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We report computer observations on the performance of an improved version of a simulated-annealing algorithm
that was used before for the problem of phase retrieval. According to the results, we propose to use this method in
conjunction with the algorithm of Fienup [Opt. Lett. 3, 27 (1978); Opt. Eng. 18, 529 (1979); Appl. Opt. 21, 2758
(1982). The full power of the simulated-annealing algorithm with large arrays appears to be limited by present-day
computers rather than by its numerical performance, but we believe that this combination may constitute an
efficient method for phase retrieval.

1. INTRODUCTION

The question of phase retrieval often appears in optics and
other areas of physics such as x-ray diffraction, scattering,
and astronomy.

We shall deal with this subject for the case in which one
intensity measurement is available in the Fourier domain.
At present it is widely accepted that although phase recon-
struction is nonunique in one dimension, there is a high
probability that it is unique in two or more dimensions', 2

[although a certain amount of noise (uncertainty) in the data
could increase the chance that they were approximately
compatible with those of a nonunique situation].

Let g(x, y) be a function representing a two-dimensional
object with finite support (i.e., zero outside a certain do-
main), and let G(u, v) = G(u, u)iexp[i(u, v)] be its Fourier
transform; the phase problem consists of finding the phase
q5(u, v) from the known modulus !G(u, v)I and certain restric-
tions on the object g(x, y). Here, we shall consider the
restrictions to be nonnegativity and finite support. In the
(x, y) space, with digital methods, assuming a discrete mod-
el, this is equivalent to solving the set of nonlinear equations
described by

M M

Qij I gmngm+i-M,n+j-Mt
m=1 n=1

1 m <M, 1 m+i-M<M,

1< n + j-M M, 1<n•M, (1)

gmn being the M2 samples (pixels) of the object function g(x,
y) to be determined and Qij representing the (2M - 1)2
sampling data of the autocorrelation function Q(x, y) of g(x,
y). Since Q(x, y) is an even function, the equation set de-
scribed by Eq. (1) contains, in fact, M2 + (M - 1)2 indepen-
dent equations from which the M2 unknowns 9n are to be
found.

Among the several methods proposed so far to solve this
problem,3-' 4 the most effective one is probably the combina-
tion of the error-reduction and the hybrid input-output
versions of the iterative transform algorithm of Fienup.3 -5

(We shall refer to this combined algorithm as FA from now
on.) However, like other methods, this algorithm some-
times stagnates; i.e., the reconstruction becomes trapped in
a local minimum of the corresponding cost function. Some
procedures for overcoming three kinds of stagnation were
reported quite recently. 5" 6 In fact, the number of local
minima dramatically increases with the size of the object
array14 ; this significantly affects Newton or steepest-descent
methods.

In 1983 Kirkpatrick et al.17 put forward a Monte Carlo
method called simulated annealing (SA) to avoid stagnation
by nonzero minima of the cost function when solving large
systems of nonlinear equations. This procedure is based on
an analogy with the Monte Carlo method devised by Me-
tropolis et al.'8 to calculate averages in statistical physics.
SA has been used in optics for object reconstruction from
coded images. 920 Recently, some preliminary results with
computer simulations of synthetic objects were reported2'
that show the possibilities of SA in solving Eq. (1).

It should be emphasized that the convergence of SA is
asymptotic; it never provides exact reconstructions in a fi-
nite number of iterations except for small object arrays.
However, the solution that it yields to the phase problem
may be significantly improved by increasing the number of
iterations and also by repeating the algorithm several times.
In all cases tested so far it has produced recognizable esti-
mates of the true solution. Also, as will be shown, the algo-
rithm is robust to noise and flexible; i.e., it permits improve-
ments of the reconstruction by means of changes in its
schedule. The main disadvantage of SA is that it is compu-
tationally costly. With present-day computers its use seems
to be limited to object arrays of the order of 64 X 64 pixels at
most. This fact was pointed out before,2' and it is well
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known to workers using SA in other areas of physics. Never-
theless, as we shall show, for objects of size, say, 32 X 32, this
algorithm appears to be quite useful when FA stagnates (the
actual tractable size of the object obviously depends on the
computer at hand and on the time proposed to solve the
problem).

