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Abstract— This paper introduces an approach that reduces
the size of the state and maximizes the sparsity of the in-
formation matrix in exactly sparse delayed-state SLAM. We
propose constant time procedures to measure the distance
between a given pair of poses, the mutual information gain
for a given candidate link, and the joint marginals required for
both measures. Using these measures, we can readily identify
non redundant poses and highly informative links and use
only those to augment and to update the state, respectively.
The result is a delayed-state SLAM system that reduces both
the use of memory and the execution time and that delays
filter inconsistency by reducing the number of linearization
introduced when adding new loop closure links. We evaluate
the advantage of the proposed approach using simulations and
data sets collected with real robots.

I. INTRODUCTION

The first available solutions in the SLAM literature were
based on the Extended Kalman Filter (EKF) and formulated
the problem as the probabilistic estimation of the robot pose
and the location of static landmarks in the environment,
modelled as a multivariate Gaussian parametrized with the
state mean and its covariance matrix [1], [2]. However,
maintaining the covariance matrix has memory and time
complexities that scale quadratically with the number of
landmarks, which limits this approach to relatively small
environments.

This computational cost can be alleviated using the
Extended Information Filter (EIF) and its alternative
parametrization of Gaussian distributions based on the infor-
mation vector and the information matrix. The information
matrix in landmark-based SLAM is approximately sparse
with very small matrix entries for distant landmarks [3].
These entries can be removed, compacting the map and
speeding up the filter. If instead of only estimating the last
robot pose, the whole robot trajectory is included in the
state together with the landmarks, an approach typically
referred to as full SLAM [4]–[6], a sparse information matrix
is obtained without using approximations. Furthermore, in
delayed-state SLAM [7]–[10] only the trajectory of the robot
is included in the state and the landmarks are only used to
derive relative motion constraints between poses. The result
is an exactly sparse information matrix which grows with
the number of poses and that only has non-null entries for
those poses directly related by an observation. Therefore,
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delayed state SLAM only requires a moderate memory use
even when mapping large areas.

However, adding all robot poses to the state vector has
the cost of a representation that grows even when revisiting
already traversed areas. Furthermore, adding all possible
loop closure links reduces the sparsity of the information
matrix, slows down the execution, and contributes to produce
overconfident estimates due to the linearizations introduced
with each new link, which in the long run lead to filter
inconsistency [11], [12].

Heuristic strategies have been used in the delayed-state
SLAM approach either to restrict the number of links [8]
or to reduce the size of the state by keeping only poses
every few meters [10]. In the context of landmark-based
SLAM, principled information-based approaches have been
proposed to reduce the state representation size and to delay
inconsistency incorporating only highly informative observa-
tions to the filter [13], [14]. Following this line of thought,
our previous work [9] pointed out that the computational
complexity of delayed-state SLAM can be reduced by con-
sidering only highly informative links between nearby poses.
The problem is that computing the distance between poses
and the mutual information gain for links requires access
to the joint marginals, which are computationally expensive
to recover from the information parameterization. Therefore,
in our previous work, we only provide approximations for
these two measures. However, these approximations assume
the poses to be independent which is not the case in delayed
state SLAM. In this paper, we show that while in open
loop, when the system searches for informative links, the
joint marginal covariances of a given pair of poses can be
recovered in constant time. Exploiting this contribution, we
propose a method to compute the distance between poses
and the mutual information gain for each link in exact
form. Finally, we extend the use of the distance and the
information measures to identify not only relevant links but
also redundant poses that are not worth to be added to the
state.

The rest of the paper is structured as follows. In Section II
we formalize delayed-state SLAM and define the problems
to be addressed. Then, Section III describes the strategy to
control the size and the fill in of the information matrix and
the metrics used to compute the informative load of links and
poses. Section IV details how to recover the joint marginal
covariance of a given pair of poses in constant time and
Section V evaluates the method using synthetic and real data
sets. Finally, Section VI summarizes the contributions of this
work and points out ideas for further development.
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II. DELAYED-STATE SLAM FORMULATION

In delayed-state SLAM, the trajectory of the robot at
time t, xt = {x0, . . . , xt}, with xi the robot pose at time
i, i ≤ t, is estimated from the trajectory at time t − 1, a
motion command ut, and a set of observations, yt, of relative
displacements between the current robot pose and previous
poses along the path

p(xt|ut,yt,xt−1) ∝ p(yt|xt) p(xt|ut,xt−1). (1)

The estimation problem in (1) corresponds to the typical
SLAM operations of augmenting the state when computing
p(xt|ut,xt−1) and updating the robot path using relative
observations when computing p(yt|xt).

