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Abstract

The expectation of a function of random variables is modelled as the

value of the function in the mean value of the variables plus a penalty
term. This penalty term is calculated exactly, and the properties of dif-
ferent approximations are analyzed. In particular, for quadratic functions,

the penalty term is shown to have a supervised and an unsupervised part.
Then, two algorithms for minimizing the expected error of a feedforward
network of random weights are compared. One of them is stochastical,
while the other is deterministic and more flexible. Given a particular

feedforward network architecture and a training set, the deterministic
algorithm here presented accurately finds the weight configuration that
makes the network response most resistant to a class of weight perturba-

tions. Finally, the study of the most stable configurations of a network
unravels some undesirable properties of networks with asymmetric acti-
vation functions

1 Introduction

The minimization of the expected error of a network with random weights, i.e.

min
W

∫

E(W)P(W|W )dW , (1)

where E is the standard error function, W is the vector of random weight
variables, P its density function and W its mean or another parameter of the
distribution, is interesting for several reasons. First, it should be noted that,
for certain functions ϕ, this minimization is equivalent to fault-tolerance maxi-
mization (see Section 2.2):

∗The authors are with the Institut de Robòtica i Informàtica Industrial (CSIC-UPC),
Edifici NEXUS, Gran Capità 2-4, 08034-Barcelona, Spain. E-mail: vruiz@iri.upc.es, ctor-
ras@iri.upc.es. A summary of this paper appears in the Proceedings of the Intl. Conf. on
Artificial Neural Networks (ICANN’94).
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min
W

∫

E(ϕ(R;W )) P (R) dR, (2)

R being a noise signal affecting W in some way determined by ϕ (e.g., addi-
tively), which also determines the density function P (R).

As a matter of fact, the addition of noise to the weights during training has
been used by Murray and Edwards [14, 15] (proportional to the weight value)
and An [1] (independent of the weight value) for fault- tolerance enhancement
and for improving generalization. However, simple weight noise addition during
backpropagation training does not really perform the minimization (2) by itself.
Section 4 shows that the optimization of a random weight network requires 1)
adding noise only temporarily to get a perturbed weight gradient sample and
subtracting it afterwards, and 2) applying a learning rate schedule that tends
adequately to zero.

Our work is closer to that of Hinton and van Camp [7, 8], in the sense that
they propose to minimize the expected error of a truly random weight network.
Since the information content of a random weight depends on its variance, it is
possible to regulate the effective number of network parameters by regulating
the variance of W , in the same way as one controls the regularization constant
when using a regularizer. However, the proposal of Hinton and van Camp differs
from ours in the cost function, which in their case is inspired in the Minimal
Description Length (MDL) principle [18], and it is minimized also with respect
to each of the individual weight variances. A related approach based also on
MDL is presented in [19].

In addition to fault-tolerance and complexity reduction, the minimization
(1) is interesting to mitigate catastrophic forgetting. In effect, this is the ap-
propriate cost function to be used when encoding the learning set so that the
retention of this set of patterns is maximized when new information is stored.
In principle we should know the shape of the distribution of the perturbations
that the storage of the new information will cause. But, as will become clear in
Section 2.4, only the variance (which can be deduced from the new patterns’ ex-
pected error) is required. This treatment of the catastrophic forgetting problem,
which prepares the network before knowing the next patterns to learn, is cleanly
complementary to that in [21], where a new pattern is encoded in a previously
trained network causing minimal disturbance to the stored information.

This paper analyzes the expectation of a cost function with respect to a cer-
tain family of random variables, particularizing the study to the mean squared
error function used in feedforward networks, when the random variables are
the connection weights. A deterministic algorithm that emulates learning with
random weights is also presented, and its precision is demonstrated with careful
experiments.
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2 Analytical study

Several authors have recently showed different approximations of the penalty
term or regularizer implicit in the addition of weight noise [14, 1] or input
noise [2, 12, 17] during training. Here, we present in general form the com-
plete regularizer that is implicitly added to a function g(U) when U is affected
in some way by a perturbation symmetric around its mean. First, we develop
the additive case and show how to generalize it to other types of noise. Then,
we particularize the result for mean-square-type functions, indicating the con-
straints that valid approximations should satisfy and sharpening the order of
the error derived from them. These results were first presented in [20].

2.1 The case of zero-mean additive noise

We define gP+ as:

gP+(U) =

∫

g(U +R) P (R) dR, (3)

where P (R) is a zero-mean, symmetric probability distribution. First, we de-
velop the Taylor series expansion of gP+(U +R), and after some manipulations
we get:

gP+(U) = g(U)

∫

P (R) dR +
∑

k

∂g

∂uk
(U)

∫

rk P (R) dR +

∑

k,j

∂2g

∂uk∂uj
(U)

∫

rk rj P (R) dR + . . . ,

where uk and rk are the kth components of U and R, respectively. Now we im-
pose the fundamental hypothesis that will allow us to proceed: all the integrals
that cannot be put in the form

∫
∏n

k=1 r
2nk

k P (R)dR must be null. A sufficient
condition for this is P (r1, . . . , ri, . . . rn) = P (r1, . . . ,−ri, . . . , rn), i.e., P must
be symmetric.

We cannot directly eliminate these null terms in (4), because some deriva-
tives of g appear in different summatories with different derivation order. Thus,
we first make explicit how many times g is derived with respect to each of the
domain components. Note that the first integral has a value of 1:

gP+(U) = g(U)+
∞
∑

m=1

n
∑

i1,i2,...im=1

1

m!

∂mg

∂uh1
1 . . . ∂uhn

n

(U)

∫ n
∏

k=1

rhk

k P (R) dR, (4)

where hk is the number of times k appears in {i1, . . . , im}. Merging the two sum-
matories and taking into account that m =

∑n
i=1 hi, the preceding expression

is transformed into:
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gP+(U) =
∞
∑

h1,h2,...hn=0

(
∑n

i=1 hi)!

h1! h2! . . . hn!

1

(
∑n

i=1 hi)!

∂mg

∂uh1
1 . . . ∂uhn

n

(U)

∫ n
∏

k=1

rhk

k P (R) dR,

(5)
which, since the terms that include an odd hi among h1, h2, . . . , hn are null,
leads to:

gP+(U) =
∞
∑

h1,h2,...hn=0

1

(2h1)! (2h2)! . . . (2hn)!

∂2mg

∂u2h1
1 . . . ∂u2hn

n

(U)

∫ n
∏

k=1

r2hk

k P (R) dR.

(6)
This expression is not yet satisfactory, because we would like to separate

clearly the original function and the regularizer, which cannot be done easily in

an equation like this. Multiplying and dividing all terms by
(
∑

n

i=1
hi)!

h1! h2!...hn!
we get:

gP+(U) =
∞
∑

h1,h2,...hn=0

(
∑n

i=1 hi)!

h1! h2! . . . hn!

1

(2h1)! (2h2)! . . . (2hn)!

h1! h2! . . . hn!

