat-
terns are supercritical for α < 41/30 and subcritical for α >

41/30. Regarding stripe patterns with other possible wave
numbers, it turns out that only those with wave numbers
close to Lu are stable, forming what is known as a Busse
balloon [18,19] whereas patterns with wave numbers outside

the balloon are unstable. Moreover, in the subcritical regime,
cavity solitons or localized states (LSs) coexist with the peri-
odic patterns and the HSS. For α > 2 the critical wave number
is zero and the threshold ρs = 1 is a Belyakov-Devaney (BD)
transition of the HSS [7,13] (see Fig. 1).

To study the secondary bifurcations that destabilize a stripe
pattern of wave-number L we perform a linear stability anal-
ysis. The stationary but θ -dependent pattern can be expanded
in Fourier series as

ψP (θ ) =
N−1∑

n=−N

ψneinLθ , (2)

with L being the integer wave number (or order) of the pat-
tern and ψn being the complex amplitudes of the Fourier
modes. We take N = 32, and the amplitudes can be calcu-
lated numerically by solving the stationary problem using
a Newton-Raphson algorithm. Linearizing Eq. (1) about the
stationary pattern ψP (θ ) yields the perturbation equation,

∂τ δψ = −(1 + iα)δψ − i(β/2)∂2
θ δψ

+ 2i|ψP |2δψ + iψ2
P
δψ∗. (3)

Due to the periodicity of the system, the solution of Eq. (3)
can be written as the superposition of Bloch waves,

δψ (θ, τ ) = eiqθ δa(θ, τ, q) + e−iqθ δa(θ, τ,−q), (4)

where δa has the same periodicity of the pattern ψP (θ ) and
can be written as

δa(θ, τ, q) =
N−1∑

n=−N

δan(τ, q)einLθ , (5)

with q being an integer. Using Eq. (3), a set of linear equa-
tions for the Fourier modes δan(θ, q) can be derived [34], and
in compact form they read as

∂τϒ(τ, q) = M({ψn}, q)ϒ(τ, q), (6)

where ϒ(τ, q) ≡ [δa−N (τ, q), . . . , δaN−1(τ, q), δa∗
−N (τ,−q),

. . . , δa∗
N−1(τ,−q)]. The stability analysis of ψP(θ ) reduces

to find the 2N eigenvalues {λn(q)} of the matrix M({ψn}, q),
and its corresponding eigenvectors for each value of q. The
eigenvalues for a given integer q determine the stability
of the pattern against perturbations containing any set of
wave-numbers nL ± q. For this analysis it is sufficient to
consider only the q values inside the first Brillouin zone
[0, L/2]. We recall that the zero eigenvalue for q = 0
corresponds to the Goldstone mode associated with the
translational invariance, and modes with q � 0 form the
branch of soft modes.

Figure 1 shows the bifurcation lines of the stripe pattern
created spontaneously with the most unstable wave-number
Lu for α = 1 and F = 1.05 (ρs = 1.095). For the value of
β = −8 × 10−4 considered here, we have Lu = 55. As the
detuning is increased, the pattern becomes subcritical for α �
41/30, and above this value it exists between the saddle-node
lines SNP1 and SNP2 , although unstable below the EC line.
Above a certain value of the detuning and the pump, we
observe a FWH instability (dot dashed) leading to oscillatory
patterns [13,34]. We will not consider this regime here since
we focus on the Eckhaus instability. Note that pattern and HSS
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FIG. 2. Real part of the eigenvalues of the pattern with L = 55
for the branch of soft modes obtained from Eq. (6). Lines (a)–
(d) correspond to the parameter values indicated by dots in Fig. 1.
The curvature of the branch progressively changes from negative to
positive signaling the Eckhaus instability.

are stable and coexist in the parameter region limited by MI,
SNb, FWH, and EC lines.

Figure 2 shows the real part of the eigenvalues of the
pattern as a function of the wave-number q for the branch of
soft modes [34]. The parameters correspond to those indicated
by the dots in the inset of Fig. 1, crossing the Eckhaus insta-
bility. The change in convexity of the branch at q = 0 is what
precisely signals the Eckhaus instability. After the instability,
the pattern becomes unstable to small-wave-number pertur-
bations. Well beyond the instability, the wave number of the
mode maximum growth rate tends to the edge of the Brillouin
zone q = L/2.