Assuming Gaussian distributions, the probabilities in (1)
can be parametrized either in terms of their mean and
covariance x ∼ N (µ,Σ) or in terms of the information
vector and the information matrix x ∼ N−1(η,Λ), where
η = Λµ, Λ = Σ−1, and the estimation workhorses are
the extended Kalman and information filters, respectively. As
mentioned, this second case is advantageous since its state
representation is exactly sparse [8].

The motion ut is tipically given by odometric sensors and
it can be integrated to the filter during state augmentation.

Augmenting the state in information form introduces
shared information only between the new robot pose, xt,
and the previous one, xt−1, resulting in a naturally sparse
information matrix, Λ, with a tridiagonal block structure [8].
Assuming the state mean to be available, this operation can
be performed in constant time. In the incremental form of
delayed-state SLAM, adding all the poses results in a state
which increases in size even when re-traversing areas. To
avoid this unnecessary growth of the state size, redundant
poses must be identified and not added.

Integrating the observations in yt into the filter is more
problematic since it involves solving the data association

problem. In the context of delayed-state SLAM, data asso-
ciation is the process of determining relative displacements
between the current robot pose and previous poses in the
trajectory by registering the corresponding sensor readings.

When establishing a link between pose t and pose i using
the information filter, the update operation only modifies the
diagonal blocks t and i of the sparse information matrix,
Λ, and introduces new off-diagonal blocks at locations t, i
and i, t. This operation can also be executed in constant
time, assuming the state mean to be available [8]. When
establishing a link between an uncertain pose and a more
certain one, the estimation of the entire path is revised
reducing the accumulated error. But recovering the state
after an update has worst case quadratic cost, dwindling the
advantage of constant time predictions and updates in the
information form of delayed-state SLAM. If only few loops
are closed, this high cost is amortized over long periods.
For this reason there must be a trade off between reducing
uncertainty and keeping the number of links low.

III. REDUCING THE STATE REPRESENTATION IN

DELAYED-STATE SLAM

The strategy we propose to maintain a reduced state size
and to speed up the execution of delayed-state SLAM is
based on considering only highly informative links and non
redundant poses.

The mutual information gain of a link measures the
contribution of the link to the correction of the state. For
low informative links, the state hardly changes and the
linearization effects associated with the link dominate. On
the contrary, for highly informative links, the linearization
effects are small in comparison with the change in the state.
Thus, we propose to measure the information gain for the
links and to update the state using only those informative
enough.

As far as poses are concerned, it seems reasonable to
keep only non-redundant poses. The redundancy of a pose
should be measured in the information space and not only
in the Euclidean space, as it has been previously done in
the literature [10]. The distance in the information space
of a pose with respect to the poses already in the state
can be measured from the information carried by the links
established between them. If these links are not informative
enough, there is no need to include the new pose in the state
representation since its contribution is equivalent to poses
already in the state.

The mutual information gain can be computed by actu-
ally checking the contribution of all possible observations
obtained from sensor registration. If at least one of the links
is very informative, both the link and the new pose are added
to the state. On the other hand, if no much information is
gained for any link, the pose is considered redundant and it
is not added to the state.

However, the process of registering the current sensor
reading with all the previous ones is slow and prone to
perceptual aliasing. Since only poses that are within the
sensor range are likely to be successfully registered with
the current pose, we limit sensor registration only to the
set of neighboring poses. Moreover, we can evaluate the
expected mutual information gain before actually registering
the sensor readings. Thus, we can further constrain the set
of poses to be considered to those that are close enough
and whose expected information gain when linked to the
current pose is potentially high. When using the expected
information instead of the actual one, we can keep not only
the poses that close a loop but also those that are good
candidate to do so.

The use of the information-based selection criterion as a
previous step to sensor registration leads to restrictive data
association tests that avoid computational expensive sensorial
matching as much as possible. The result in a reduced state
representation with the corresponding computational savings.