(
∑n

i=1 hi)!
(7)

∂2mg

∂u2h1
1 . . . ∂u2hn

n

(U)

∫ n
∏

k=1

r2hk

k P (R) dR.

Now we have
(
∑n

i=1
hi)!

h1! h2!...hn!
multiplying each term of the summatory. This is

what is needed to reverse step (4)-(5), thus decomposing the summatory:

gP+(U) = g(U)+
∞
∑

m=1

n
∑

i1,i2,...im=1

∏n
l=1 hl!

m!
∏n

l=1(2hl)!

∂2mg

∂u2
i1
. . . ∂u2

im

(U)

∫ m
∏

k=1

r2ikP (R) dR.

(8)
Let αi1...im denote the constants preceding the derivatives. The integrals

are also constants, specifically cross moments of P , which we write shortly
µ2h1,...,2hn . Thus, we finally obtain:

gP+(U) = g(U) +
∞
∑

m=1

n
∑

i1,i2,...im=1

αi1...im µ2h1,...,2hn

∂2mg

∂u2
i1
. . .∂u2

im

(U). (9)

This result is also valid for a deterministic perturbation, by just using the
moments of the uniform probability distribution and multiplying the second
member of the equality by the volume of the perturbation. Since this volume is
just a constant factor, for the concern of minimization, the deterministic case is
equivalent to that of the uniformly distributed random perturbation. Discrete
perturbations (random or not) can also be dealt with by appropriately redefining
µ2h1,...,2hn .
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2.2 Generalizations and variants

Initially, the goal is the analysis of the following integral, which is a generaliza-
tion of (1):

gP(U) =

∫

g(U) P(U|U) dU . (10)

At the same time, to link our analysis to fault-tolerance applications we consider
that U = ϕ(R;U), i.e., that U is the result of a perturbation R with probability
density P (R) affecting U in a way determined by the function ϕ. Then, we
could be interested in

gϕ,P(U) =

∫

g(ϕ(R;U)) P (R) dR. (11)

Under what conditions these two expressions are equivalent? (10) can be readily
derived from (11) if ϕ(R;U) is one to one. In this case we can make the variable
change R = ϕ−1(U ;U) in (11):

gϕ,P(U) =

∫

g(ϕ(ϕ−1(U ;U);U)) P (ϕ−1(U ;U))

∣

∣

∣

∣

∂ϕ−1

∂U
(U ;U)

∣

∣

∣

∣

dU , (12)

where
∣

∣

∣

∂ϕ−1

∂U
(R;U)

∣

∣

∣
is the determinant of the Jacobian of the ϕ−1(.;U) map-

ping. Now, the dependence on U disappears from the argument of g, because
ϕ(ϕ−1(U ;U);U) = U . As the densities P (R) and P(U|U) are related by

P(U|U) = P (ϕ−1(U ;U))

∣

∣

∣

∣

∂ϕ−1

∂U
(U ;U)

∣

∣

∣

∣

, (13)

we immediately get (10) from (12). In general, the one-to-one condition is un-
necessary (the proof is analogous to that for the independence of the expectation
value with respect to the choice of the variables of integration). But, for the
dependence on U in (10) to move from the probability distribution to the argu-
ment of g, ϕ(R;U) must reflect the way in which U and U are related. More

concretely, ϕ must be such that P(ϕ(R;U))
∣

∣

∣

∂ϕ
∂R (R;U)

∣

∣

∣
does not depend on U .

Thus, (10) is one of the many possible versions of (11) that can be ob-
tained by making the change of variables U = ψ(R), ψ(.) being any one-to-one
mapping. The particular case of ψ(.) = ϕ(.;U) changes the dependence on
U from g to P , yielding (10). The interesting point here is that the shape of

P(U) = P (ψ−1(U))
∣

∣

∣

∂ψ−1

∂U (U)
∣

∣

∣
changes with ψ.

Our analysis applies to versions of (11) with a probability distribution sym-
metric around its mean and, thus, some previous transformation may be re-
quired. Suppose that P (R) in (11) is already symmetric around its mean value
Rm. We show next how to reduce gϕ,P to the particular case of ϕ(R;U) = U+R,
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and a zero-mean P (R), which was derived in the last section. We define h as
h(V ;U) = g(ϕ(V ;U)), and assume the convention that hP ′+(V ;U) only implies
integration over perturbations of V , considering U as a parameter vector. V
will play the role of a ficticious variable, which is only interesting at one point.
Then, if Rm is the mean of P (R), R′ = R−Rm, and P ′ is the probability density
function of R′, it is easy to check that hP ′+(Rm;U) is equivalent to gϕ,P :

gϕ,P(U) =

∫

g(ϕ(R;U)) P (R) dR =
∫

g(ϕ(Rm +R′;U)) P (Rm +R′) dR =
∫

h(Rm +R′;U) P ′(R′) dR′ =

= hP ′+(Rm;U). (14)

As an example, consider ϕ(R;U) = R U and P (R) symmetric around Rm.
Note that in this case P(U) is not symmetric. We can first translate P to center
it,

∫

g(R U) P (R) dR =

∫

g((Rm +R′) U) P ′(R′) dR′, (15)

and then by taking h(V ;U) = g(V U) we get
∫

h(Rm +R′;U) P ′(R′) dR′ = hP ′+(Rm;U). (16)

2.3 The quadratic case

The most common error function in connectionist networks is a summatory of
functions of the form g(U) = 1/2(F (U) − D)2. We now study this type of
functions. Note that substituting D by the mean of F (U), gP+ is the variance
of the perturbed F (U). Following (9), the regularizer is now:

∞
∑

m=1

n
∑

i1,i2,...im=1

1

2
αi1...imµ2h1,...,2hn

∂2m(F (U)−D)2

∂u2
i1
. . .∂u2

im

(U). (17)

We now apply the equality ∂n(x(u)y(u))
∂un =

∑n
i=0

(

n

i

)

∂ix
∂ui (u) ∂n−iy

∂un−i (u) to

develop each of the derivatives in the terms ∂2m(F (U)−D)2

∂u2
i1

...∂u2
im

(U):

∂2m(F (U)−D)2

∂u2
i1
. . . ∂u2

im

(U) =

∂2m−2

{

∑2
j1=0

(

2
j1

)

∂j1 (F (U)−D)

∂u
j1
i1

∂2−j1 (F (U)−D)

∂u
2−j1
i1

}

∂u2
i2
. . .∂u2

im

(U) =

(18)
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∂2m−4

{

∑2
j1=0

(

2
j1

)

∑2
j2=0

(

2
j2

)

∂j1+j2 (F (U)−D)

∂u
j1
i1

∂u
j2
i2

∂4−j1−j2(F (U)−D)

∂u
2−j1
i1

∂u
2−j2
i2

}

∂u2
i3
. . . ∂u2

im

(U) =

(19)

∑

j1 = 0 . . . 2

.

.