In this paper we report a substantial improvement of the
SA algorithm described in Ref. 21 for phase retrieval. First,
its performance in yielding reliable reconstructions from
Fourier modulus data has been improved by allowing the
scale of pixel perturbation to vary according to a certain
pattern. We have observed that this procedure is far superi-
or to the quenching schedule discussed in Ref. 21. Second,
its computational time has been reduced by a factor of ap-
proximately 6 with respect to the version of Ref. 21 so that
now an object reconstruction of 32 X 32 pixels costs about 12
h of central processing unit (CPU) time in a Data General or
VAX computer and less than 3 h in a CDC-Cyber. These
times are still considerably higher than those of FA (about
15 min in a Data General or VAX computer for a 32 X 32
pixel object if it is successful, although it will require further
trials if it stagnates). However, we believe that SA is a
reliable and helpful algorithm to be used if FA stagnates,
yielding a good estimate of the solution in all cases, as will be
shown in the following sections. Therefore the aim of this
paper is to show the performance of SA in those cases in
which the FA reconstruction is not satisfactory. One may
then take advantage of the speed of FA by introducing its
reconstruction as a first input of the SA algorithm. In fact,
the SA algorithm can give a solution independently of the
use of FA and of the input guess, but the profit of FA output
in SA can provide a shortcut saving, in most cases, of a
considerable amount of computing time. In any case, we
propose first to use FA and then to introduce the SA algo-
rithm to improve the reconstruction when it is necessary.

In Section 2 we shall briefly review the essentials of the SA
method for phase retrieval. In Section 3 we shall compare
its performance with that of FA and show its capability for
improving FA reconstructions. First it will be stated that
FA can provide almost exact reconstructions from noiseless
data when it works in a comparatively short computing time.
However, FA does not exhibit a uniform behavior with dif-
ferent objects; sometimes it stagnates. 51 6 This will be seen
with two astronomical objects of large dynamic range. On
the other hand, the SA algorithm has features that are com-
plementary with respect to FA. SA provides an exact recon-
struction only asymptotically, even from noiseless data.
However, we have observed a uniform behavior of SA with
different objects, and the quality of the reconstructions
showed in Section 3 increases with the computing time,
namely, with the number of steps involved in the SA process.

2. A REVIEW OF THE SIMULATED-
ANNEALING ALGORITHM

The solution to the system of equations described by Eq. (1)
is sought by finding the global (zero) minimum of the cost
function,

+(M-1) 1/2

F(g.n) = Ad rik2 k = M(i -1) + . (2)
k=1

where the residuals rh are
M M

rk Qij E E gmngm+i-Mn+j-M, 1 m + i-M < M,
m= I n=1

1• n+ j-M<M, k=M(i-1)+j. (3)

In practice, for noisy data some kth residuals rk correspond-
ing to pixels near the borders of the autocorrelation function
may be multiplied by a parameter \ that is equal to zero if

M M

Z Z gmngm+i-Mn+j-M

is less than a threshold value. (We have set it at 10-4 times
the maximum value of the autocorrelation array Qi1. This is
also the approximate order of the values of the pixels Qij near
the borders.) On the other hand, X is made greater than 1
(we have used X = 5) if

M M

Z gmngm+i-Mn+j-M
m=1 m=1

is greater than the above threshold. In this way, those pixels
near the borders of the autocorrelation array of the recon-
struction that have values of the same order as the noise level
will gain weight if they differ from the data.

Another way of giving more weight to the autocorrelation
pixels far away from the center of the autocorrelation array
is to scale Eq. (1), for instance, by dividing each r by the
number of terms contributing to the corresponding Qij [k =
M(i - 1) + j]. Evidently, this number is M2 for the residual
corresponding to the central pixel and is 1 for those in the
outer corners.

