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Abstract 

Using structural geometry, Whiteley showed that 
a line drawing is a correct projection of a spherical 
polyhedron if and only if it has a cross-section compat- 
ible with it. We here enlarge the class of drawings to 
which this test applies, including those of polyhedral 
disks. Our proof is constructive, showing how to de- 
rive all spatial interpretations, it relies on elementary 
synthetic geometric arguments, and, as a by-product, 
it yields a simpler and shorter proof of Whiteley’s re- 
sult. Moreover, important properties of line drawings 
are visually derived as corollaries: realizability is in- 
dependent of the adopted projection, it is an invariant 
projective property, and for trihedral drawings it can 
be checked with a pencil and an unmarked ruler alone. 

1. Introduction 

Emulating the human performance in interpreting 
drawings of polyhedra has been one of the goals of 
Computer Vision along the past three decades [2, 13, 
12, 3, 13. A usual motivation behind the extensive 
work done in the area is helping to elucidate why hu- 
mans are able to reject “impossible figures”, and re- 
cover 3D shapes from correct ones (fig. l), despite 
the reduced information they offer, without textures on 
the surfaces, illumination patterns, or extra views. See 
[ 12,6] for a recopilation of results. 

It is well known that the problem of deciding 
whether a line drawing is realizable-i.e. it actu- 
ally represents the correct projection of a polyhedral 
scene-was solved by Sugihara in his series of pa- 
pers [ l l ,  10, 91, where he reduced it to an instance 
of linear programming. What is less known, however, 
is that for spherical polyhedra the correctness can be 
decided only checking the concurrence of groups of 

Figure 1. Line drawings. 
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three lines derived from the drawing itself. (By spher- 
ical we mean here that the polyhedron is homeomor- 
phic to a sphere.) Although the authors independently 
proved this in [SI, they later found that the result had 
already appeared in [14], due to Whiteley. Using el- 
ementary synthetic geometric arguments, we here see 
that the same test is valid for drawings of polyhedral 
surfaces homeomorphic to a disk. Our proof is con- 
structive and it also yields a simpler and shorter proof 
of Whiteley’s result, where, contrary to [ 141, tools of 
structural geometry are not needed. Important prop- 
erties visually emerge as corollaries. Namely, for a 
line drawing, (1) its spatial realizability is independent 
from the adopted projection; (2) if it is realizable, then 
a projective transformation applied to it yields another 
realizable drawing; and (3) if it is trihedral (i. e., all 
vertices have exactly three incident faces), its realiz- 
ability can be checked with a pencil and an unmarked 
ruler alone, without resorting to Sugihara’s algebraic 
formulation. 

2. Basic Background 

A line drawing is a diagram with straight line seg- 
ments, called edges, and points where two or more 
segments meet, called vertices. A polyhedral disk, or 
polydisk for short, is a piecewise linear and continuous 
surface homeomorphic to a disk, made up of a collec- 
tion of planar polygonal faces, f l ,  f 2 , .  . . , fm, glued 
in pairs along the edges. For the sake of simplicity, 
we assume that the drawing, if correct, is produced 
by orthogonally projecting a single polydisk onto the 
X Y  plane, showing all its edges, even the hiddenones. 
Section 4 extends the results to other types of projec- 
tion, and [6] extends them to drawings of more com- 
plicated scenes, without hidden edges, several objects 
and possible occlusions between them. We say that a 
drawing V is correct, or realizable, if we can verti- 
cally lift the vertices of ’D to construct a polydisk that 
projects onto 23, with distinct planes for adjacent faces. 
Such a polydisk is called an interpretation or a lifting 
of the drawing. 

We assume that a drawing is given along with its 
incidence structure [12], that tells the sets of vertices 
of the drawing that form a planar face in any spatial in- 
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Figure 2. Correct (left) and incorrect 
drawings (right). 

terpretation. The incidence structure can be computed 
by applying the method in [12, pag. 451, after a la- 
belling of its edges has been obtained using techniques 
described in [2, 13,5]. 