A. Distance Between Poses

The relative displacement, d, from the current robot pose
xt ∼ N (µt,Σtt) to any other previous pose in the trajectory
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xi ∼ N (µi,Σii) can be estimated as a Gaussian with
parameters

µd = h(µt, µi),

Σd = [Hi Ht]

[

Σii Σit

Σ"
it Σtt

]

[Hi Ht]
"

where h(xt, xi) gives the relative displacement from xi to xt

in the frame of reference of xi, Ht and Hi are the Jacobians
of h with respect to the two poses, and Σit is the cross
correlation between poses i and t.

Marginalizing the distribution of the displacement, d, for
each one of its dimensions, r, we get a one-dimensional
Gaussian distribution N (µr,σ

2
r) that allows to compute the

probability of pose xi being closer than vr to pose xt along
such dimension

pr =

∫ +vr

−vr

N (µr,σ
2
r)

=
1

2

(

erf

(

vr − µr

σr

√
2

)

− erf

(

−vr − µr

σr

√
2

))

. (2)

If for all dimensions, pr is above a given threshold s, then
pose xi is considered to be close enough to the current robot
pose, xt.

If we set vr = 0 for all dimensions, then pr gives the
probability of the displacement d to be null. In [9] we
approximated this probability using a Mahalanobis distance
and assumed independence between the two involved poses.
We will see in Section IV, that the marginal covariances
needed to build Σd can be recovered efficiently, allowing to
exactly compute this distance in constant time for any given
pair of poses.

B. Mutual Information Gain of Candidate Links

When integrating the information of a new link between
poses i and t into the state, the information matrix posterior
is given by

Λ′ = Λ + H"Σ−1
y H (3)

where Σy is the expected measurement noise covariance and
H the corresponding Jacobian

H = [0 . . . 0 Hi 0 . . . 0 Ht] . (4)

For Gaussian distributions the mutual information gain pro-
duced by the candidate link is computed as [15]

Iit =
1

2
ln

|Λ′|
|Λ| . (5)

If (5) is above a given threshold, g, the link between the
two poses is considered relevant enough to reduce the state
uncertainty, and the corresponding observations are regis-
tered. When the registration succeeds we obtain a measure
of the displacement between poses i and t that can be used
to update the filter.

A straightforward evaluation of the global entropy reduc-
tion in (5) is computationally expensive since it requires the
computation of the determinants of the prior and all possible
posterior information matrices resulting from each tentative

updates. Therefore, in [9] we heuristically approximated (5)
using the second term of the Bhattacharyya distance that
provides a test to distinguish classes with close means but
different covariances, i.e., to identify poses that are close but
have significantly different uncertainty and whose linkage
might result in a significant change in the state. However,
this test assumes the poses to be independent and only
considers the effect of the candidate link on the two directly
linked poses, whereas when closing a loop, the whole state
potentially changes. The test in (5) takes into account the
effect of the candidate link in all the poses in the state
and considers the cross-correlations between them. In the
following we show that algebraic manipulation allows exact,
constant-time computation of the information gain.

Using (3), (5) becomes

Iit =
1

2
ln

|Λ + H"Σ−1
y H|

|Λ|

=
1

2
ln

|Σy| |Λ + H"Σ−1
y H|

|Σy| |Λ| .

Since the determinant of block matrix can be defined as

A B
C D

= |A| |D − C A−1 B| = |D| |A − B D−1 C|

we have that

Iit =
1

2
ln

Σy −H

H" Λ

|Σy| |Λ|

=
1

2
ln

|Λ| |Σy + H Λ−1 H"|
|Σy| |Λ|

=
1

2
ln

|Σy + H Λ−1 H"|
|Σy|

=
1

2
ln

|Σy + H ΣH"|
|Σy|

=
1

2
ln

|S|
|Σy|

(6)

with S = Σy +HΣH" the Kalman innovation matrix that,
taking into account (4), is

S = Σy + [Hi Ht]

[

Σii Σit

Σ"
it Σtt

]

[Hi Ht]
".

The matrices involved in the final expression for Iit have
constant size; the size of the underlying pose space. There-
fore, the mutual information gain can be computed in con-
stant time independent of the size of the state, assuming the
joint marginal covariance for poses i and t to be available
to compute S.

IV. COMPUTATION OF JOINT MARGINALS

The proposed solution to reduce the state size relies on
an efficient computation of both, the distance in (2) and the
mutual information gain in (6). The measures require the
state mean and the joint-marginal between the current pose,
xt, and any pose from the history, xi. Although representing
the state in information form is more memory efficient than
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in covariance form, it does not offer direct access to state
means and marginal covariances.