.
jm = 0 . . . 2

(

m
∏

l=1

(

2

jl

)

)

∂Σjl(F (U)−D)

∂uj1
i1
. . . ∂ujm

im

∂2m−Σjl(F (U)−D)

∂u2−j1
i1

. . . ∂u2−jm
im

(U). (20)

Since F is always derived, except when all jl are null or when all jl are 2,
the expression of the regularizer completely explicited as a function of F is:

1

2

∞
∑

m=1

n
∑

i1,i2,...im=1

αi1...im µ2h1,...,2hn





















































∑

j1 = 0 . . . 2

.

.

.
jm = 0 . . . 2

βj1...jm

∂ΣjlF

∂uj1
i1
. . . ∂ujm

im

(U)
∂2−ΣjlF

∂2−j1
i1

. . .∂u2−jm
im

(U)



















+

+ 2(F (U)−D)
∂2mF

∂u2
i1
. . . ∂u2

im

(U)

}

where β0,0...0 = β2,2...2 = 0 and βj1...jm =
∏m

l=1

(

2
jl

)

in the remaining cases.

The particular form of this expression, composed of an “error-dependent” and
an “unsupervised” part, is made clear by observing that:

∫

(F (U +R)−D)2 P (R) dR = (F (U)−D)2 +
∫

(F (U +R)− F (U))2 P (R) dR +

+ 2(F (U)−D)

∫

(F (U +R)− F (U))P (R)dR. (22)

If H(X) = (F (X)−F (U))2 and G(X) = (F (X)−F (U)), it is easy to show
using (9) that the compounds of the quadratic regularizer match the last two
terms of (22), and thus, the regularizer can be expressed also as:

1

2
[HP+(U) + 2(F (U)−D) GP+(U)] . (23)
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HP+(U) can be considered as a measure of the variation of F around U .
It is not dependent on any ”desired value” D, and so can be evaluated (and
minimized) in any point.

2.4 Approximations

To ease the notation, from now on we assume that P is a joint probability
density, product of independent and equally-distributed probability functions
accounting for the noise in each of the individual components of U . Taking the
terms corresponding to m = 1 in (9), we have an approximation of gP+ subject
to an error of order O(µ4):

gP+(U) ≈ g(U) +
σ2

2

∑

k

∂2g

∂u2
k

, (24)

where σ2 is the variance of P . This order of error is higher than that estimated
by Murray and Edwards [14, 15], and Bishop [2], for particular cases of addition
of noise in the backpropagation error function.

In the next section we will need the deterministic version of this formula for
a set of discrete perturbations

{

Ri)
}

of cardinality nl:

gP+(U) ≈ g(U) +
1

2nl

∑

k

∂2g

∂u2
k

∑

i

(

ri)k

)2
. (25)

All these approximations, although very accurate for low-level noise, are not
always satisfactory. For example, when g is a positive function, the estimation
(24) of its mean is not guaranteed to be positive. In the case studied in Section
2.1, this estimation of the regularizer is:

σ2

2

∑

k

[

(

∂F

∂uk
(U)

)2

+ (F (U)−D)
∂2F

∂u2
k

(U)

]

. (26)

Positiveness is not only a drawback for theoretical reasons but, as observed
by Bishop [2] regarding the case of noisy inputs in connectionist networks, it
poses also problems to the development of algorithms based on (26) to minimize
gP+. How can positive approximations be characterized? A solution could be
to consider only the “unsupervised” part of the regularizer, and to select from
this only the terms in which the multiplying derivatives are equal. For example,
σ2

2

∑

k

(

∂F
∂uk

(U)
)2

is one of such estimations. However, with this strategy, we

cannot guarantee any order of error, no matter how many terms we add, because
we are always neglecting terms of the same order as those we are including.

Knowing the complete regularizer, it is possible to devise an strategy to have
positive estimates with a desired order of error. Let us show that a sufficient
condition for guaranteeing positiveness is that the appearances of the derivatives
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of F in the approximation are all the appearances in the complete regularizer of
the same derivatives. An approximation of this type is exact for any polynomial
F such that all its derivatives not appearing in the estimation are zero. For a
general function F, there always exists a polynomial having the same combina-
tion of values for F and its derivatives in the point U. So the estimation of gP+

for F is the same as that for such polynomial, which, being exact, should be
positive. Thus, to have a positive estimation of the regularizer with a desired
precision (say O(µ4)), in a first step we include all the terms of the regularizer
that should be added anyway to get that precision (the terms in (26)) and, in
a second step, all the appearances in the complete regularizer of the derivatives
of F appearing in the first step are added. For example, to get the minimal
positive estimate subject to an error of order O(µ4),

µ4

8

∑

ij

∂2F

∂u2
i

(U)
∂2F

∂u2
j

(U) (27)

should be added to (26).

2.5 Relation between the minima of g and gP+

Let U∗ and U∗
P+ be the minimizers of g(U) and gP+(U), respectively. The

first observation is that the minimization of gP+ does not favor points in which
g is insensitive to variation of the parameters. As a matter of fact, the first
derivatives do not appear at all in the complete regularizer (9). However, when
g(U) = 1/2(F (U)−D)2, it favors the insensitivity of F .

Another remark is that gP+ tends to look for convex regions, although this
tendency is regulated by the variance. If it is low enough, the minimization will
attain low points in g, and for this reason, they would be concave with high
probability.

We would like to point out also that, although (24) is a good approximation
of gP+, this does not mean that it is possible to estimate U∗

P+ from U∗ easily.
As a matter of fact, given an unknown g(U), we cannot bound the distance to
which U∗

P+ can be translated, and thus an approximation of U∗
P+ based on a

Taylor series expansion of g around U∗ is uncertain (although it is also true
that, for a given g(U), there exists always a variance for which U∗

P+ remains in
a fixed neighborhood of U∗).

A further reason supporting the last comment regards the shifting of the
minimum as the noise increases. The line U∗

P+(σ
2) can be discontinuous in

certain conditions, that is, U∗
P+ can jump abruptly and without transition to

different regions of the space when varying continuously the variance. This
phenomenon is equivalent to the phase transitions of some physical systems, in
which the variation of a parameter can give raise to changes in the shape of
the energy of the system that could cause a sudden shift in the location of the
minimum. An example can be seen in Fig. 1a.
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This Fig. may lead one to think that this phenomenon can only happen when
passing from the basin of attraction of one minimum to that of another one.
Since it is believed that there exist few local minima (in the strict sense) in the
back-propagation error function, and that the minima are symmetric, doubts
could arise about the existence of the discontinuity in this case. However, Fig.
1b shows that when the number of perturbed parameters is more than 1, the
discontinuities can appear even when there is only a minimum in g(U), in this
case due to the presence of narrow ridges in the shape of the function. Even
one dimension could be enough, if the minimization is done with respect to
parameters different from the perturbed ones (e.g., the minimization of the
standard error function with respect to the weights, when the inputs are noisy).