For a polydisk P in 3-space, we say that a face f of 

P if the edges between f and these faces are sequen- 
tially linked, meaning that if (f, fi,) denotes the edge 
between faces f and fik, then in the sequence s = 

vertex with the previous and the next one, except for 
the first and last edges in s, which only share a vertex 
with the next and the previous edge, respectively. 

P is sequentially adjacent to faces f i ,  . f i ,  . . . . .  fi, of 

{(f,fil),(f,fi,),...,(f,fi,)} every edge shares a 

3. The cross-section test 

Some examples point out that a drawing’s correct- 
ness is checkeable solely using concurrence condi- 
tions. The truncated tetrahedron in fig. 2a is only cor- 
rect when its three edges I, m, and n meet at a com- 
mon point. The 4-culotte in fig. 2b, a configuration of 
a quadrilateral face and its four neighboring faces, is 
only correct when the three lines 1, m, n are concur- 
rent or, equivalently, when the three bold points are 
aligned, since they all lie at the line m of intersection 
of the planes a! and p. Likewise, the 5-culotte in fig. 2c 
is only correct when I ,  ml, nl,  and I, m2,n2 are con- 
current too. These are all necessary conditions for re- 
alizability. The challenge was to characterize a set of 
also sufficient concurrence conditions for a drawing to 
be correct. We next present one. 

Consider a spherical polyhedron in 3-space such as, 
for example, the tetrahedron in fig. 3 ,  top. Now, ob- 
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Figure 3. The cross-section test. 

tain the intersections of the planes of its faces with 
an extemal plane 6 in general position. The result- 
ing arrangement of lines is called a cross-section of 
the polyhedron. It is clear that the edge line e between 
two faces, say fi and f2, must be concurrent to the 
point of intersection of the lines L f ,  and L f z  of inter- 
section of the planes of fi and f2 with 4. These trivial 
concurrence conditions in 3-space will clearly hold too 
when projecting the whole construction onto the plane 
4, because projection preserves collinearity of points 
and all incidence relations (fig. 3, central). Hence, we 
have a set of concurrence constraints that are necessary 
for a drawing to correctly represent the projection of a 
spherical polyhedron: the drawing can only be correct 
if we are able to draw a compatible cross-section dia- 
gram, one where these concurrences hold (fig. 3,  bot- 
tom). Whiteley’s theorem states that the converse is 
also true. We will also prove the following. 

Theorem 1. A line drawing of a polydisk is realizable 
if and only if it has a compatible cross-section, with 
non-coincident cross-section lines. 

By “compatible” we mean here that all non- 
boundary edges of the polydisk are concurrent to their 
corresponding point in the cross-section, leaving the 
boundary ones unconstrained. 

Proof. The “only if“ part is proven by the above argu- 
ments. We will prove the “if“ part using the drawing 
and its compatible cross-section to explicitly construct 
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Figure 4. Lifting an intermediate face. 

a polydisk, one whose face-planes generate the given 
cross-section when intersected with the plane of the 
drawing. 

The proof proceeds using induction. First we show 
how to lift a first face of the drawing keeping all its 
vertices coplanar. Then we assume that a polydisk Ck 
with k faces has already been lifted correctly and prove 
that any other face that is sequentially adjacent to some 
faces in Ck can be properly lifted too, to form a lifted 
polydisk Ck+l with k + 1 faces. 

To start with, take any of the faces of the drawing 
and consider its cross-section line. A lifting of this 
face can be fixed by giving an arbitrary height to any 
one of its vertices not in the cross-section line. The 
cross-section line and the lifted vertex define the plane 
of the face, and all edges and vertices of the face are 
then lifted vertically to lie on this plane. 