Efficient approximations of cross covariances can be
computed in logarithmic time by subsampling poses and
performing relaxation over multiple spatial resolutions [16],
or in constant time by considering only first order relations
via Markov blankets [3] or by implementing partial state up-
dates [17]. Optimistic approximations of joint marginals in-
crease the number of data association candidates, something
that is especially sensitive after long periods of open loop
traverse. Thus, exact joint marginal covariances are preferred
for the accurate identification of neighboring poses. Exact
joint marginals can be recovered by augmenting the sparse
system of equations needed for state recovery [8] or by ex-
ploiting the sparseness of factorized forms of the information
matrix with QR [6] or Cholesky factorizations [18]. These
algorithms have in average linear computational complexity
for band diagonal matrices, but they are worst case quadratic
for matrices encoding many loops.

Capitalizing on the idea that only few links are added to
the state representation, we now show how exact computation
of joint marginals can be achieved in constant time during
open loop.

Suppose a loop closure occurs at time l. At that point, and
thanks to the sparsity of the information matrix, the state
mean, µ, and the covariance matrix, Σ, can be recovered
either by QR or Cholesky factorization [6], [18]. In our
implementation, we make use of supernodal sparse Cholesky
factorization [19]. Finally, the exact marginal covariances
Σii, and the cross covariances Σil with 1 ≤ i ≤ l, can
be readily extracted from Σ.

After loop closure, when the robot moves to a new pose,
xi, i > l, the mean for this new pose can be computed from
the previous robot pose, xi−1, and the motion ut

µi = f(µi−1, ut)

and its marginal covariance can be computed as

Σii = Fi Σi−1 i−1 F"
i + Wi Σu W"

i

with Fi and Wi the Jacobians of f with respect to xi−1 and
ut, respectively, and Σu the motion noise. These marginal
covariances can be computed once and stored since they do
not change until the next loop closure occurs.

The cross correlation between the last robot pose and the
previously stored ones can be factorized as

Σit = Φi F"

with

Φi =

{

Σil i ≤ l

Σii (F"
l+1 . . .F"

i )−1 i > l

and where F" = F"
l+1 . . . F"

t is the accumulated Jacobian
from the last loop closure to the current time slice. Ob-
serve that F can be updated in constant time as the robot
moves. Moreover, all the information needed to define Φi

is available at time slice i and can be computed in constant
time since the term (F"

l+1 . . .F"
i )−1 is the inverse of the

aggregated Jacobian, F", at time i.

V. EXPERIMENTS AND RESULTS

Fig. 1 shows a comparison of different strategies for
delayed-state SLAM, illustrating the effect of adding only
informative links and non-redundant poses. All three plots
simulate a robot circling a 6 m radius circle and then
circunscribing an ellipse with semiaxes 6 m and 8 m. The
simulated robot has an odometric sensor whose error is
5% of the displacement in x and y and 0.00175 rad in
orientation and a second sensor able to link any two poses
closer than ±3 m, ±3 m, ±0.26 rad, in x, y, and orientation,
respectively. This sensor has a noise covariance of Σy =
diag(0.22, 0.22, 0.0092).

Fig. 1(a) shows the result of the simulation for the standard
delayed-state SLAM that incorporates all possible poses and
links to the state representation. The distance test in (2)
with range v = (3, 3, 0.26) and threshold s = 0.1 is used
to determine neighboring poses using (2). The simulation
takes about 32 s and at the end of the execution the filter
includes 170 poses and 895 loop-closure links. Results
correspond to a Matlab implementation running under Linux
on a Intel Core 2 at 2.4 Ghz.

Fig. 1(b) shows the result of the same simulation but
including only links that have a value of (6) higher than 1.
In this simulation, only 36 loop-closure links are established
instead of 895 and this results in a significant saving in the
execution time (25 s vs. 32 s ).

Finally, Fig. 1(c) shows the outcome of the experiment
where only informative links and relevant poses are added to
the state. As discussed in Sec. III, a pose is considered rele-
vant only if it establishes at least one sufficiently informative
link with any other pose already in the state. In this case, the
simulation takes only 9 s and the resulting state includes 49
poses and 34 loop-closure links. We can conclude that the
approach introduced in this paper significantly reduces the
state size and, consequently, the computation time. As it
can be appreciated in Fig. 1(c), since only low informative
links and redundant poses are discarded, the final trajectory
estimation is equivalent to that estimated by the original
delayed-state SLAM approach in Fig. 1(a).

