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Learn one size to infer all: Exploiting translational symmetries in delay-dynamical
and spatiotemporal systems using scalable neural networks
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We design scalable neural networks adapted to translational symmetries in dynamical systems, capable of
inferring untrained high-dimensional dynamics for different system sizes. We train these networks to predict the
dynamics of delay-dynamical and spatiotemporal systems for a single size. Then, we drive the networks by their
own predictions. We demonstrate that by scaling the size of the trained network, we can predict the complex
dynamics for larger or smaller system sizes. Thus, the network learns from a single example and by exploiting
symmetry properties infers entire bifurcation diagrams.
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I. INTRODUCTION

Due to their many degrees of freedom and potentially
multiple timescales, the prediction and analysis of com-
plex system dynamics represent challenging tasks. Tackling
unavailable analytical models, machine learning methods
emerged [1–3] that learn from data and forecast the dynam-
ics of biological [4,5], climate [6], spatiotemporal [7,8], and
other complex systems [9–11]. More recently, incorporating
symmetries is considered to guide such data-driven models
towards preserving conservation laws [12], improve predic-
tion accuracy [13], and might yield efficient representations
of learned processes [14]. Nonetheless, machine learning de-
mands large amounts of data, and yet predictions are mainly
restricted to the dynamical regime they observed during train-
ing. In recent works [15–18], parametrized neural networks
are being studied for the prediction of untrained dynamics.
Thereby, a neural network needs to be trained on several
examples, often covering different dynamical regimes. After
training, changing the parametrization renders the network the
ability to generalize and predict untrained dynamics, trans-
formations of chaotic attractors, and closeby bifurcations.
However, in real-world applications, system parameters can
often not be easily changed, and, consequently, certain pa-
rameter regimes are hardly accessible. Here, the question
arises—Is it possible to infer untrained (size-dependent) dy-
namical regimes of a complex system whereas learning from
one example related to a certain system size only?

In this paper, we exploit symmetries in dynamical systems
by designing neural networks that exhibit: (i) excellent gener-
alization properties allowing us to infer untrained dynamical
properties for a wide tuning of bifurcation parameters and (ii)
high prediction capabilities. Here, we design scalable neural
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networks that satisfy the same symmetries as the dynamical
system under study. We train these networks on a single
time series of either delay-dynamical or spatiotemporal sys-
tems with a fixed size. After training, notably, the size of
the trained network can be scaled up or down by adding or
removing neurons exploiting the translational symmetry in
these systems. Without further adaptations, the scaled net-
work generalizes from learned to untrained dynamics and
enables far-reaching inferences revealing bifurcations to var-
ious dynamical regimes. In the following, we first focus on
delay-dynamical systems and provide a single neural network
that infers the entire bifurcation diagram for changing the
delay whereas learning from a single example and exploit-
ing temporal translational symmetry. Based on the analogies
between delay-dynamical and spatiotemporal systems can in-
terpret the symmetry in delay-dynamical systems also as a
quasispatial symmetry [19–21]. For comparison, in Sec. III,
we apply our approach analogously to the real spatial trans-
lational symmetry of a Kuramoto-Sivashinsky (KS) model
with periodic boundary conditions. Using a parallel network
architecture we can train the network on a single spatial size
and then infer untrained spatial extensions.

II. INFERENCE OF DELAY SYSTEM DYNAMICS

Dynamical systems with delayed coupling of system vari-
ables play an important role in many real-world contexts, such
as climate systems [22], epidemiological models [23], bio-
logical systems [24], control systems [25–27], and photonic
systems [28–31]. Since the evolution of delay systems relies
on a continuous history function h(t ), t ∈ [0,−τ ], the phase
space of these systems is infinite dimensional [32]. Depending
on the length of the delay and other system parameters, these
systems either converge to fixed points, limit cycles, or evolve
on chaotic attractors [29–31,33]. Furthermore, with increasing
delay length, these systems exhibit extensive chaotic behavior,
i.e., the maximal dimension of their chaotic attractors scales
linearly with the delay time [34].
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FIG. 1. Scheme of the delayed echo state network. The reservoir
contains delayed internode weighted connections (green) where the
delay D of the nodes connections can be adjusted.