3 Estimation of EP+(W )

In the rest of the paper, we concentrate on the practical problems of estimating
and minimizing the cost function associated to a network with random weights,
EP+(W ), which was the goal initially stated and argued for in Section 1. We will
be constrained to use rather small networks to evaluate objectively our methods.
A way of evaluating the tolerance to damage expressed by EP+(W ) could be
to use the Montecarlo method applied to the calculation of the integral, which
turns out to be very costly. That is, to use a set of perturbations Ri drawn from
P (R), and to obtain the mean of the corresponding E(W +Ri). An alternative
is to use the approximations suggested in Section 2.4. As it will become clear
later, (24) or (26) are accurate enough for all interesting combinations of W and
σ and, thus, we concentrate on them. However, it is possible to add also (27)
to get more precise results that are guaranteed to be positive, without having
to calculate any extra elements of the Hessian of F .

To check the goodness of (24), we could compare its results with those of the
Montecarlo method. But comparing an estimation with another estimation is
embarrassing if an objective evaluation of accuracy is sought. Instead, we have
preferred to use the simplest deterministic version of gP+, the mean of the E
values in the extreme points of a cross centered on W , oriented to coincide with
the axes, and whose extremes are z unities from the mean point. That is, we
will evaluate the function:

error(z) =
1

2nw
[E(w1 + z, w2, . . . wnw ) + E(w1 − z, w2, . . . wnw) + E(w1, w2 + z, . . . wnw ) +

+ E(w1, w2 − z, . . . wnw ) + . . .+ E(w1, w2, . . . wnw + z) + E(w1, w2, . . . wnw − z), (28)

nw being the number of weights in the network. The advantage of using error(z)
is that its exact calculation is feasible. From formula (25) we obtain that
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error(z) ≈ E(W ) +
z2

2nw

∑

i

∂2E

∂w2
i

(W ). (29)

Our intentions must be clear: to asses how good is the approximation (24)
of EP+(W ), we take its deterministic version, i.e., error(z), and we compare
it with (29). Figures 2a,b,c and d, show several comparisons between error(z)
and its estimation by means of (29). For Fig. 2a and 2b we used a network
with structure 1-3-1, and a learning set of five points randomly drawn from the
function sine in the interval [−π,π]. Figures 2c and 2d use instead a network

6-20-1 with 80 points from the function sin
(

∑6
i=1 xi

)

, chosen with the same

distribution as before in each of the domain components. Figures 2a and 2c
show results obtained in a point relatively close to W = 0, drawn from a uni-
form distribution [−3/

√

fan-in(j), 3/
√

fan-in(j)] for each weight wj , while the
networks of Fig. 2b and 2d are at a minimum of E (E(W ) = 0.0005).

The first thing that catches the eye is that, in the point close to 0, the
estimation is surprisingly good. This happens because E(W ) is much simpler
in the neighborhood of the origin. Another question is the seemingly better
precision of the small network. This fact is easily interpreted by noting that
the large network, with a small variation of its weights, can represent a large
number of different functions, thanks to the power provided by its hidden units.
For this reason, the goodness of the estimation with respect to the magnitude
of the weights is a more interesting measure. Since the average absolute value
of the weights of the 1-3-1 network is ≈ 0.96 and, in the larger network, is less
than half this value, in order to use this criterion in the comparison, the interval
in Fig. 2b and 2d should also be halved, i.e, [0, 2], and thus the approximations
in the large and the small networks are similar.

Until now we have highlighted the variability of the results depending on
σ and the point W . However, the most interesting combinations of σ and W
are yet to be evaluated. As a matter of fact, in what concerns minimization,
the goodness of the approximation of EP+(W ;σ) in the minimum of E is al-
most irrelevant. Instead, what counts is the accuracy of the approximation of
EP+(W ;σ) in its own minimum.

4 The minimization of EP+(W ): A stochastic

method

Here again, an accurate and objective evaluation of the methods constrains us
to us to use moderately sized networks.

We define E(W ) as
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E(W ) =
1

2

∑

p

Ep)(W ) =
1

2

∑

p

||F (W ;Xp))−Dp)||2 =
1

2

∑

k,p

(Fk(W ;Xp))−Dp)
k )2,

(30)
where Ep)(W ) is the error component corresponding to pattern p, F (W,X) is
the output of the network when an input pattern X is presented, the subscript
k denotes its components, and (Xp), Dp)) is the pth input-output pattern. We
will abbreviate F (W,Xp)) with F p)(W ).

One alternative to minimize EP+(W ) is stochastic, based on the Montecarlo
method, which was first tested in [1].

This stochastic algorithm consists basically of taking samples of "E(W+R)
to estimate "EP+(W ). This can be done with different degrees of stochastic-
ity. One is to take literally a large number of "E(W +R) samples before each
learning step. Another one is essentially the same, but taking only one sample.
Two other variations, associated to multiple and single sampling of R, consist of

performing one learning step after estimating "Ep)
P+(W ) instead of "EP+(W ).

In [19], the single sampling - single pattern version. The basic iteration of this
algorithm is:

Extract R from P (.)
W ← W +R
W ← W + λ"Ep)(W )
W ← W −R

λ(t) expresses the time dependence of λ, which must approach zero at the
final number of iterations. We choose a schedule inspired in [4, 3]. We simply
hold the initial learning rate constant during a number τ of complete iterations
and then multiply it by a constant χ after every complete iteration until the
prefixed number of total iterations is reached. The schedule is thus determined
by four parameters: initial learning rate, χ, τ and the total number of iterations.
The learning rate of the stochastic algorithm is in principle limited by the fact
that it must allow to collect enough statistics along the learning path before the
characteristics of EP+(W ) change too much. Given the very high dimensionality
of the weight space in most neural network applications, it could be thought that
this requirement would be determinant, imposing very low learning rates. But,
as commented on in Section 6, where some experimental results obtained with
DSA are presented, in practice this requirement does not result so restrictive.

We next discuss the basic problems that algorithms of the stochastic type
have to address in order to arrive at a minimum of EP+(W ): stability, conver-
gence and precision. It turns out that the λ schedule and, especially, the weight
restoration carried out in the fourth step of the stochastic algorithm, are crucial
to really get such a minimum.

Stability. Stability is another limiting factor for the learning rate because
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the randomness of the gradients of the perturbed weights may produce oscilla-
tions that slow down or even prevent learning. This problem can be controlled
by setting the learning rate to a sufficiently small value. However, if weight
restoration is not carried out, the algorithm follows not only the gradient, but
also the random perturbation produced to get it. In other words, a random
walk is superimposed onto the minimization. In this case, if the variance of the
noise is high, learning might even be prevented with any learning rate.

Convergence. To get true convergence (even if the gradient of E(W + R)
instead of that of Ep)(W + R) is used) the learning rate must decrease slowly
enough to zero using an appropriate schedule. If, for example, one instead
progressively reduces the level of noise as made in [14, 15] in an attempt to
get convergence, one reaches the nearest minimum of E instead of minimizing
EP+(W ). Note that, without weight restoration, the problem of convergence
remains even in the case of decreasing learning rates.