After encountering an Eckhaus instability a pattern with
a wave number which is too large to be stable loses cells
in such a way that the new wave number lies in the stabil-
ity balloon [14]. For supercritical patterns this happens at a
relatively fast timescale. For subcritical patterns, the HSS is
stable and coexists with the pattern allowing the formation
of a LS. When a cell is lost the freed space is occupied
by the HSS leading to a transient state formed by groups
of LSs separated by the HSS, known as the cracking pat-
tern [35]. If LSs have oscillatory tails they may lock at
specific distances given by multiples of the oscillatory tail
wavelength [36], thus, the cracking pattern is stationary. In
microresonator nonlinear optics, stationary cracking patterns
are also known as soliton crystals (SCs) [37–40]. In this con-
text, cracking patterns formed by equally separated LSs are
known as superstructures [37] or perfect SCs [40], whereas
those with a random locking between LSs are named dis-
ordered SCs. On the contrary, if LS tails are monotonous,
LSs repel each other, and the cracking pattern evolves to-
wards a periodic solution with equally spaced peaks and
a stable wave number (i.e., a perfect SC). In practice, a
similar behavior is observed if tails are oscillatory with a
wavelength much larger than the typical separation between
peaks. This transient behavior can be extremely slow as the
interaction decays exponentially with the distance [41,42] be-
tween peaks allowing for long-lived cracking patterns likely
to be observed at second and even minute timescales in
experiments.

In our numerical simulations [43], the Eckhaus instability
is triggered by slowly ramping up the detuning and the pump
parameter. This procedure is consistent with experimental
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FIG. 3. Nonlinear evolution of the Eckhaus instability of the
L = 55 (55 peaks) stripe pattern leading to the cracking of the pattern
and, subsequent, convergence to a pattern with a lower stable wave-
number L = 33 (33 peaks). The left column shows the spatial profile
|ψ (θ )|2 of the pattern at different times, whereas the right column
shows the corresponding power spectra |ψ̂ (l )|2. Time stamps are
given in real time t = 2τph × τ = 10−6τ . This numerical simulation
shows that after the Eckhaus bifurcation the stripe pattern cracks,
reducing the number of peaks from the initial 55 to 51 in panel (e), 35
in panel (g), and 33 in panel (i) to then very slowly converge towards
a final perfectly periodic pattern with 33 peaks in a timescale of min-
utes. The time needed to simulate this 24 s-long transient dynamics
was about 1 month, using a pseudospectral algorithm [43]. A movie
of the simulation is available in the Supplemental Material [45].

systems where the detuning is thermally driven across the
resonance [44]. The dashed line in Fig. 1 shows the ramp of
parameter values used in the simulation shown in Fig. 3. A
movie of the time evolution is also available in the Supple-
mental Material [45].

The simulation starts at t = 0 from a homogeneous ini-
tial condition with small random noise and with α = 1 and
F = 1.05, just above the MI. A stable pattern with L = 55
rapidly emerges, corresponding to the wave number with max-
imum growth rate Lu. The parameters are ramped up until
α = 3.8 and F = 2 at t = 0.05 s. These values are above
the Eckhaus instability (Fig. 1). The simulation then contin-
ues up to t = 24 s (which corresponds to 24 × 106 photon
lifetimes in our resonator) with clamped values for θ and F .
The original pattern, whose spatial profile and power spec-
trum is shown Figs. 3(a) and 3(b), remains stable through the
ramp until it crosses the EC line. At this point the pattern
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ϕ

FIG. 4. Experimental setup. PID: Proportional-integral-
derivative controller; VCO: voltage-controlled oscillator; PDH:
Pound-Drever-Hall locking scheme; WGM: whispering-gallery
mode resonator.

becomes unstable, and perturbations start to grow [Figs. 3(c)
and 3(d)]. For the final ramp parameters the modes with fastest
growth rate are located at half the Brillouin zone (Fig. 2).
As a consequence some pattern cells disappear as shown in
Figs. 3(e) and 3(f). Further development of the instability
leads to a cracking pattern as shown in Figs. 3(g) and 3(h)
for time t = 0.077 s. In analogy with solid-state crystals,
these vacancies in the pattern are also known as Schottky de-
fects [37]. For the parameters considered, LSs have oscillatory
tails although the wavelength of the tail oscillations is much
larger than the separation between consecutive peaks [46].
As a consequence, LSs do not get pinned, but they repel
each other instead. This ultraslow dynamics can take times
on the order of minutes to converge asymptotically to another
pattern with a lower stable wave-number (L = 33 in this case)
as shown in Figs. 3(i)–3(m). In contrast, in all nonlinear
effects reported so far using the LLE, the transient dynam-
ics usually last only a few τph’s (i.e., a few microseconds
in our case). The change in wave number from (a) to (m)
is accompanied by a change in the envelope of the power
spectra as the amplitudes of the fundamental Fourier com-
ponent and its higher-order harmonics in a periodic solution
depend on the wave number of the pattern. In this case the
envelope becomes narrower indicating wider peaks in the
final state. Note that if the ramp is increased to much larger
values of the detuning, one reaches the single-soliton regime
described in Ref. [47] and eventually only a single peak
survives.