As induction hypothesis, assume that we have a 
polydisk Ck already lifted correctly, where for ev- 
ery edge between two faces, its line meets the point 
where the cross-section lines of these two faces inter- 
sect. This applies to all edges of Ck, even those at its 
boundary. Note that this hypothesis is true if Ck only 
contains the first lifted face. 

Now, we can lift an additional face f a ,  not in L k ,  
that is sequentially adjacent to m faces fl, . . . , f m  
of Ck (and to no other face of Ck) through m edges 
P Q ,  Q R ,  RS,. . . (see fig. 4, where we represent the 
case m = 3). We will prove that these edges and the 
cross-section line Lfo  of fo are all coplanar, and define 
a plane a that is different from all planes assigned to 
the faces f l ,  . . . , fm. 

To see this, note that, as the edge line PQ is inci- 
dent with L f o  (by induction hypothesis), P Q  and L f o  
are coplanar. Let us call a the plane they define. More- 
over, the edge line Q R  is also coplanar with a, as it 
contains two points of this plane: the point where it 
intersects with Lfo  and the point Q of line PQ. The 
same applies to line RS as it is incident with R and 
Lfo .  Clearly, the argument can be iterated to prove 
that all other edges between fa and Ck are coplanar 
with a. 

With the plane for fa already fixed, all other edges 
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Figure 5. Evolution of Ck. 
between fo and faces not in Ck can be fixed too by 
lifting them vertically to lie in this plane. For every 
such edge, say between face fo and face fi, we must 
prove that its line of support meets the point T where 
the cross-section lines Lft and Lf,, meet. Clearly, this 
line is defined by the intersection of the plane a and 
a vertical plane containing the projection of the edge. 
But both planes meet T :  a meets T because T is a 
point of L f o ,  and the vertical plane meets T because 
the projection of the edge meets T in the cross-section. 

It remains to prove that the plane (Y is different from 
all the planes given to the faces f l ,  . . . , f m .  But this 
is trivially true, as the only way for a to coincide with 
one of such planes would be that the corresponding 
cross-section lines are identical, which is not the case, 
by the premises of the theorem. 

4. Derived results 

Corollary 1 (Whiteley’s theorem). A line drawing 
of a spherical polyhedron is realizable if and only if 
it has a compatible cross-section, with non-coincident 
cross-section lines. 

Proof. The spherical polyhedron can be con- 
structed by generating a sequence of lifted polydisks 
C1, Cz, C3,. . ., adding one face at a time. At the end, 
a last face will close the polyhedron, but all its edges 
will be coplanar, as the face is sequentially adjacent to 
the previous polydisk (fig. 5). 

However, the test cannot be extended to deal with 
projections of polyhedral objects with holes, as they 
cannot be lifted by subsequently adding faces that are 
sequentially adjacent to a previous polydisk. See this, 
e. g., for a topologic disk with a hole in fig. 6a. 
As a counterexample, consider three pairwise adjacent 
faces with a hole (fig. 6b). They always have a com- 
patible cross-section, but the drawing is not realizable 
unless the three non-boundary edges, I ,  m and n, are 
concurrent. 

Corollary2. Realizability does not depend on the 
type of projection assumed. 

Proof. If we observe fig. 4 we see that the same proof 
works for central projection, the only difference being 
that the vertices P ,  Q ,  R, . . ., are lifted along lines that 
meet at the center of projection. Similarly, the proof is 
valid for oblique parallel projection. 

Corollary 3. Realizability is a projectively invariant 
property. 
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Figure 6. (a) and (b): polydisks with holes. (c) and (d): test of a trihedral drawing. 

Proof. Non-singular projective transformations of the 
plane map lines to lines and points of intersection of 
two lines to the points of intersection of the trans- 
formed two lines [4]. Hence, if a drawing has a com- 
patible cross-section, the transformed drawing will 
also have one. 

tical for drawing interpretation, one needs a way to au- 
tomatically find all compatible cross-sections or show 
that none exists. In [6] we provide one, together with 
a tool for correcting incorrect drawings (also in [7]). 
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