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Abstract. A primary tool to extract information about moving objects is back-
ground subtraction. In this technique, the difference between a model of what is
static, or background, and the current image of the scene gives information about
what is in the prime plane or foreground. This study focus on the pixelwise updat-
ing mechanism of the background model throughout the analysis of the images
provided by a fixed camera. The concept of intrinsic curves, early introduced in
the field of stereovision, is extrapolated to the problem of detecting the mov-
ing boundaries. We use a mixture of Gaussians to register information about the
recent history of the pixel dynamics. Our method improves this model in two
ways. Firstly, it reduces the chances of feeding the mixture of Gaussians with
foreground pixels. Secondly, it takes into account not just the scalar pixel value
but a richer description of the pixel’s dynamics that carries information about the
interpixel variation. Ample experimental results in a wide range of environments,
including indoors, outdoors, for a different set of illumination conditions both
natural and artificial are shown.

1 Introduction

Nowadays, there is an increasing demand for automatic monitoring systems based on
image analysis fueled by factors such as the increasing existence of imaging devices,
our own limitations to watch every available video source, an the development of im-
portant multimedia applications [18]. Motion is a basic capability of visual perception
systems. Many important higher perceptual tasks can be built on top of it, including
tracking, and recognition. A primary tool to extract information about moving objects is
background subtraction. In this technique, the difference between a background model
and the current image of the scene gives information about what is in the prime plane or
foreground. Depending on the definition of background, its general solution will involve
the distinction of foreground objects even when the background objects are moving[17],
and indeed, even when the camera itself is moving[1]. However, there is a fairly large
number of scenarios where the constraint of a static background imaged with static
cameras is rather useful and interesting applications can be developed.

Piccardi[16] proposes a classification of background construction methods based on
speed, memory requirements and accuracy. Functionally, the problem can be divided
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(a) A sample frame out of a test sequence.
The blue square is detailed in (b).

(b) Image patch intensity variations through-
out time.
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(c) Intensity. (d) Differences. (e) Intensity versus Differences.

Fig. 1. A pixel is observed during 40 frames. The space-time representation of the image patch
in (a) is shown in (b). The patch central pixel intensity variations(c) and differences(d), generate
the intrinsic curve in (e).

into several interesting ones. Consider for instance, the initialization, or how to ar-
rive to the initial background model. Since it may be seen as a classification problem
some researchers have used optical flow to either formulate hypotesis[5], train Neural
Networks[4], or use Support-Vector Machines [12]. Another problem is to reduce the
time to figure out the background revealed by a moving foreground object. Kaup and
Aach[10] exploit spatiotemporal correlation, and motion information. The surrounding
known background area is analyzed and spatially extrapolated using an spectral do-
main extrapolation algorithm. These techniques are rather important for applications
such as videoconferencing[13] where background coding for efficient compression and
transmission is needed. The problem of updating the background model has many in-
teresting facets. Since deciding a pixel classification based solely on the base of a single
threshold may be too limiting, Kumar et al.[11] suggest the use of a hysteresis thresh-
old technique. After a decision has been taken about what is background and what is
foreground, there is still space for improving the results. Filling holes, dilating bor-
ders are among the usual strategies used. He et al.[7] present a background updating
algorithm which combines the variation of a neighboring area with the difference be-
tween the current and previous values in order to predict the new values of the pixels
on the background. Nowadays, it is widely accepted that color can be used to identify
the shadows casted by objects[2]. Horprasert[8] designs a color model that separates the
brightness from the chromaticity component. Their conclusion is similar to Han et al.[6]
whom propose an algorithm to deal with gradual illumination changes. To cope with
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(a) Intensity. (b) Differences. (c) Intensity versus Differences.
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(d) Intensity. (e) Differences. (f) Intensity versus Differences.

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

time (days)

in
te

ns
ity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−10

−8

−6

−4

−2

0

2

4

6

8

10

time (days)

di
ffe

re
nc

es

20 40 60 80 100 120 140 160 180
−10

−8

−6

−4

−2

0

2

4

6

8

10

intensity

di
ffe

re
nc

es

(g) Intensity. (h) Differences. (i) Intrinsic curve.

Fig. 2. The different classes of intrinsic curves that can be observed. In (a)-(c) the stability zone
moves from one place to another. In (d)-(f) the curve comes back to the original stability zone
after the occluding object pass by. In (g)-(i) the stability zone extends smoothly on the intensity
axis. The first two sets of figures correspond to a few dozens of frames. The last set corresponds
to two days of observations of the same pixel.

the problem of shadows, they propose a color model where chromaticity distortion is
measured.