Such ultraslow dynamics are compatible with experimental
observations in a MgF2 WGM resonator. Our experimental
system is displayed in Fig. 4. The resonator has an intrinsic
quality factor Qin = 1.8 × 109 and is pumped by a reso-
nant laser at 1552 nm. The resonator has a diameter of d �
11.8 mm and a group-velocity refraction index of ng = 1.37,
yielding a FSR = c/ngπd � 5.9 GHz, where c is the velocity
of light in vacuum. Further details on the experimental setup
are given in Appendices A and B. When the resonator is
pumped above threshold, stripe patterns emerging from a Tur-
ing or modulational instability can be excited inside the cavity.
They are characterized by an integer number L of azimuthal
rolls fitting the inner periphery of the disk.
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FIG. 5. Experimental evidence of ultraslow Eckhaus instability
around a stripe pattern of wave-number L = 50 (a). The pattern be-
comes Eckhaus unstable with a temporal evolution characterized by
minute timescale transients (b-c) before converging towards another
pattern of lower-order with L = 47 (d).

Figure 5 shows an experimental example of the primary
comb corresponding to a high-wave-number stripe pattern
with L = 50. When the laser frequency is thermally driven
across from the resonance, we observe the emergence of spu-
rious peaks around the main primary comb, and the comb
dynamics is characterized by a very slow timescale, that can
be larger than a minute. This timescale appears a priori as
inconsistent with the intrinsic Kerr comb dynamics where
the slowest timescale is generally the photon lifetime τph =
Q/ω0 ∼ 1 μs with Q ∼ 109 being the loaded quality factor
of our resonator, and ω0 is the angular frequency of the
pumped mode [48–50]. However, as shown earlier, this ul-
traslow timescale dynamics and the growth of spurious peaks
around the main primary comb are compatible with an Eck-
haus instability leading to very-long-lasting transient cracking
patterns, and later on to a lower-order stable stripe pattern.

In conclusion, we have shown theoretically how the Eck-
haus instability of a periodic pattern (primary comb) in
whispering-gallery mode resonators can lead, for large de-
tunings where the pattern is subcritical, to the cracking of
the pattern and, subsequent, rearrangement of the remain-
ing peaks in timescales six to eight orders of magnitude
larger than the intracavity photon lifetime, which is the
natural timescale for Kerr comb dynamics. This emerg-
ing timescale is dominated by the interaction between LSs.
Despite the fact that we cannot completely overrule other
possible mechanisms at play, the dynamics observed exper-
imentally in a MgF2 WGM resonator are compatible with
the theoretical framework proposed in this paper These re-
sults permit achieving a deeper understanding of secondary
bifurcations in dissipative optical systems, and provide a the-
oretical framework to understand the formation of soliton
crystals. Future work will investigate in detail the wide va-
riety of spatiotemporal patterns that can be excited via these
bifurcations, including when coinduced by other bulk nonlin-
earities [4,51,52].
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APPENDIX A: PROPERTIES, POLISHING PROCESS, AND
CHARACTERIZATION OF THE WHISPERING-GALLERY

MODE RESONATOR

Magnesium fluoride (MgF2) is a tetragonal birefringent
crystal with a transparency window ranging from UV to the
midinfrared window (0.1–8 μm). It is used as material for the
fabrication of lenses and polarizers. It has also been widely
used for Kerr comb experiments at the telecom wavelength.
Its transparency at 1550 nm makes it suitable for the fabri-
cation of millimetric ultra-high-Q whispering-gallery mode
resonators at the mentioned wavelength. Its refractive index
is 1.3717 at 1550 nm and makes it suitable for taper cou-
pling. From a commercially available crystalline MgF2 WGM
disk, consecutive steps of grinding and polishing allows us to
achieve a quality factor of ∼109, using an air-bearing spindle
motor to spin the disk. During the grinding step, we used
decreasing abrasive-coated size support to shape the resonator
rim into a sharp “V” where the whispering-gallery mode will
propagate. The second step consists of fine-grain polishing of
the resonator via decreasing size abrasive particles down to
100 nm. Once the final polishing step is performed (surface
roughness below 5 nm), we proceed to the characterization
of the resonator in order to obtain its intrinsic, extrinsic, and
loaded quality factor.