Precision. Another problem of a different kind is the low precision with
which stochastic algorithms optimize fault-tolerance for a particular P (R), due
to a side-effect implicit in its nature. The mean variance of a set of n samples
from a distribution is slightly smaller than the real variance of the distribution
in a rate of n − 1 to n. But this effect is not very notorious. Instead, the fact
that W is moving while collecting different "E(W +R) samples is much more
influential, and it results in a sampling variance higher than that of P (R). The
higher the learning rate, the larger the sampling variance. As a consequence, the
implicit trade-off between E(W ) and the regularizer is pushed towards making
the network immune to a level of noise higher than the desired one given by
P (R). However, when λ tends to zero, this problem disappears and, thus, the
λ(t) must approach this limit slowly enough to arrive to the EP+(W ) minimum.
Once more, however, if weight restoration is not used, there are limits to the
possibility of alleviating the problem with low learning rates because, even in
the case of a zero rate, W continues moving while collecting samples.

5 The minimization of EP+(W ): A deterministic

method

We propose here an algorithm based on (24), first presented in [20], that over-
comes the drawbacks of the stochastic algorithm. Until now, to simplify the
notation, we have indexed the weight with a single subscript; from now on, let
wji be the weight departing from unit i and impinging on unit j. The deter-
ministic algorithm requires the calculation of the gradient of the approximation
of the regularizer σ2

2

∑

ji
∂2E
∂w2

ji

, i.e, the problem is to calculate:

∑

l,k

∂3E

∂w2
lkwji

(W ) (31)
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for every (j, i). It could appear that the cost of calculating this expression is too
high. But we will show that, at least for two-layer networks, an approximation of
this expression is easy to calculate, providing excellent results. We approximate

∂2E

∂w2
lk

=

(

∂F p)

∂wlk
(W )

)2

+ (F p)(W )−Dp))
∂2F p)

∂w2
lk

(W ), (32)

by dropping the error-dependent term (F p)(W )−Dp))∂
2Fp)

∂w2
lk

(W ). By doing this,

we eliminate the risks of having a non-positive penalty function (see Section 2.4).
How much precision is lost with this approximation? For low-variance noise, the
main factor in (24) is g(U) (here, E(W )), therefore a low value of E (and thus
of ||F p)(W )−Dp)||) is expected at the minimum of EP+(W ), and the term can
be eliminated safely. Note that only the precision at the minimum is important
for the final result of the optimization, thus we do not mind the quality of
the estimation during the first and intermediate stages of learning. For high-
variance noise, the misfits at the minimum are not negligible, but the function
F (W ) implemented by the network is much simpler than that for low-variance
noise, which in general does not favor high second derivatives of F .

Empirically we have checked that these two factors interact in such a way
that we get really good minimizations of EP+(W ) for all variances. Besides
resulting in good accuracy, this approximation has the added advantage of not
depending on D, which allows to minimize the regularizer at any point of the
input space, independently of the training set.

We will make explicit the gradient of the regularizer (taking into account the
above approximation) for two coincident cases: 1) two-layer networks with linear
output units and using the mean squared error, and 2) two-layer networks whose
output units activation function is tanh, and that use the relative entropy error.
The two formulae coincide because the gradient of the mean squared function
with respect to a linear output unit is the same as that of the relative entropy
function with respect to the input of a tanh output unit. The gradient of the
output units being equal, all kinds of derivatives for all the network weights
must be equal in both cases. Let H and O be the set of hidden and output
units. Then, it is shown in the Appendix that the derivatives of Ep

P+(W ) are

∂Ep)
P+

∂wji
(W ) ≈

∂Ep)

∂wji
+ α







2wji (y′i)
2 Pp ∀j ∈ O, i %= bias

0 ∀j ∈ O, i = bias
xiSj ∀j ∈ H

(33)

where Pp = ||Xp||2+1 (we are considering a network with a bias unit connected
to all hidden an output units), Sj = 2y′j(nOyj + y′′j Pp

∑

m w2
mj), nO is the

number of output units, yj is the activation function value of unit j, and y′j
and y′′j are its first and second derivatives, respectively. α is a parameter that

regulates the importance of the regularizer in the minimization, and must be σ2

2
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to emulate a random noise of variance σ2. Pp is a constant that does not change
during learning and can be joined to the input patterns. Sj is the same for all
the connections impinging on a hidden unit and, thus, must be calculated only
once for each hidden unit and not for each input-hidden layer weight.

This is the most obvious version of the algorithm, in which all the weights
are trying to make all the weights of the network insensitive. But the determin-
istic algorithm permits other possibilities, which are forbidden to the stochastic
algorithm. For instance, in the former algorithm, the set of parameters one
would like to make insensitive and the set of weights in charge of making them
insensitive must not be necessarily the same. The different roles that the first
and the second layers of weights play in RBF networks makes some of the pos-
sible combinations very interesting for this type of networks. In [19] several
possibilities and their usefulness are commented on and it is shown that the
gradient of the regularizer for RBF networks is also simple.

6 Comparison between the deterministic algo-

rithm and the stochastic algorithm

We have, thus, two methods for minimizing EP+: the deterministic algorithm
developed in the last section, and the stochastic algorithm tested in [1] consist-
ing of adding noise with weight restoration and a learning rate schedule similar
to that in [3].

The comparison between the two methods we carry out in this section should
be placed in context in order to be properly interpreted. On the one hand,
the stochastic algorithm has fundamental limitations when compared to the
deterministic algorithm: First, when noise is introduced in one weight, all the
network weights are necessarily trained to make that weight insensitive to noise.
Second, the regularizer is implicit and cannot be minimized independently of
E(W ).

Third, at the end of a cycle (epoch) of presentations of the learning set pat-
terns, the gradient of the complete cost function is available to the deterministic
algorithm. This opens up the possibility of using the more efficient algorithms
developed to minimize E(W ), such as conjugate gradient algorithms [13], quick-
prop [5] or SuperSAB [23]. Instead, a stochastic algorithm accumulating the
gradients during an epoch gets a gradient which is partial with respect to the
distribution of the noise. Thus, the on-line mode is the natural one for the DSA,
and batch versions are not appropriate.