In this paper, we introduce a technique for background updating that uses intrin-
sic curves[21]. Intrinsic curves are N -values functions whose components are obtained
from applying operators Pn to the intensity variation over time. This technique works
at pixel level. It can be complemented with the knowledge generated at region level[25]
or scene level[22]. The advantage of treating each pixel independently is that this gives
a lot of flexibility at the expense of greater variability due to noise. For cases where
the illumination conditions are controlled and there is the opportunity for observing the
scene without foreground objects a simple median filter[24] could be used. However,
this is rarely the case. Most common is the fact that the background image has to be
adjusted as the time pass by. Huang et al.[9] address the problem of separating fore-
ground from background in color images. They assume that background regions are
relatively smooth but may have gradually varying colors or slightly textured. Voting
may be another strategy to define the background pixel value from a set of samples.
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(a) Intensity. (b) Differences.

Fig. 3. Convolution with a Half-Gaussian that takes into account only the values before the current
position (red-circled line) or the values after the current position (blue-starred line)

For a given pixel, Tai and Song [20] propose to accumulate the intensity value obser-
vations into a histogram. The most frequent value is used as an estimate of the back-
ground value. They apply the proposed method to a vision-based traffic monitoring
system to segment moving vehicles from traffic image sequences. In a seminal paper,
Stauffer and Grimson[19] proposed to model each pixel as a mixture of Gaussians.
The gaussian distributions of the adaptive mixture model are evaluated to determine
which are most likely to result from a background process. Each pixel is classified
based on whether the Gaussian distribution which represent it most effectively is con-
sidered part of the background model. This model has been adapted widely, and studied
extensively. For instance, Wayne and Schoonees[15] developed a tutorial paper to de-
scribe a practical implementation of the Stauffer-Grimson algorithm and provide values
for all model parameters. In their document, they show what approximations to the
theory were made and how to improve the standard algorithm by redefining those
approximations.

In the rest of the paper, we introduce a technique to detect moving objects in a scene
with static background imaged from a fixed camera. We focus on the background up-
date stage, assuming that initialization, shadows, uncovered background, and region and
frame level analysis can be deal with using some of the techniques mentioned before.
In §2, we review the intrinsic curve paradigm and illustrate how it is useful to detect
moving boundaries. Then, in §3, the background detection approach using mixture of
Gaussians is visited. There, we show how both ideas can be blended. Next, in §4, we
present experiments with several image sequences under an ample set of conditions.
Finally, we summarize our results and outline future research.

2 Detecting Moving Boundaries

In this section, it is introduced an algorithm to distinguish, at pixel level, moving from
static surfaces by analyzing a pixel dynamics in a particular intrinsic curve space.
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Fig. 4. State diagram for a pixel. The conditions to change state are commented within the text.

2.1 Intrinsic Curves

In the context of stereovision, Tomasi and Manduchi [21] proposed the description
of scanlines in terms of a set of operators Mn. Thus, a intrinsic curve is a curve
m(t) = {mn(t), t ∈ R} in RN parameterized by the real variable t such that m is
generated by applying N operators Mn to the original signal m0(t) to produce the new
signals mn(t). Tomasi and Manduchi were specially interested in diffeomorphisms,
i. e., mappings between manifolds which are differentiable and have a differentiable
inverse[23]. In particular, as Tomasi and Manduchi did in their paper, in this study is
interesting to apply operators of the form

mn(t) = [Mnm0](t) =
dn

dtn
m0(t). (1)

Let us focus on a single pixel intensity dynamics throughout time. Suppose that it has
a background intrinsic curve model α(t) while β(t) is the intrinsic curve for the values
being observed. Tomasi and Manduchi noted that in the intrinsic curve space, noise
apart, both curves will follow the same trajectory. However, during an occlusion, they
will experience a significant deviation of one respect to the other. When the occlusion
ends, both curves will meet again in a place that depends on whether the occluding
object became part of the background. This idea is illustrated in Fig. 1. In general, an
intrinsic curve that belongs to the background is defined within what we call a stability
zone. Here, stable corresponds to the notion that the observed curve values are drawn
from a stable distribution[14]. For simplicity, we assume that the stable distribution
follows a Gaussian model given by

h(x) =
1

(2π)N/2‖Σ‖1/2
exp

[
−1

2
(x − μ)T

Σ−1 (x − μ)
]

, (2)

with x = m(t), the observed intrinsic curve, and μ = [m0, . . . , mN−1], the intrinsic
curve components mean value, and covariance matrix Σ. Background occlusions due
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to foreground objects are rather difficult to describe in terms of a parametric distribution.
Intrinsic curves help us to distinguish between both.