To test the proposed system on real data, a Segway robotic
platform was manually driven to collect dead reckoning
readings and stereo images with a Bumblebee2 stereo rig.
The images are used to find constraints between the corre-
sponding poses triangulating SIFT features [20].

The Segway dead reckoning readings and the vi-
sual pose constraints are modeled with noise covari-
ances Σu = diag(0.012, 0.0052, 0.032), and Σy =
diag(0.22, 0.22, 0.032), respectively, and the uncertainty of
the initial pose is set to Σ11 = diag(0.12, 0.12, 0.092).

Experimentally, we observed that images taken in poses
farther away than ±2.5 m in x, ±2 m in y or ±0.26 rad
in orientation can not be safely matched and, consequently,
those are the thresholds used to detect nearby poses using
(2) with a neighboring probability threshold s = 0.1.

We drove the robot for 700 s for about 400 m along
two loops around a couple of buildings in the Barcelona
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Fig. 1. Simulations to exemplify the strategies proposed in the paper a) The
standard approach that incorporates all poses and all links to the filter; b)
Incorporating all poses but only highly informative links; c) Incorporating
only relevant poses and highly informative links.
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Fig. 2. Filtered trajectory (in red) using encoder and visual odometry on a
dataset collected at the UPC Campus Nord. Loop closure links are displayed
in green and the blue arrow indicate the final pose of the robot and the black
ellipse the associated covariance at a 95% confidence level.

Robot Lab located at the UPC Campus Nord (see Fig. 2).
Due to the repetitive structure of the UPC Campus Nord,
this trajectory included many portions prone to perceptual
aliasing. When all possible loops are closed we end up with
368 poses and 317 loop-closure links and the execution time
is 296 s, without considering the vision related processes.
When limiting the links to those that produce an information
gain above 3, the simulation runs in 92 s and only 3 loop-
closure links are established. Finally, if we only retain non-
redundant poses we end up with a filter with 147 poses
and 3 loop-closure links. In this case, the execution time
is only 62 s, about one sixth of the original execution time.

Finally, to test the performance in a sequence with a
much larger number of constraints we used the Intel dataset
from [21]. The dataset includes 26915 odometry readings
and 13631 laser scans. The laser scans are used to gen-
erate an alternative odometry and to assert loop closures
aligning them using an ICP scan matching algorithm [7].
In this case, only poses closer than ±1 m in x and y
and ±0.35 rad in orientation are considered reliable. The
robot odometry and the laser scan match are modeled
with noise covariances Σu = diag(0.052, 0.052, 0.032)
and Σy = diag(0.052, 0.052, 0.0092), respectively. Fi-
nally, the covariance of the initial pose is set to Σ00 =
diag(0.12, 0.12, 0.092). Using the algorithm introduced in
this paper with g = 6, we end up with a state including
only 1218 poses and 103 links (see Fig. 3). This data set
has been used in many other SLAM related works and, due
to its large size, it is often pre-processed and reduced to
about 1000 poses with about 3500 loop closure links [6]. The
system we propose automatically selects the optimal subset
of poses in the sense of the information gain and allows for
a more efficient selection of the loop closure links.
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Fig. 3. Filtered trajectory using encoder and laser odometry of the Intel
dataset.The blue arrow indicate the final pose of the robot and the black
ellipse the associated covariance at a 95% confidence level.

VI. CONCLUSIONS AND FUTURE WORK

This paper offers efficient solutions to reduce the state
representation in delayed-state SLAM by adding only non-
redundant poses and informative links. This is achieved by
computing two measures, the relative distance between poses
and the mutual information gain for each candidate link. In
our previous work [9], we introduced these measures and
methods to approximate them. In contrast, in this paper, we
described how to exactly compute these two measures in
an efficient way. The main problem to overcome has been
that of obtaining the cross correlation between the current
robot pose and previously visited poses. We have shown
that these cross-correlations can be factorized and computed
on demand allowing an exact, constant-time computation of
both the relative distance and the information gain.