A common aspect to both methods for optimizing EP+ is that the initial
point required for an efficient learning must be farther from the origin than that
used in back-propagation. Nevertheless, a too distant point can also prevent
learning. Probably a good way to move away from the origin without risk is to
begin minimizing E(W ) and, after some iterations, switch to EP+.
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We show now results obtained with a 2-7-1 architecture and a learning set
with twelve points of the function sin(x1 + x2) in an interval [−π,π] of the two
domain components. Figures 3a,b and c compare the performances of the DSA
and the on-line version of the deterministic algorithm. We took σ = 0.2 and we
set the regularization constant α required to emulate the variance according to
the following equivalences:

α =
σ2

2
=

z2

2nw
. (34)

The schedule in both methods was always the same, except for the ini-
tial learning rate, which is the only parameter that is different in the three
Fig.s. A little search for the optimal three remaining parameters determin-
ing λ(t) (namely, τ , χ and the total number of iterations, as specified in Sec-
tion 4) was carried out, taking into account that the stochastic algorithm
should perform better for small τ ’s relative to the total number of iterations.
The initial weights were also the same, drawn from a uniform distribution
[−2.5/

√

fan-in(j), 2.5/
√

fan-in(j)] for each weight. A point so far from the ori-
gin and producing a large error (E = 1.2) was used to facilitate learning, as
said before. Including this error in the graphic would have lowered the reso-
lution in the presentation of the results; to prevent this, we have chosen E(0)
as the maximum value for the vertical axis. The Fig.s display two evaluation
measures of performance: E(W ) and error(z) with z chosen according to (34).
error(z) was used because it is an independent measure. It could be argued that
a Montecarlo estimation would be a more convenient measure for the stochastic
algorithm, because it samples random points with the same distribution as the
stochastic algorithm. But, against intuition, when it was used the results were
still more unfavourable for the stochastic algorithm, which is not surprising,
because of the relatively limited amount of samples that can be collected in a
reasonable amount of time, and of the biases of the random generators. The
Montecarlo method turns out to be a very variable and unreliable estimation,
while error(z) is a non variable one.

Figure 3a, displaying results obtained with a small initial learning rate, does
not show large differences between the two methods. In Fig. 3b, with a higher
learning rate, the stochastic algorithm begins to suffer unstability problems.
Finally, with a learning rate of 0.08, the stochastic algorithm fails completely to
converge, remaining at a high level of error, as shown in Fig. 3c. Instead, these
are the optimal conditions for the on-line version of the deterministic algorithm.
This is the only Fig. in which the minimum is approximately reached within
the prefixed number of iterations.

Nevertheless, the stochastic algorithm did not behave so badly for moderate
noise (at least in the small networks in which comparisons were carried out),
which is somewhat surprising in view of our discussion in Section 5. Below, we
outline an explanation of why the need of low learning rates is less pressing than
expected. More details can be found in [19]. the algorithm calculates at every
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step a gradient which can be divided in two parts: that corresponding to Ep),
which is always exact, and a random one, which can be considered a partial
information on the regularizer. It seems that the regularizer is generally a more
smooth function than E(W ), and thus the statistics collected by the random
component can be collected in regions greater than expected.

In all the Fig.s it is also possible to appreciate that the differences between
the stochastic algorithm and the deterministic algorithm are larger in E(W )
than in error(z), and that these differences increase with the learning rate,
meaning that the stochastic algorithm is minimizing EP+ with a variance higher
than that of the noise really introduced in the weights. This gives support to our
discussion in Section 5 on how the variance is biased in the stochastic algorithm,
even with weight restoration and decreasing learning rate.

An important drawback of the stochastic algorithm is not reflected in these
figures. It is very difficult to say when the algorithm has converged, because the
weights changes continuously and error(z) is not a practical measure for most
applications.

7 Accuracy of the minimum

The discussion above, and (and specially (Fig. 3c) makes evident that the
stochastic algorithm cannot be accurate minimizing EP+(W ) for the specified
variance σ2, it really uses a greater, difficult to determine variance.To check
the validity of the approximation made to derive the deterministic algorithm
for the minimization of EP+(W ), the most direct option would be to compare
its performance with that of the stochastic algorithm. However, in Section
4 we showed that the latter algorithm can be very imprecise in many cases.
Thus, we judged preferable, as we did in Section 3, to use error(z), whose value
and gradient can be calculated exactly. Its direct minimization requires a huge
computational effort, 2nw presentations for each pattern before performing a
learning step, but it is an ideal reference allowing to compare the results of
the minimization of E plus the complete regularizer, with those produced by
the simple approximation made in (33). To emulate error(z), the regularizer

constant α must take the value z2

2nw
.

Figure 4 displays results obtained with the same architecture and training
points as in the preceding section. The network was repeatedly trained by
means of a careful direct minimization of error(z), using a different z each time.
The same network was also trained using a batch version of the deterministic
algorithm, using a set of regularization constants appropriate to emulate the
minimization of error(z) for the set of z’s previously used. The initial random
points were the same for both algorithms in all cases. As stopping criterion,
since the gradient is available with both methods, the reaching of a small fixed
average gradient was used. The Fig. shows all the range of useful z’s. Increasing
z above 2.5, the minimized networks do not change anymore. The fact that the
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graphic is not stabilized at that point is not a contradiction. Evaluating error(z)
with varying z in a network with different weights produces different values.

The evident result is that, no matter the value of z, both methods reach a
similarly good minimum of error(z). Figures 5a and 5b show the weights of two
networks obtained in the preceding experiment. We choose that corresponding
to z = 0.2 (which is a significative level of noise in this network) and z = 0.6, for
both methods. The result is also surprising: the weights are almost identical.
Even more, if we consider that a cycle in the minimization of error(z) includes
all the presentations required to obtain the complete gradient, the number of
cycles carried out to arrive at the same average gradient is almost the same.

We would like to point out that this experiment has been repeated varying
all kind of parameters: number of hidden units, selection of starting point,
number of patterns in the learning set, and stopping criterion, limited only by
our computational resources. We obtained always an extraordinary similarity
between the ideal minimum of reference, that of error(z), and that reached
by the algorithm. Therefore, we can claim with a reasonable confidence that
the high precision of the algorithm is not limited to some particular biased
conditions.

8 Characteristics of the minima of EP+

We analyze briefly the type of minima, in terms of first and second derivatives
of E(W ), enforced by the minimization of EP+. The first derivatives of E(W )
are (assuming, for clearness of explanation, that F has only one component):

∂E

∂wji
= (F p)(W )−Dp))

∂F p)

∂wji
. (35)

When E(W ) =
∑

p(F
p)(W )−Dp))2 is minimized, ∂E

∂wji
is brought to zero, but

only the magnitude of the first factor is minimized. Instead, when minimizing

EP+,
σ2

2

(

∂Fp)

∂wji
(W )

)2
is the main component of the regularizer (indeed, the only

one taken into account by the deterministic algorithm). If σ2 is extremely large,
∂Fp)

∂wji
(W ) will tend to be null at the minimum of EP+, and also ∂E

∂wji
will be

zero. With intermediate σ2, the two factors will be simultaneously minimized
but, although necessarily low, ∂E

∂wji
will not be null in general.

The diagonal elements ∂2E
∂w2

ji

of the Hessian are included in the regularizer

and, therefore, their minimization should produce very negative values. However
it can be shown that, in most points of interest, the function E(W ) is concave,

and in practice the regularizer becomes
∑

ji

∣

∣

∣

∂2E
∂w2

ji

∣

∣

∣
. From equation (38) in the

Appendix, it follows that the second derivatives of the hidden-to-output layer
of the networks we are using are always positive. For the input-to-hidden layer,
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the accuracy shown by the algorithm in the preceding section indicates that
the supervised part of ∂2E

∂w2
ji

is negligible at the minimum of EP+ compared to

σ2

2

(

∂Fp)

∂wji

)2
. In generic random points outside of the minima, it can be proved,

under reasonable assumptions [19] for multilayer networks, that the probability
of having positive second derivatives of a weight grows with the closeness of the
connection to the output layer and is, anyway, greater than 1/2.