We have noted three kinds of intrinsic curves: leaving, returning, and steady. The
leaving case occurs when the foreground objects integrates into the background (illus-
trated in Fig 2(a)-(c)). This is the typical case, for instance, of a car parking. Imagine
that a intrinsic curve is in the stability zone. When the car occludes the background
the curve departs from it. Then, when the car finally parks, the curve finds, in general,
another stability zone and the parked car is integrated into the background model. In
the returning case (illustrated in Fig 2(d)-(f)), the curve remains stable until an object
occludes the background. At that moment, the curve leaves the stability zone. When
the object passes, the curve comes back to its original stability zone. The previous two
cases occur when the background is occluded. The steady case describes the long term
behavior of a pixel that belongs to the background. This event occurs, for instance, when
the illumination changes smoothly as the day passes by. Fig. 2(g)-(i) show two days of
observation of the same pixel location. As the day passes by the illumination increases
and decreases smoothly.

2.2 Detecting Motion

To detect moving boundaries using intrinsic curves, the prime problem is to distinguish
the stability zone. The pixel will be classified as being part of the background until it
leaves the stability zone, and during that time it will be part of the foreground class.
It will return to the background class once it stabilizes again. In practice, image noise
makes it hard to classify the state of a pixel. Let the pixel intensity m0(t) at time t
be described by m0(t) = n(t) + ξ(t), where n(t) is the true image intensity value
and ξ(t) is the image noise. Traditionally, one way to remove this noise has been by
using low pass filters. However, applying filters across region boundaries may result in
undesirable results because regions belong to different populations. To remove noise, a
zero-mean Gaussian filter is applied but with a twist. Half-Gaussian are used to remove
the noise, such that operators

gp(t) =

��
2

πσ2 exp
�

t2

2σ2

�
−∞ < t ≤ 0

0 otherwise
, and gf (t) =

��
2

πσ2 exp
�

t2

2σ2

�
0 ≤ t < ∞

0 otherwise
,

(3)
are applied simultaneously. The original signal m0(t) is thus filtered out resulting in
two estimates, p0(t) and f0(t), that take into account only frames before and after the
current one, respectively, such that

p0(t) = m0(t) ∗ gp(t), and f0(t) = m0(t) ∗ gf(t). (4)

Let m(k) correspond to the observation of a pixel in position x at time k. The se-
quence is smoothed using as many frames as required by the filter window width. Let us
call k the present time. Half of the filter’s window include values corresponding to the
previous frames and half of it values corresponding to the next frames. After smoothing,
there will be signals p0(k) and f0(k) corresponding to estimates of the true pixel in-
tensity. Intrinsic curve descriptors for the i-order difference can be computed using the
estimates of the (i− 1)-order. This way, there will be an intrinsic curve description that
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considers the previous frames, p(k) = {p0(k), p1(k), . . . , pN−1(k)}, and another con-
sidering the next ones, f(k) = {f0(k), f1(k), . . . , fN−1(k)}. As it is illustrated in Fig.
3, p and f are useful to detect respectively the beginning and ending of an occlusion.

3 Adding Memory

Stauffer and Grimson[19] proposed one of the most popular methods to estimate the
model of the intensity variations for an image sequence took from a fixed camera. Their
method is based on computing on-line the parameters of a mixture of Gaussians (MOG)
for each individual pixel. In this method, a given pixel intensity value is classified as
either part of the background or the foreground depending on whether the value is likely
to be interpreted by the respective statistical model. In practice, the method generates
between 3 and 5 Gaussians. Intrinsic curves aims to improve this model in two ways.
On the one hand, they do not feed the mixture of Gaussians with foreground pixels. On
the other hand, they take into account not just the scalar pixel value but a richer de-
scription of the pixel’s dynamics that carries information about the interpixel variation.
In this section, we complement the intrinsic curve model with the addition of memory
capabilities that could be used to describe what has been occurring in the past. First, the
MOG model is described. Then, MOG and intrinsic curves are combined into a single
paradigm.