The SA method is based on a theorem stating that if F(x)
is an N-dimensional well-behaved function with a global
minimum x* in a domain S of RN, then2 2-24

L dx
* ____x = im

T-O C 1

1

x exp[-F(x)/T]

(4)

x* is then obtained by calculating the averages of x with a
probability density exp[-F(x)/T] at each T by means of a
Monte Carlo method put forward by Metropolis et al.18
This is done by generating at each fixed T an irreducible
Markov chain with a probability exp[-F(x)/T], such that in
the long run the transition probabilities that increase F(x)
equal those that decrease F(x); i.e., at that stage the configu-
ration of x remains at equilibrium. The global minimum x*
is then the limit as T - 0 of the successive equilibrium
configurations of x obtained at each T. More details on the
mathematical formulations of this method may be found in
Refs. 17, 18, and 22-24.

The procedure is performed as follows: one starts with an
initial guess object gm,(O)} whose corresponding cost func-
tion will be Po), one fixes the value of T, and then one
perturbs the first pixel goo of gm,,(°I by a certain amount h
chosen from a sequence of computer-generated random
numbers uniformly distributed in the interval (-a, a); a will
be called the scale of perturbation. The cost function F(1) of
the new object is evaluated. One then computes the differ-
ence:
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Fig. 1. Block diagram of the SA algorithm.

Plate 1. Scale associating colors with object intensities.

Plate 2. (a) Original galaxy object compressed to 32 X 32 pixels. (b) FA reconstruction from noisy data with a S/N ratio of 10. (c) Low-pass-
filtered version of (b). (d) SA reconstruction with a S/N ratio of 10. (e) Low-pass-filtered version of (d). (f) FA reconstruction with aS/N ra-
tio of 4. (g) SA reconstruction with a S/N ratio of 4.

Plate 3. (a) FA reconstruction from simulated speckle interferometry data. (b) Low-pass-filtered version of (a). (c) SA reconstruction from
simulated speckle interferometry data. (d) Low-pass-filtered version of (c). (e) Reconstruction combining FA and the SA algorithm from
simulated speckle interferometry data. (f) Low-pass-filtered version of (e).

Plate 4. (a) Original two-nucleus quasar object compressed to 32 X 32 pixels. (b) FA reconstruction from noiseless data. (c) Reconstruction
from noiseless data combining FA and the SA algorithm.

Plate 5. (a) FA reconstruction of the object shown in Plate 2(a) from noiseless data. (b) Reconstruction from noiseless data by combining FA
and 10 repetitions of the SA algorithm.

l
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Plate 3(d) Plate 3(e)

Plate 3(b) Plate 3(c)

Plate 3(f) Plate 4(a)

Plate 4(c) Plate 5(a)

Nieto-Vesperinas et al.

Plate 4(b) Plate 5(b)





Vol. 5, No. 1/January 1988/J. Opt. Soc. Am. A 35

AF = F(') -PO). (5)

If AF ' 0, then the change is accepted, and one passes to the
next pixel; if AF > 0, then the change is accepted with a
probability exp(-AF/T). To do this, we take a number n
from a sequence of random numbers uniformly distributed
in the interval (0, 1). If n is less than exp(-AF/T), then the
change is accepted, and one starts with the next pixel. If n is
greater than or equal to exp(-AF/T), then the change is not
accepted, and one starts with the next pixel. All pixels of
the object are scanned in this way for as many cycles as
necessary until equilibrium is reached, i.e., when on the
average the number of trials increasing F equals the number
of trials decreasing F. T is then lowered, and one starts the
procedure again. The larger T is, the higher the probability
is of accepting a change raising F. Thus, since F is allowed
to increase, one is not likely to get stuck in the nearest local
minimum. Eventually, when one is near the end of the
algorithm, at very low values of T, only changes lowering F
are accepted.