For the non diagonal elements of the Hessian,

∂2E

∂wlk∂wji
=

∂F p)

∂wlk

∂F p)

∂wji
+ (F p)(W )−Dp))

∂2F p)

∂wlk∂wji
. (36)

A discussion about the negligibility of the second summand similar to the one

above can be carried out. Besides, as
(

∂Fp)

∂wji
(W )

)2
and

(

∂Fp)

∂wlk
(W )

)2
are mini-

mized by the regularizer, the magnitude of ∂Fp)

∂wlk

∂Fp)

∂wji
will be also limited. Thus,

although the non diagonal elements are not included in the regularizer, they
also suffer a pressure to have low magnitudes at the minimum of EP+.

On a more experimental ground, the evaluation of the linearity (defined as
the average first derivative of the hidden units activation function in the training
set points) of the networks resulting of minimizing error(z), revealed a gradual
increment as z increased. Instead, the weight magnitude ||W || behaves more
irregularly, although it decreases radically for high z. However, it is interesting
to know what happens in each of the units of the network separately, which
motivates Fig. 6. In it, the module of the weight vector impinging on each
unit is represented with a bar, filled with a different texture. For z = 0, the
magnitudes of the vectors do not differ too much from one another. As z
increases, the differences become larger, some magnitudes decreasing to zero
while others raise. Murray and Edwards [15] and An [1] also observed that noise
addition during training tends to lead some hidden nodes to their saturation
ranges. Besides, An [1] pointed out that it also tends to reduce the activations
of the remaining hidden units.

An interesting question is that of the most stable weight configuration for
a network. All the experiments showed clearly that, when the level of noise
increases over a certain level, the minimum of EP+ quickly tends to zero. This
fact was predicted by the following intuitive reasoning. The cost function E
takes very high values in most randomly-chosen weight configurations, especially
if the weights are large. W = 0 is a point relatively low, central, around which
all the minima of E(W ) lay symmetrically. This is true at least if the average
of the output patterns is zero. Otherwise, the most central, stable point, is
that whose bias-to-output weights take the mean value of the corresponding
output pattern components over the learning set and whose remaining weights
are null. In Fig. 6, the residual weight vector of the output unit is due to the
bias weight, whose value is exactly the predicted one. In general the prediction
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agrees completely with the simulations.
From these considerations, it is evident that the most stable weight configu-

ration, which permits the exact remembering of a unique input-output pattern,
is that with all weights equal to zero, except the output units biases, which take
the value of the output pattern.

All these claims are made in the implicit context of symmetric activation
functions, which were used in all the experiments presented until now. If the
logistic function of range [0, 1] is used instead in the hidden and output units,
then for the same reasons as before, all units will try to produce a zero output,
making the weights impinging on them (on some or all) take values tending to
−∞. If the output units are linear and the hidden ones are logistic, the bias
weights of the output layer accomplish the same function, and then the weights
of the hidden-output layer tend to 0 and those of the input- output layer tend
to −∞.

Since it is undesirable for a network to reach its maximum stability with
infinite weights, this is another good reason for not using asymmetric activation
functions.

Now we are in a better position to understand why the deterministic algo-
rithm works so well. Take into account that the experiments reported in the
preceding section not only warrant the validity of the approximation of the Hes-
sian diagonal, but also that of the complete regularizer in (24) for the task of
minimizing EP+. For small z, the approximation is good everywhere. For large
z, the minimum is in a zone in which many weights are very small. We saw
in Section 3 that, near the origin, the function is simpler and, therefore, the
approximation is good even for large z.

Discussion

We have analyzed the complete regularizer implicit in the expectation of a cost
function of random variables. All random distributions that can be transformed
into symmetricaly distributed perturbations by means of change of variable are
considered. When the function is the standard mean-squared-error function, the
terms of the regularizer can be grouped into two components. The main one is
equivalent to the mean of (F (X) − F (U))2. This is a very general smoothing
factor, a penalty term for the variation of F around the mean of the distribution.
The other component is a misfit-dependent term containing derivatives of F of
higher order than those in the preceding one 1.

1This can be related to the case of noisy inputs, for which Koistinen and Holstrom [10]
showed that the implicit objective function of a backpropagation network, when the input

components follow a distribution P (X), becomes D(X) =

∑

p
D

p)
P (X−X

p))
∑

p
P (X−Xp))

. This is also the

expression of the outputs of a network with normalized RBF units [22], whose properties are
rather different from those of the networks with non-normalized RBF units [16]. It can be

20



The explicit expression of the complete regularizer (9) allows to know exactly
the order of the error made in the approximations, and opens up the possibility
of guaranteeing properties such as positiveness. The analysis of the relation
between the minimum of the perturbed function and that of the non perturbed
one showed that neither of them may be computed as a function of the other.
The minimum of the perturbed function can even follow a discontinuous path
as a function of the variance.

To estimate EP+(W ), the regularizer can be approximated with the trace of
the Hessian multiplied by half of the variance with an error of order O(µ4). This
estimation is not good everywhere, for example it is excellent in W = 0, but
only valid for moderate variances in the minimum of E. Interestingly, however,
the disregarded terms are close to zero for any given variance in the minimum
of the EP+(W ) found with that same variance.

One way of minimizing EP+ is to sample the weight distribution and use
the resulting gradients to learn, like in and An [1]. We have discussed the
importance of weight restoration to mitigate the main problems of the method:
unstability, lack of convergence and, especially, low precision due to its stochas-
tical nature, which makes the real variance of the samples along time higher
than that of P . Even using weight restoration, high variances may impose how-
ever a too slow decrease of the learning rate towards zero, and is difficult to
know when convergence is reached.

We developed a simple alternative deterministic algorithm, based on the
minimization of the above approximation of the regularizer, which permits over-
coming all these problems and offers additional possibilities. To test it, a deter-
ministic perturbation function was devised whose value and gradient (and hence
its minimum) can be calculated exactly. The precision of the algorithm turned
out to be extraordinary for all the range of variances. This happens because,
when the variance is high, the weights tend to the origin and, in this point,
the approximation taken by the algorithm is good for all variances. When the
variance is low, the approximation is good everywhere and the minimization is
also correct.

It was found that, for networks of units with symmetric activation functions,
as the variance tends to high values, the networks tend to have all weights closer
to zero, except the biases of the output units, which take the mean values of
the corresponding output pattern components. This convergence, however, is
not uniform; the weights associated to some hidden units become null early,
but other units survive to higher variances. Thus, the method of controlling the
variance of a random weight network to enhance generalization can be thought of
as an intermediate option between weight-decay [6] and parameter elimination
[11, 24].