3.1 Mixture of Gaussians

MOG aims to model the image of a dynamic scene as perceived from a fixed camera
by a set of Gaussians. Given a set of n points in one dimension, x1, . . . , xn ∈ R, and
a family F of probability density functions on R, the problem is to find the probability
density f(x) ∈ F that is most likely to have generated the given points. In this method,
each member of the family F has the same general Gaussian form. Each member is
distinguished by different values of a set of parameters θ. That is

f(x; θ) =
K�

k=1

qkg(x;μk, σk), where g(x;μk, σk) =
1√

2πσk

exp

�
−1

2

�
x − μk

σk

�2
	
,

(5)
is a 1-dimensional Gaussian function and θ = (θ1, . . . , θK) = ((q1, μ1, σ1), . . . , (qK ,-
μK , σK)), is a 3K-dimensional vector containing the mixing probabilities qk as well
as the means μk and standard deviations σk of the K Gaussian functions in the mix-
ture. When a new observation xt is available, it is compared again the parameters of the
Gaussian models. If || x − μk ||≤ ασk, then it is assumed that the observation is likely
to be produced by a perturbation of the true value similar to the one expressed by the
k-model. Typically, α is chosen to be 3, meaning that x is within 99.73% of the cases
occurring under this model. If an observation occurs that can not be explained by the
current set of Gaussians, a new model with high variance and centered around the obser-
vation is initialized. This model becomes part of the mixture of Gaussians. Otherwise,
the new observations helps to learn the true value of the parameters. Most commonly
the learning process followed is called Estimation-Maximization (EM). In the first place
a lower bound function bi(θ) is claimed to approximate f . Then the parameters that
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maximize this function are found. Since not all the observations are available at once,
an on-line version of the EM algorithm uses the following set of equations.

μt+1 = ρμt + (1 − ρ)xt, and σ2
t+1 = ρσ2

t + (1 − ρ)(xt − μt+1)2 ,
(6)

where ρ ∈ [0, 1] is the learning rate.

3.2 Estimating the Background Model

In our model, a pixel can be in anyone of three states (see Fig. 4): stable, transition, and
foreground. To reduce the memory space and computing demands, let p(k) = (pk, ṗk)
and f(k) = (fk, ḟk) be respectively the estimate for the intrinsic curves for a particular
pixel at time k using the samples before and after the current frame. Initially, a pixel is
classified in the transition state. The change of state is governed by the following rules:

– A transition pixel will stay like that if || ṗk ||> ε, and || ṗk || is showing a decreasing
tendency. Otherwise, if || ṗk ||> ε but || ṗk || does not show a decreasing tendency
the pixel will change state to foreground. A transition pixel will change its state to
stable if || ṗk ||< ε.

– An stable pixel will remain in that state provided p is in the stability zone. Other-
wise, the state will change to foreground.

– A foreground pixel will stay like that if f is not in the stability zone. Otherwise, its
state will change to transition.

The decreasing tendency function D(xi) is used to solve the problems caused by
temporal aliasing. When an object has moving parts that occlude and accretes the back-
ground too fast, the noise filters receive samples from different distributions and the
result is not accurate. A similar situation occurs when objects move too close to each
other. The filter’s window spans both objects mixing up their respective populations.
However, in those cases f returns for a moment to a stability zone and then bounces out
in response to the following occluding object. If during this time p keeps approaching
the stability zone then it can be assumed that the pixel is a stable one.

A pixel classified as stable is not necessarily part of the background. That is, imagine
that a large, homogeneous object is moving on top of a static background. The frontal
part of the object will be detected as a moving region as well as the rear part. However,
once a pixel enters the stable state, it will start building a model for the variation of the
intensity of this pixel. What is being produced is a set of layers that model the pixel
dynamics. So the criteria that we have used is the following one. If there is a pixel
with more that one Gaussian description and one of the Gaussians has been used in the
current frame, i.e., the pixel is in the stable state, then that pixel is considered part of the
foreground. This strategy has proved to be useful for instance when detecting leftover
objects. Imagine for instance a parking lot. When a new car parks, its figure outstand
because although it stabilizes, a different background was there before. A consequence
of this is that when a parked car leaves, its silhouette will remain. So it really depends
on what was the previous state of the scene.