In the following, we design echo state networks that in-
corporate a delay in their topology, as illustrated in Fig. 1.
Due to this delay, the network exhibits the same temporal
translational symmetry as the delay-dynamical system it is
built to predict [19]. During training, the network delays will
be tuned to match those of the target system, and the readout
weights are adapted to implement one-step-ahead prediction.
After learning the time evolution operator of the delay sys-
tem, the network can be scaled up or down by extending or
shortening its inherent delay to infer the untrained dynamics
corresponding to shorter or longer delay, respectively. The dy-
namical evolution of the delayed echo state network (dESN)
is governed by the following equation:

�x(n+1) = α�x(n)+β tanh[W�x(n−D) + γ Wins(n) + Wb],
(1)

where �x(n) ∈ RK , K is the network network size, α is the leak
term, β is a feedback gain, γ is the input gain, and D is the
delay length. The total size of the network scales linearly with
D as all previous states x(n) up to x(n − D) must be stored.
Thus, the delay can be seen as a signal through a cue of D
hidden linear neurons along each delayed connection. How-
ever, the read-out dimension of the network is independent
of the delay length since Wout ∈ RK . The randomly drawn
matrix Win ∈ RK gives the connection between the input
s(n) ∈ R and the network, whereas Wb ∈ RK gives a random
bias to each node. The delayed connections are weighted via
W ∈ RKK , the elements of which are randomly drawn from a
uniform distribution U [−1, 1] with a sparsity of 1.5%.

The training data set used only contains a time series of
a delay system with a single fixed delay. Here, we consider
inferring the dynamics of a Mackey-Glass (MG) delay system
[35], however, the same holds for other delay systems as we
demonstrate in Appendix D by performing a similar study for
an Ikeda-type delay system. The dynamics of the MG delay
system is given by the following equation:

ṡ(t ) = − s(t )

T0
+ 0.2s(t − τ )

1 + s(t − τ )10
. (2)

We set the characteristic relaxation time T0 = 10 and the
system delay τ = 100 and generate a time series s(t ) that is
sampled with �t = 1 to obtain the training data set s(n). For
these parameters, the system evolves along a chaotic attractor
as depicted in Fig. 3. Before training the reservoir on the MG
time series, the delay D of the dESN must be adjusted to the

TABLE I. List of parameters used for learning the Mackey-Glass
system.

Parameter Symbol Value

Network size K 1000
Initial steps Ninit 5000
Training steps Ntrain 25 000
Feedback gain β 0.176
Input gain γ 1.24
Spectral radius ρ 0.84
leak rate α 0.75

delay of the target system. We find the optimal performance
when we match the delay of the reservoir connections directly
with the delay of the MG system, i.e., by setting D = τ/�t =
100. In most real-world systems, however, the delay is not
known a priori and needs to be extracted from the data. As
we show in Appendix A, we can optimize the reservoir delay
D by determining the best performance in a one-step-ahead
prediction that reveals the delay underlying the training data.
All other hyperparameters of the dESN are optimized using
Bayesian optimization and are given in Table I.

During training, the dESN is driven by the input s(n) with
added white noise. The addition of noise during training was
shown to improve the stability of the reservoir in the closed-
loop mode [36]. The network’s output layer is optimized
using linear regression to predict the next step in the training
time series. Once the output weights Wout are computed, the
reservoir is decoupled from the input s(n) and the prediction
of the reservoir ŷ(n) = Wout�x(n) is returned as the new in-
put. Consequently, the reservoir evolves autonomously in the
closed-loop mode [37–39]. Reservoir computing [2,40–42] is
applied here as it offers fast and efficient training; neverthe-
less, we expect that other training methods yield comparable
results.