However, the networks of units with asymmetric activation functions (e.g.,

shown that the regularizer of the normalized RBF networks is (21), when the random variables
are the input patterns.
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logistic) behave in a different way: the simplest networks, with the least infor-
mative weights as produced by high variances, are those with infinite negative
weights. In our opinion, this fact throws serious doubts on the convenience
of using this type of networks or, at least, on the appropriateness of applying
techniques such as weight-decay in its usual form to them.

Appendix

We derive here the regularizer’s gradient for networks of one hidden layer and
linear output units. This coincides with the gradient for networks having tanh
activation functions at the output units and using the relative entropy error, as
was explained in Section 5.

Our goal is to calculate

∑

l,k

∂3Ep)

∂w2
lkwji

(W ) (37)

for every (j, i). We consider the bias unit as another input, that is, x0 = y0 = 1.
First, we take the approximation of the second derivatives of the weights made
in Section 5. For weights impinging on the output units, this approximation
coincides with the exact second derivative:

∂2Ep)

∂w2
lk

(W ) = y2k, ∀ l ∈ O. (38)

To ease the notation, formulas are understood to be true for all the valid-
ity range of the non quantified subindices. Thus (38) holds for all neurons k
connected to unit l. For the input-to hidden layer weights, the approximation
yields:

∂2Ep)

∂w2
lk

(W ) = x2
k

∑

m

w2
mly

′
l
2, ∀ l ∈ H. (39)

We divide the derivation of (37) in three parts:

• Bias weights of the output units, i.e., j ∈ O, i = 0

• Weights of the hidden-to-output layer, j ∈ O, i ∈ H

• Weights of the input-to-hidden layer, j ∈ H .

In each case, we first compute the terms for l ∈ O and then those for l ∈ H .
Let us begin with the simplest case of wji connecting a bias to an output

unit:
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∂3Ep)

∂w2
lkwji

(W ) = 0, ∀ j, l ∈ O, i = 0, (40)

∂3Ep)

∂w2
lkwji

(W ) = 0, ∀ j ∈ O, i = 0, ∀ l ∈ H. (41)

Thus, the regularizer’s gradient with respect to each bias-to-output weight
is:

∑

l,k

∂3Ep)

∂w2
lkwji

(W ) = 0, ∀ j ∈ O, i = 0. (42)

Now we concentrate on the second type of weights, those belonging to the
hidden- to-output layer. As in the former case,

∂3Ep)

∂w2
lkwji

(W ) = 0, ∀ j, l ∈ O, ∀ i ∈ H. (43)

When l is a hidden unit, we must distinguish between l #= i and l = i:

∂3Ep)

∂w2
lkwji

(W ) = 0, ∀ j ∈ O, ∀ i, l ∈ H, l #= i, (44)

∂3Ep)

∂w2
lkwji

(W ) = 2wjiy
′
i
2x2

k, ∀ j ∈ O, ∀ i, l ∈ H, l = i. (45)

Let Pp denote
∑

k x
2
k for the particular pattern p and including the bias unit,

so that Pp = ||Xp)||2 + 1. Then the final expression of the regularizer gradient
w.r.t. the hidden-to-output layer weights is:

∑

l,k

∂3Ep)

∂w2
lkwji

=
∑

k
l ∈ H

∂3Ep)

∂w2
lkwji

=
∑

k

2wjiy
′
i
2x2

k = 2wjiy
′
i
2Pp, ∀ j ∈ O, ∀ i ∈ H.

(46)
We finally deal with the hardest case corresponding to the gradient of a

weight wji impinging on a hidden unit. As in the other cases, we first calculate
the terms for l ∈ O and k ∈ H , but now we distinguish between k #= j and
k = j:

∂3Ep)

∂w2
lkwji

(W ) = 0, ∀ j, k ∈ H, k #= j, ∀ l ∈ O, (47)

∂3Ep)

∂w2
lkwji

(W ) = 2yjy
′
jxi, ∀ j, k ∈ H, k = j, ∀ l ∈ O. (48)
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Similarly, for a hidden unit l, we distinguish between l != j and l = j:

∂3Ep)

∂w2
lkwji

(W ) = 0, ∀ j, l ∈ H, l != j, (49)

∂3Ep)

∂w2
lkwji

(W ) = x2
k

∑

m

w2
mj2y

′
jy

′′
j xi, ∀ j, l ∈ H, l = j. (50)

Let nO be the number of output units. Then, the final expression of the
regularizer gradient w.r.t. the input-to-hidden layer weights is:

∑

l,k

∂3Ep)

∂w2
lkwji

=
∑

k
l ∈ O

∂3Ep)

∂w2
lkwji

+
∑

k
l ∈ H

∂3Ep)

∂w2
lkwji

= 2nOyjy
′
jxi +

∑

k

x2
k

∑

m

w2
mj2y

′
jy

′′
j xi =

2nOyjy
′
jxi + 2y′jy

′′
j xiPp

∑

m

w2
mj = 2xiy

′
j(nOyj + y′′j Pp

∑

m

w2
mj), ∀ j ∈ H. (51)

Fortunately, the factor 2y′j(nOyj + y′′j Pp

∑

m w2
mj) is the same for all the

weights impinging on j, thus we can denote it by Sj . Then the regularizer w.r.t.
a weight wji of the input-to-hidden layer can be expressed as:

∑

l,k

∂3Ep)

∂w2
lkwji

= xiSj , ∀ j ∈ H. (52)

Expressions (42), (46) and (52) are the regularizer’s gradient w.r.t. the
bias of the output units, the hidden-to-output weights and the input-to-hidden
weights, respectively.
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Figure captions

Figure 1a). The minimum of g (null variance) is located on the left side
of the graphic, at the bottom of a narrow and deep chasm. If the variance of
the variables raises up to a certain medium level, the minimum moves to the
right of the Fig., and with higher variances to the center, without visiting the
intermediate points.

Figure 1b). Level map of g(u1, u2). The arrows indicate the sense of
growing slope. There exists only one minimum, placed at the rightmost superior
part. For perturbations distributed uniformly in a square greater than that
drawn around U∗, U∗

P+ moves in a discontinuous way to the center of the figure,
due to the presence of a ridge.

Figures 2a) and b). Comparison between error(z) (the exact average
value of E in a set of perturbations of the weights) and its estimation using the
second derivatives of E. z indicates the magnitude of the perturbations. The
employed architecture is 1-3-1. (a) Near to the origin. (b) In a minimum.

Figures 2c) and d). As above, but using a network 6-20-1.

Figure 3a). Stochastic and deterministic learning methods with initial
learning rate 0.02.

Figure 3b). Stochastic and deterministic learning methods with initial
learning rate 0.06.

Figure 3c). Stochastic and deterministic learning methods with initial
learning rate 0.08.

Figure 4. Minima reached by the direct minimization of error(z) and by
the deterministic algorithm.

Figure 5a). Representation of the weights of two networks, one obtained by
minimizing directly error(z) and the other by using the deterministic algorithm.
z = 0.2 was used.

Figure 5b). As in 5a), but with z = 0.6.

Figure 6. Lenghts of the weight vectors impinging on the units of the
networks used in Fig. 4.
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