The scale of perturbation a must be chosen with care; if a
is too large, F will oscillate highly or will yield forbidden
changes, and if a is too small, the reconstruction evolution
will be too slow. The performance of the algorithm is en-
hanced if a is allowed to decrease as T - 0 according to a
certain schedule.

The fast computation of the autocorrelation function of
the corresponding iteration with a perturbed pixel is a non-
trivial matter. The most efficient way that we have found is
to follow the scheme

Q(m+l)(xy) = J Jdtdn[g()Q(, 7) + h6( - a, i - b)]

X [g(f)(lq + x,7 y+ y) + h( + x - a, y + y - b)]

= Q(m)(x, y) + hg()(a -x, b -y)

+ hg(m)(a J x, b + y) +h 25(x, Y). (6)

In Eq. (6), Q(m+l)(x, y) is the autocorrelation function result-
ing from adding an amount h (-a < h a) to the pixel in (a, b)
of the mth iteration of the objectg(m)(x, y), and 6(x, y) is the 3
function.

A FORTRAN routine for the whole algorithm will be re-
ported soon.25 A block diagram of the algorithm is shown in
Fig. 1.

3. COMPUTATIONAL RESULTS

Both the FA and the SA reconstructions were tested with 32
X 32 pixel objects. The FA was done by embedding the
object in a 64 X 64 pixel window array to perform fast-
Fourier-transform operations. In all cases shown in this
work the starting guess for both FA and SA was the one
suggested by Fienup5 : take the autocorrelation data array
Qij, save every other pixel in both dimensions and threshold
it to a value (we used 1O-4 with a maximum normalized to 1),
and fill the results with random numbers. We usually ob-
tain better performance of the algorithms by using this strat-
egy than by starting with 32 X 32 pixel input arrays with
random or constant values.

FA was used with a feedback parameter g 0.7 in the
hybrid input-output parts. Twenty error-reduction inter-

actions were done first; then we employed seven cycles, each
containing one hundred hybrid input-output iterations fol-
lowed by twenty error-reduction iterations.

In all cases tested in this work, no further evolution of the
reconstruction was observed by considerably increasing this
number of cycles above seven or ten.

In fact, 10 h of CPU time in a Data General computer and
2 h in a CDC Cyber computer were given to FA for a recon-
struction from noiseless data of the objects of Plates 2(a) and
4(a). Neither reconstruction evolved from that of Plates
4(b) and 5(a), obtained with 28 min of CPU of FA, and the
cost functions did not drop any further. This may be be-
cause of effects involved in the Fourier-transform operation,
namely, the noisy and stripped features of Plates 4(b) and
5(a), respectively, seem to be due to biased phases acquired
in the spectrum in the first iterations. No attempts were
made to overcome stagnation by the methods of Refs. 15 and
16, however.

For the SA algorithm, two annealing schedules were test-
ed. One schedule features exponential decay, or T as T =
exp[-h(n - 1)]TO in 50 steps n. is chosen such that To =
100 and T50 - 10-6; i.e., h = 0.37. The maximum number of
cycles of object scan is set equal to 100. Equilibrium is
considered reached when three consecutives times at the end
of a cycle the number of accepted perturbations raising F
differ from the number of perturbations lowering F (always
accepted) to within 5%. The scale of perturbation a starts at
a 1 and is modified at the end of each cycle according to
the schedule

ae, B{A + log FnP
V C 

(7)

A equals the order of the initial cost function F (Fo 105;
thus A = 5). The exponent P establishes the change rate of
a (P = 5 worked well), C is a number of chosen to make the
quotient no greater than 1 (we used C 16), and B scales the
initial value a0 to approximately 1 (we set B = 10).

The other schedule tested, which produced similar results,
contained the same number of steps of T as the first schedule
but featured a linear decay of T; i.e., T,+1 = 0.75Th, and am =
expf-(m - 1)], with the index m increasing one unit every
seven steps of variation in T.