In the closed-loop mode, the reservoir evolves along the
attractor on which it was trained as depicted in Figs. 2(a) and
2(f). When resetting the delay D of the dESN connections, we
do not need any additional data for initialization, no further re-
training, and the output weights can be kept fixed. As shown in
Figs. 2(g)–2(i), the dESN generates high-dimensional chaotic
attractors at D = 17, 200, and a limit cycle at D = 39. These
inferred dynamical states are similar to those of the origi-
nal MG system with delay τ = 17, 39, and 200 shown in
Figs. 2(b)–2(d). Consequently, it is sufficient that the dESN
learned from a single time series of the MG system with
delay τ = 100 to infer the dynamics for other delay lengths.
By scanning the delay of the dESN from D = 1 to 120 we
generate a bifurcation diagram of the inferred dynamics as
shown in Fig. 2(j). Depending on D, the dESN exhibits chaotic
behavior, transitions to intermittent limit cycles, for exam-
ple, at D = 34 and 39, period-doubling bifurcations at D =
14 and 16, and transitions to a stable fixed point at D = 5.
The observed transitions in the dESN coincide with those
found for the original MG system shown in Fig. 2(e). Fur-
thermore, in Appendix C we show that the dESN can infer
multistabilities in the delay range τ, D = 70–80. Röhm et al.
[43] recently presented that reservoir computing is capable of
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FIG. 2. Two-dimensional projection [x-axis y(t ), y-axis y(t − τ )] of attractors of the chaotic Mackey-Glass system for different delay
lengths in (a)–(d). (e) Bifurcation diagram generated using the Mackey-Glass delay system. Inferred attractors by the dESN trained on a
single example of the Mackey-Glass system with τ = 100 shown in (f)–( i). (j) Bifurcation diagram inferred by the dESN trained on data of a
Mackey-Glass system with τ = 100.

predicting multistabilities in a dynamical system even if the
reservoir is trained only around one of the attractors. Here, our
dESN infers infers coexisting attractors, whereasit was trained
in a dynamical regime where there was no multistability.

In Fig. 2 we show that the dESN trained at the MG system
with τ = 100 can infer dynamics of the MG system with
other delay lengths. In the following, we further underline
how precise the dESN infers the dynamics even far from the
training example. Therefore, in Fig. 3, we show the inference
of the dESN with D = 30 compared to the original dynamics.
We divide the prediction capabilities into two regimes, which
we term weather and climate [36]. Here, the weather regime
refers to the short-term behavior, when going from exter-
nally driven operation to autonomous operation. As shown in
Fig. 3(a), the dESN can precisely continue the trajectory of
a MG system with τ = 30 for around 1000 steps, which cor-
responds to approximately nine Lyapunov times. Due to the
chaotic behavior of the MG system with τ = 30, two closely
initialized trajectories diverge in time where the divergence
rate is given by the largest Lyapunov exponent. As depicted
in Fig. 3(b), the divergence rate of the predicted trajectory
(green line) is similar to the largest Lyapunov exponent of
the MG system (blue line). Furthermore, the performance
that the dESN provides is robust against randomization. We
find similar results (orange line) for 20 different dESNs with
varied connection matrices and training data. The climate
regime describes the long-term behavior of a dynamic system,
e.g., the evolution along the chaotic attractor. In Fig. 3(d),
we show the predicted trajectory after it diverges from the
initialization trajectory. The dESN reproduces the climate of
the delay system by inferring the chaotic attractor of the MG
system with τ = 30 as shown in Fig. 3(c) and is the case
for other delays D shown in Fig. 2. Accordingly, training the
dESN only on a single example is sufficient to precisely infer
the dynamical properties of the MG system for various delay
lengths.

As presented in Figs. 2 and 3, training the dESN with data
from the MG system with a delay of τ = 100 enables infer-

ring untrained dynamics related to shorter and even longer
delays. A delay of τ = 100 places the system in the long delay
limit where the delay is much longer than the characteristic

FIG. 3. (a) Time series of the original Mackey-Glass system
(blue) and the autonomously continued (green) chaotic attractor us-
ing a dESN. (b) Divergence rate of the chaotic system and the time
series generated by the dESN (green) as shown in (a), the orange
line indicates the average divergence rate of 20 different dESNs
initialized at 20 different trajectories of the chaotic Mackey-Glass
system. The blue line indicates the divergence rate related to the
largest Lyapunov exponent λ = 0.009 of the Mackey-Glass system
with τ = 30. In (c) and (d), the two-dimensional projection of the
chaotic attractor of the Mackey-Glass system with a delay of τ = 30
and the dESN prediction with D = 30, respectively.
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FIG. 4. The dynamics of the spatiotemporal Kuramoto-Sivashinsky system y(x, n) (top row), the predicted dynamics from a parallel
network architecture ŷ(x, n) (mid row), and their difference y(x, n) − ŷ(x, n) (bottom row). The parallel networks are trained with data from
the Kuramoto-Sivashinsky system of spatial extension L = 10π (red box), by adapting the network architecture it generates the dynamics also
for smaller and larger spatial extensions (yellow box). For comparison, both systems were initialized with the same initial conditions.

relaxation time T0 in Eq. (2). Here, learning benefits from a
clear timescale separation between response and delay time.
We find that learning in the short delay regime enables infer-
ring towards relatively shorter delays, whereas going towards
larger delays, the inference quality deteriorates. For a more
detailed discussion, we refer to Appendix B.