We have used the cavity-ring-down measurement tech-
nique to characterize the resonator quality factor. It is an
efficient technique that allows avoiding thermal effects but
permits, nevertheless, to obtain intrinsic, extrinsic, and loaded
quality factors. A continuous-wave laser with a subkilohertz
linewidth swept at a scanning speed of 1.2 GHz/ms is used
to couple light into the resonator through the evanescent
field of a tapered silica fiber. The recorded transmission is
the temporal interference pattern between the laser input and
the decaying resonance light. As shown in Fig. 6, a fitting
of the experimental data gives an intrinsic quality factor of
1.82 × 109, an extrinsic quality factor of 4.33 × 109, and a
loaded quality factor of 1.28 × 109.

APPENDIX B: POUND-DREVER-HALL
STABILIZATION SYSTEM

The PDH technique is designed to stabilize the pump laser
wavelength to a particular resonance. It was initially used to
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FIG. 6. Ring-down transmission spectrum. A theorrtical fit gives
an intrinsic quality factor of 1.82 × 109, an extrinsic quality factor of
4.33 × 109, and a loaded quality factor of 1.28 × 109.

improve laser frequency stability by locking it on the mode of
a cavity (more stable that the laser itself), thus, transferring the
stability of the cavity mode frequency to the laser. It also has
the effect of improving the linewidth of the locked laser if the
mode linewidth is narrower than that of the laser. It has found
many applications in very different fields, from the detection
of gravitational waves to high-resolution spectroscopy. In our
case, the PDH-locking technique is not used to improve the
stability of the laser but rather to actively lock the laser onto an
thermally unstable resonance of the whispering-gallery mode
resonator.

WGM resonators are extremely sensitive to temperature
and when light is injected inside a resonance, a part of the
optical power is absorbed, causing the resonator to heat up.
This effect both changes the refractive index and increases
the diameter of the resonator via thermal dilatation, causing
the resonances to shift. In order to control these effects, we
actively lock the laser onto the resonance so that the laser fol-
lows the resonance as it shifts. We use a Toptica PDH module
which generates the error signal, handles all communications
with a computer, and drives the high-voltage source (0–150 V)
needed to control the piezoelectric element in the external
cavity of our laser (NKT adjustik).

The experimental setup is represented in Fig. 7. It features a
narrow-linewidth (<1-kHz) continuous-wave laser operating
around 1550 nm, which can be swept over 15 pm by applying
a voltage on the piezoelectric element of the external cavity of
the laser. A phase modulator is used in conjunction with the
Toptica PDH module to phase modulate the laser and obtain
an error signal. The laser then goes through a 90/10 optical
coupler with 10% of the power being sent to a powermeter
to have an image of the input power in the resonator, whereas
the remaining 90% is sent in a polarization controller (PC) and
then through a tapered fiber.

A WGM is coupled to the fiber, by sweeping the laser.
We can observe the different coupled modes inside the res-
onator, and the polarization controller allows us to optimize
the coupling of those modes. The WGM optical resonator
that was used for this experiment is a 12-mm diameter MgF2
disk, which was mechanically shaped and polished from a
commercially available preform as explained in the preceding
Appendix. The output of the resonator is then split into two
paths, one leading the photodiode and the PDH module and
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FIG. 7. Experimental setup used to generate frequency combs with a whispering-gallery mode resonator. Blue lines represent electrical
paths, whereas, red lines represent optical paths.

the other path leading to a high-resolution optical spectrum
analyzer (Apex AP2443B).

The experimental procedure is the following. The laser
is scanned on the largest span possible. Depending on the
coupling we will observe a certain number of modes. Among

those modes, we select the ones with a high coupling and high
quality factor. The span is then reduced in order to sweep over
only one mode. When Kerr comb generation is confirmed by
the optical spectrum analyzer (OSA), the laser is then locked
to that mode with the PDH module.
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