Aging can be applied for pixels that have been in the scene for a long time, but
whose Gaussian description has not been visited for some time, the application erases
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the Gaussian that models it. This allows to eliminate the cases described before where
parked objects leave the scene and left their ghost behind. Also, Gaussians with few
samples not used for some time are eliminated from the Gaussian mixture because it is
considered that they were the result of noise.

4 Experimental Results

The model just described was implemented on an Intel Pentium IV computer with 3GHz
clock frequency. It was programmed in MATLAB and tested with several sequences
that included indoors and outdoors scenarios, with natural and artificial light, imaged
during nighttime and daytime. For the experiments, color images were converted into
grayscale ones. The average processing speed was about 5,300 pixels per second. Due
to lack of space, we illustrate the results with a few frames out of a poll of sequences.
PETS stands for Performance Evaluation of Tracking and Surveillance Systems[3]

(first row in Fig. 5). The sequence has 2688 JPEG frames. The individual frame res-
olution is 768 × 576 color pixels. There are seven persons or groups of persons that
at different times cross the scene. There are also three vehicles that park or do some
kind of manoeuver, like moving back and forth. In general, when the objects move
their shape is well delineated. In this sequence, the moving objects either pass by or
arrive to the scene. There is one truck that enters the scene, parks, and afterwards leaves
the scene. In such cases, the foreground objects are correctly detected and when they
leave aging and small groups filtering can get ride of the traces left. However, see the
Laboratory sequence, which has 182 color frames with resolution 640 × 480 (sec-
ond row in Fig. 5). In this sequence a person walks around a computer laboratory. The
person dresses a shirt with a black squares drawing and black pants. The sequence starts
with the person standing at the door. As he leaves this position, his silhouette is left be-
hind. Whether to leave or remove one of such figures depends on a decision that cannot
be taken at pixel level and also on factors such as the initial state of the scene back-
ground and ultimate application of the surveillance system. Fig. 5(b.1) shows also the
trajectory followed by the person. This trajectory was computed using the blob centroid
in each frame of the sequence. Some problems related to shadows that appear in this
sequence are more evident in the sequence Soccer. The Soccer sequence has 9,744
frames with resolution 320 × 240(third row in Fig. 5). It shows a nocturne soccer game
where 22 players, a referee, the ball and the public provide a quite dynamic scenario.
The camera was placed about 80 meters from middle field. The illumination conditions,
dominated by neon lamps, make the objects in the scene to cast multiple shadows. The
shadows is the regular price that has to be paid for processing is grayscale instead of
color. Still, in this scene moving objects are well detected even considering their size
and the type of illumination. Another experiment shows the Crossroads sequence,
which was took from a 28 meters high tower placed in one of the corners of a crossroads
(Fig. 5). From that viewpoint is possible to cover the whole intersection. The sequence
has 2000 frames, each one with resolution 320 × 240. This sequence is very challeng-
ing because the vehicles become part of the background and then, after a while, they
suddenly start moving again, at high speed. So the background has to recover quickly
but there are other vehicles passing by. Also, long buses with homogeneous roofs are
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(a.1) Scene. (a.2) Frame 950. (a.3) Frame 2610.

(b.1) Scene. (b.2) Frame 058. (b.3) Frame 118.

(c.1) Scene. (c.2) Frame 4000. (c.3) Frame 8000.

(d.1) Scene. (d.2) Frame 72. (d.3) Frame 742.

Fig. 5. Experimental results

detected correctly. In general, depending on what is initially consider to be part of the
background, our method can be used to detect left over objects, which could leave the
scene at a later stage.

5 Conclusion

In this document, we have shown how an intrinsic curves could be used to detect accre-
tion and occlusion regions in a scene containing moving objects. Using, this technique
alone will produce fragmented segments for large objects with homogeneous texture.
Hence, Gaussian mixture models provide an ideal vehicle to preserve information about
the recent pixel intensity dynamics. Our algorithm shows good results for updating the
model of the background under a variety of scenarios that include indoors and outdoors
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environment in a number of different illumination conditions. It has been noted that de-
pending on the initial background state and ultimate application, the algorithm is able
to keep track of leftover objects. This is an important property that may be useful for
security applications. As stated, the algorithm is based on the grayscale processing of
individual pixels without regard of the behavior of the local neighborhood. Color in-
formation, and hierarchical analysis may be prove to be helpful to eliminate shadows,
detect camouflage and sudden global illumination changes.
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