III. INFERENCE OF SPATIOTEMPORAL SYSTEM
DYNAMICS

Taking into account the close relationship of delay and spa-
tiotemporal systems [19–21], we extend our approach to the
spatial translational symmetry of a homogeneous KS model
with periodic boundary conditions. By analogy, we design
reservoirs that can infer attractors for different system sizes
when trained for a single size only. The dynamics of the KS
model are governed by

yt = −yyx − yxx − yxxxx, (3)

where y(x, t ) is a scalar field. We further consider periodic
boundary conditions in the interval [0, L). For the training,
we generate a data set using a spatial extension of L = 10π .
The generated data is sampled every �t = 0.25 in the tem-
poral domain and contains Q = 100 equidistant samples in
the spatial domain leading to y(n) ∈ R100. To predict the
spatiotemporal evolution of the KS system, we construct a
parallel network architecture as described by Pathak et al. [8]
and train this architecture to perform a one-step-ahead predic-
tion. The parallel architecture contains G = 10 subnetworks,
each containing K = 1000 neurons, respectively. The evolu-
tion of the gth subnetwork can be described by the following
equation:

xg(n + 1) = tanh[W xg(n) + γWinug(n) + 0.2Wb], (4)

where W ∈ RNN is a randomly drawn adjacency matrix with
spectral radius ρ = 1.3, Win ∈ RNM are randomly drawn input
weights, and the input gain γ = 0.001, and Wb ∈ RN is a
random bias. The input ug(n) of the subnetworks is generated

by dividing the data from the spatial domain into G sections of
the same size Q/G = 10 (spatial size of π ). Each of the G sub-
networks receives the ten inputs of one particular section and
additionally the three closest inputs from both neighboring
sections, leading to an input dimension of M = 16. Due to
the spatial translational symmetry of the homogeneous KS
system along the spatial domain the subnetworks adjacency
matrix and hyperparameters can be chosen identical. Similar
approaches are mentioned in Refs. [8,44]. During training,
each subnetwork is trained to perform a one-step-ahead pre-
diction of the spatial domain section to which it corresponds,
resulting in ten outputs per network computed using the output
weight matrix Wout ∈ R10×1000. Again, due to the translational
symmetry the output weights sets can be shared between the
subnetworks. After the training phase, we close the loop by
feeding the predicted state back to the reservoir. As shown
in Figs. 4(a) and 4(f), parallel reservoirs autonomously pre-
dict the weather and climate of the chaotic KS system with
L = 10π .

To infer spatial extensions L that are different from the one
used during training, we take further advantage of the spatial
translation symmetry and similar to changing the delay in
the dESN, we adapt the topology of the reservoir. Therefore,
either a subnetwork is removed from the parallel architecture
or a copy of a subnetwork is inserted into the architecture.
By varying the number of subnetworks G in the architecture
the output dimension alters in steps of ten which effectively
increases the predicted spatial extensions. Due to the spatial
length trained on and the used number of subnetworks, we
can vary the spatial extension of the predicted system in units
of π . In Fig. 4, we present the original KS dynamics (first
row), the predicted dynamics of the reservoir (middle row),
and the difference between both (bottom row) for different
spatial extensions, respectively. Therefore, we initialized both
using the same initial conditions. In analogy to the results for
the MG delay-dynamical system, we observe that the once-
trained reservoir is able to infer the untrained dynamics at
significantly shorter and larger spatial extensions. Therefore,
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the parallel network architecture takes advantage of the spatial
translational invariance of the homogeneous KS model with
periodic boundary conditions.