The presented experiments with real data show that the
number of poses in the state can be reduced up to 10%, the
number of links drops up to 1%, and the execution time is
reduced up to 16% compared with the standard delayed-state
SLAM algorithm, where all poses and links are included in
the filter, without compromising the quality of estimation.

With the proposed strategy, the robot operates most of the
time in open loop and the cost of updating the entire state
after a loop closure is amortized over long periods. With this,
the bottleneck for real time execution is not state recovery,
but detecting neighbring poses for which feature matching
is likely. Currently, this process is implemented as a linear
search. In the near future, we plan to explore the possibility
to organize the poses in a tree-like structure to speed up this
search.

REFERENCES

[1] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” in Proc. 4th Int. Sym. Robot. Res., Santa Clara,
1988, pp. 467–474.

[2] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, “A solution to the simultaneous localization and map
building (SLAM) problem,” IEEE Trans. Robot. Automat., vol. 17,
no. 3, pp. 229–241, Jun. 2001.

[3] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” Int. J. Robot. Res., vol. 23, no. 7-8, pp. 693–716,
Jul. 2004.

[4] M. Montemerlo and S. Thrun, FastSLAM: A Scalable Method for
the Simultaneous Localization and Mapping Problem in Robotics, ser.
Springer Tracts in Advanced Robotics. Springer, 2007, vol. 27.

[5] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous local-
ization and mapping via square root information smoothing,” Int.
J. Robot. Res., vol. 25, no. 12, pp. 1181–1204, 2006.

[6] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Trans. Robot., vol. 24, no. 6, pp.
1365–1378, 2008.

[7] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Auton. Robot., vol. 4, no. 4, pp. 333–349,
1997.

[8] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-
state filters for view-based SLAM,” IEEE Trans. Robot., vol. 22, no. 6,
pp. 1100–1114, Dec. 2006.

[9] V. Ila, J. Andrade-Cetto, R. Valencia, and A. Sanfeliu, “Vision-based
loop closing for delayed state robot mapping,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., San Diego, Nov. 2007, pp. 3892–3897.

[10] K. Konolige and M. Agrawal, “FrameSLAM: from bundle adjustment
to realtime visual mapping,” IEEE Trans. Robot., vol. 24, no. 5, pp.
1066–1077, 2008.

[11] S. J. Julier and J. K. Uhlmann, “A counter example to the theory of
simultaneous localization and map building,” in Proc. IEEE Int. Conf.
Robot. Automat., Seoul, May 2001, pp. 4238–4243.

[12] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency
of the EKF-SLAM algorithm,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Beijing, Oct. 2006, pp. 3562–3568.

[13] G. Dissanayake, S. B. Williams, H. Durrant-Whyte, and T. Bailey,
“Map management for efficient simultaneous localization and mapping
(SLAM),” Auton. Robot., vol. 12, no. 3, pp. 267–286, May 2002.

[14] W. Zhou, J. Miro, and G. Dissanayake, “Information-driven 6D SLAM
based on ranging vision,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Nice, Sep. 2008, pp. 2072–2077.

[15] T. Vidal-Calleja, A. Davison, J. Andrade-Cetto, and D. Murray, “Active
control for single camera SLAM,” in Proc. IEEE Int. Conf. Robot.
Automat., Orlando, May 2006, pp. 1930–1936.

[16] U. Frese, P. Larsson, and T. Duckett, “A multigrid algorithm for
simultaneous localization and mapping,” IEEE Trans. Robot., vol. 21,
no. 2, pp. 1–12, 2005.

[17] R. M. Eustice, H. Singh, J. J. Leonard, and M. R. Walter, “Visually
mapping the RMS Titanic: Conservative covariance estimates for
SLAM information flters,” Int. J. Robot. Res., vol. 25, no. 12, pp.
1223–1242, 2006.

[18] S. Huang, Z. Wang, and G. Dissanayake, “Exact state and covariance
sub-matrix recovery for submap based sparse EIF SLAM algorithm,”
in Proc. IEEE Int. Conf. Robot. Automat., Pasadena, Apr. 2008, pp.
1868–1873.

[19] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Algo-
rithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate,” ACM T. Math. Soft., vol. 35, no. 3, 2008.

[20] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[21] A. Howard and N. Roy, “The robotics data set repository (Radish),”
http://radish.sourceforge.net, 2003.

4924