IV. CONCLUSION

We demonstrated that exploiting symmetries of dynam-
ical systems by designing neural networks obeying these
symmetries improves their prediction ability and further en-
ables far-reaching inference. We, particularly, showed this for
translational symmetry in delay-dynamical and spatiotempo-
ral systems. Transformation of the trained networks along
this symmetry enabled learning from a single example to
infer an entire bifurcation diagram. Thus, we obtain minimal
requirements for training data and gain a single model that
can infer a wide variety of dynamical behaviors. This repre-
sents a very efficient use of resources, such as the required
network size, training data, and energy. Therefore, it is also
a step in the direction of more sustainable machine learning.
In addition, the provided method might be used to analyze
real-world systems for which certain parameter settings might
not be accessible. Recently, Liu and Tegmark [45] presented
a machine learning method to manifest hidden symmetries in
physical systems. The discovery of hidden symmetries and the
use of our approach to exploit them for far-reaching inferences
whereas learning from single examples could give rise to
powerful predictive models for a variety of high-dimensional
systems, including complex networks [9].
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APPENDIX A: DELAY ESTIMATION FROM TIME SERIES
USING DELAYED ECHO STATE NETWORKS

As mentioned in Sec. II, during training, we match the
delay of the dESN with the delay of the Mackey-Glass sys-
tem to enhance the prediction abilities of the dESN. As the
Mackey-Glass time series is sampled with �t = 1 this leads
to D = τ . In many real-world systems, however, the underly-
ing delay is not known a priori and needs to be determined
from a sampled time series of the dynamical system under
study. There exist several methods to estimate delays from

FIG. 5. Estimating the delay a from time series of the chaotic
Mackey-Glass system for three different delay lengths τ . The red line
marks the delay τ that underlies the data set (a) τ = 30, (b) τ = 60,
and (c) τ = 100. The blue dots mark the one-step-ahead prediction
accuracy of dESNs with different delays D (x axis) and different sets
of hyperparameters. The accuracy is determined by the normalized
root mean square error (NRMSE) of the one-step-ahead prediction.

time series based on, e.g., autocorrelation function, delayed
mutual information, local linear fitting in a low-dimensional
subspace [46], and even deep learning-based methods [47]. In
the following, we show how to estimate the delay that under-
lies a time series using the dESN given in Eq. (1). Thus, we
seek for high one-step-ahead prediction accuracy of dESNs by
scanning the delay D of the dESN and optimizing the reservoir
hyperparameters using Bayesian optimization, respectively. In
Fig. 5, we show the results of this scan for three different
delays τ = 30, 60, and 100 of the Mackey-Glass system that
generated the training data. The delay scan of the dESN
reveals an increased performance (reduced NRMSE) when
its delay is in resonance or equal to the delay D = τ of the
Mackey-Glass system. As it can be seen in Fig. 5, identifying
these resonances, in turn, allows to extract the delay that
underlies the data. There can be relative offsets of ±1 in the
optimal estimated delay, which here is the smallest possible
offset related to the sampling of the Mackey-Glass time series
used here (�t = 1). In this manner, the optimal setting of the
dESN delay might depend on the frequency used for sampling
the real-world system.

APPENDIX B: DEPENDENCE OF INFERENCE
CAPABILITIES ON THE TRAINED CHAOTIC ATTRACTOR

In Sec. II, we show that the dESN with delay D = 100
trained only on the Mackey-Glass time series with τ = 100
can predict the entire bifurcation diagram of the Mackey-
Glass system by scaling its size (parameter D) after training.
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FIG. 6. Comparison of the ACF of the Mackey-Glass system
(blue) with (a) τ = 30 and (b) τ = 100 and the predicted time series
using the dESN (green). The dESN used in this plot was trained on a
chaotic Mackey-Glass system with τ = 100.

This means that the scalable dESN is able to infer dynam-
ics of much shorter but also longer delays whereas being
trained on data of a single delay length only. In the following,
we evaluate how these prediction capabilities depend on the
properties of the chaotic attractor used for the training of the
dESN. To do this, we use the absolute difference between the
autocorrelation function, denoted �ACF, of the Mackey-Glass
attractor and the attractor predicted by the respective dESN to
quantify the quality of the prediction. Here, we computed the
autocorrelation function (ACF) of the original and predicted
time series for 1100 steps into the past as shown in Fig. 6. Sub-
sequently, the absolute difference �ACF between the original
and the predicted ACF is calculated and summed in the range
n ∈ [0, 1100]. For comparison, we train three networks where
DT = 17, 30, and 100 defines the delay during training, re-
spectively, and the corresponding training data set is given
by the Mackey-Glass time series with similar corresponding
delay τ = 17, 30, and 100. In Fig. 7 we show the autocor-
relation difference �ACF for two ranges: (a) τ, D = 17–100
and (b) τ, D = 100–900. Whereas all trained dESN can pre-
dict towards smaller delays, the predicted attractors from the
dESNs trained at DT = 17 (blue) and DT = 30 (green) start
to deviate from the original Mackey-Glass attractor at a delay
D > 30 and D > 50, respectively. In contrast, the one trained
at D = 100 (red) does not show an increase in the differ-
ence between the predicted and the original autocorrelation
function �ACF even if the delay D of the dESN becomes
much larger than the one used during training (deviations
in the range τ, D = 75–95 are caused by multistability, see
Appendix C). These results illustrate that the dESN DT = 100
trained at τ = 100 has the highest capabilities and can predict
even attractors with much longer delays.

We relate this ability of the dESN with DT = 100 to the
properties of the dynamics observed during training. As men-
tioned in Sec. II, a delay of τ = 100 sets the Mackey-Glass
system in the long delay limit where a clear separation of the
local and the delayed dynamics appear. This can be indicated
by using the autocorrelation function of the time series as
shown in Fig. 6 wherein panel (a) a short delay τ = 30 does
not show a clear separation between delay and local dynamics.
In contrast, in panel (b) of Fig. 6, one can observe this separa-

FIG. 7. Absolute difference of the original and the predicted
autocorrelation �ACF of the chaotic attractors (a) in the range τ, D ∈
[17, 100] and (b) τ, D ∈ [100, 900]. The colors refer to different
delays of the Mackey-Glass system used in the training of the dESN,
τ = 17 (blue), τ = 30 (green), and τ = 100 (red). Solid lines indi-
cate the average over 100 random seeds used to generate the dESN
and initialize the Mackey-Glass system that generated the training
data. The shaded areas indicate the standard deviation, respectively.

tion showing a decay of local dynamics until n = 50 and the
delayed dynamics indicated by the peak around the delay time
n = 100.

In conclusion, exploiting translational symmetries enables
one to infer untrained dynamics whereas learning from a
chaotic time series related to a single system size only. The
prediction ability of the trained scalable neural network fur-
ther depends on the (size-dependent) dynamical regimes on
which it was trained. Thereby, the prediction ability of the
dESN is the strongest if the network is trained in the long
delay limit of delay-dynamical systems.

APPENDIX C: INFERRING COEXISTING LIMIT CYCLE
AND CHAOTIC ATTRACTOR

As mentioned in the paper, the Mackey-Glass system ex-
hibits a multistability leading to coexistence of a limit cycle
and a chaotic attractor in the region τ ∈ [79, 95]. In Fig. 8(a),
we show an overlay of the limit cycle and the chaotic at-
tractor for a delay of τ = 85. During the computation of the
bifurcation diagram, depending on their initial conditions, the
trajectory of the Mackey-Glass system and the dESN converge
either to one or the other of the attractors. This effect causes
deviations in the computation of the autocorrelation compar-
ison shown in Fig. 7. In Fig. 8(b), we quantify the frequency
with which the Mackey-Glass system and dESN end up in the
limit cycle, respectively. Therefore, we generate time series
of both systems starting from 100 different initial conditions.
Using the autocorrelation function of the time series gener-
ated, we discriminate if the observed attractor is either chaotic
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FIG. 8. (a) Two-dimensional representation of the coexisting
limit cycle and chaotic attractor generated by the Mackey-Glass
system at a delay of τ = 85. (b) Number of occurrences of a limit
cycle in the delay range τ, D ∈ [70, 100] for 100 different initial
conditions. The blue colored line indicates the occurrences in dif-
ferently initialized Mackey-Glass systems, whereas green indicates
occurrences in the differently initialized dESN systems. The dESN
is trained at D = 100 on a Mackey-Glass system with τ = 100 and
afterwards delay D was scaled down.

or a limit cycle. As shown in Fig. 8(b), both the Mackey-
Glass system and the dESN exhibit comparable probabilities
of ending in the limit cycle. It is worth mentioning that the
dESN was trained with data of a Mackey-Glass system with
τ = 100 where there exists no multistability. The prediction
of attractors in a multistable system that was not part of the
training using RC was shown recently by Röhm et al. [43].
The fact that the dESN can predict these multistabilities even
if it is trained on a Mackey-Glass system with a different delay
illustrates how strong the generalization ability of the dESN
is.

APPENDIX D: INFERRING IKEDA DELAY SYSTEM
DYNAMICS

In the main text, we show the autonomous continuation
of a Mackey-Glass delay system for short, medium, and long
delays and the prediction of the bifurcation diagram for arbi-

TABLE II. Hyperparameters used to continue the time series of
the Ikeda delay system.

Parameter Symbol Value

Network size K 1000
Initial steps Ninit 1000
Training steps Ntrain 20 000
Feedback gain β 0.1
Input gain γ 1.71429
Spectral radius ρ 0.6975
Leak rate α 0

trarily long delays. However, the Mackey-Glass system is only
a single example of a delay dynamical system, and there exists
a variety of such delay systems featuring other nonlinearities.
In the following, we show that the proposed method of using a
dESN to predict the bifurcation diagram is not only restricted
to the Mackey-Glass system, but can be applied to other delay
systems. Another well-known delay system, called the Ikeda
delay system, was investigated in the field of optics because it
can be generated using a Mach-Zehnder interferometer and a
cavity [29]. Here, we attempt to learn and infer the dynamics
of an Ikeda-type delay system with a sine-square nonlinearity,

ṡ(t ) = −1/T0s(t ) + β sin2[s(t − τ )]. (D1)

The state of the delay system is given by s(t ), the delay is
indicated by τ , the characteristics relaxation time is fixed at
T0 = 10, and the feedback gain is β = 0.4 in the following.
The data set is generated by integrating the delay differential
equation in Eq. (D1) and the time series is sampled with �t =
1. Due to the delay, this Ikeda system can evolve in different
dynamical regimes including chaos [29,30]. In the following,
we will train a dESN to continue the time series of the Ikeda
delay system with a delay of τ = 100. Afterward, the trained
dESN will be used to infer the entire bifurcation of the Ikeda
system.

As in the case of the Mackey-Glass system, the delay D of
the dESN and the delay τ of the Ikeda system to be learned are
matched. Afterwards, the other hyperparameters of the dESN
are optimized using a Bayesian optimization approach. The
found optimal parameters are given in Table II. The optimal
leak rate to predict the Ikeda delay system is found at α = 0,
which means that the leak term in the equation of the dESN
can be neglected.

In Fig. 9(f), we show the results of the dESN trained on
an Ikeda system with τ = 100 and compare it to the original
attractor in Fig. 9(a). We find that the dESN properly repro-
duces the chaotic attractor. Similarly as for the Mackey-Glass
system, we now use the dESN trained on the Ikeda system
with delay τ = 100 to infer the entire bifurcation diagram.
In Fig. 9, we show a comparison of the original bifurcation
diagram in (e) and the one predicted by the dESN in (j). The
dESN is able to predict stable fixed points and limit cycles
in the short delay range as well as the route to chaos and the
chaotic attractors for longer delays. Furthermore, it precisely
infers intermittent limit cycles in the chaotic regime for delays
τ = 23–25. The inferred bifurcation diagram is again very
similar; we even reproduce the fine details in the bifurcation
diagram. Nevertheless, we observe small deviations between
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FIG. 9. Two-dimensional projection [x-axis y(t ), y-axis ] of attractors of the chaotic Ikeda system for different delay lengths in (a)–(d). (e)
Bifurcation diagram generated using the Ikeda delay system. Inferred attractors by the dESN trained on a single example of the Ikeda system
with τ = 100 shown in (f)–(i). (j) Bifurcation diagram inferred by the dESN trained on data of a Ikeda system with τ = 100.

the inferred and the original attractor. Similarly, as for the
Mackey-Glass system, these deviations are caused by the
appearance of multistabilities in the range of τ, D = 50–55.

Depending on the initial conditions of the dESN and Ikeda
system, respectively, they either evolve on a limit cycle or on
a chaotic attractor.
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