The chosen schedule therefore depends largely on the
user. In any case, these choices of T and the scale of pertur-
bation a are by no means exhaustive and must be considered
merely concrete examples of performance of the SA algo-
rithm in our case. A general rule, however, may be estab-
lished, namely, that both the decay in T and the decay in c
must be performed carefully and slowly. Otherwise, one is
likely to be trapped in a local minimum of the cost function.

All the examples to be shown in what follows took about
15-30 min of CPU time for FA and about 12-14 h of CPU
time for SA in a Data General Eclipse MV 10000 computer.
However, when the SA reconstruction was started with the
FA result, the CPU time was reduced to about 6 h, provided
that one tried to save perturbation scans near equilibrium.
As mentioned before, with the astronomical objects, no im-
provement of the reconstructions was observed in the exam-
ples by letting FA run over comparable computing times.

Since there are discussions among users on their relative
successes in applying FA, we wish to report first a remark-
able performance of this algorithm with a difficult synthetic
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(a) (b)

Fig. 2. (a) Original object, which represents a 32 X 32 pixel low-
pass-filtered version of object 5 of Ref. 21. (b) FA reconstruction
from noiseless data.

(a) (b)

Fig. 3. (a) Autocorrelation and
shown in Plate 1(a).

(b) power spectrum of the object

object such as the one shown in Fig. 5 of Ref. 21 (excluding
one file and one column to make it 32 X 32 pixels). Fienup's
error function [Eq. (4) of Ref. 3] for the initial guess was E =
0.22. After FA was applied to noiseless data, the recon-
structed object showed an error of E = 2.3 X 10-4, and its
visual appearance was indistinguishable from the original.
The SA version reported here, although it is a considerable
improvement of the result in Ref. 21, yielded a poorer recon-
struction, with E 10-3. It should also be remarked that no
additional a priori information or constraint was used. FA
performance was very satisfactory even with a signal-to-
noise (S/N) ratio of 10 in the spectrum data, yielding a
reconstruction with E = 2.6 X 10-2. The S/N ratio used here
was

J G(u, v)IdudvIA
S/N ratio = , (9)

where A is the power spectrum area, (642 in our case) and a
is the root mean square of the noise.

Similar satisfactory results were obtained with FA in re-
constructions of low-pass-filtered versions of the same ob-
ject showing much lower contrast. Figure 2(a) shows the
original object, and Fig. 2(b) shows the reconstruction from
noiseless data, with an error E 10-4. In fact, no local
minima of the kind reported in Fig. 2 of Ref. 26 were found,
even in the low-pass-filtered object. Therefore, with this
kind of object, FA appears to be a highly efficient method of
phase retrieval.

However, the SA algorithm may be very helpful with objects
of large dynamic range. The color scale for the plates printed
in color is shown in Plate 1. Plate 2(a) shows a 32 X 32

pixel image of a galaxy recorded by astronomers of the Insti-
tuto Astrofisico de Canarias (IAC) with a charge-coupled-
device camera. We present it in color because of its large
dynamic range. The autocorrelation and the power spec-
trum of this object are shown in Figs. 3(a) and 3(b), respec-
tively. A logarithmic scale of gray levels has been used in
Figs. 3(a) and 3(b); even so, the fainter outer details are not
visible.

FA reconstruction of this object from noisy data in the
power spectrum with a S/N ratio of 10 is shown in Plate 2(b);
the error is E = 1.7 X 10-2. The error of the initial guess was
E0 = 0.53. In terms of the cost function of Eq. (2), the
reconstruction of Plate 2(b) has F = 10-2. The initial guess
had a cost function F0 = 69922. In Plate 2(c) a low-pass-
filtered version of Plate 2(b) is shown. The visual appear-
ance is less noisy, and the higher-density details are clearer,
although the error and cost functions increase 1 order of
magnitude. The SA reconstruction is shown in Plate 2(d); it
has E = 3.2 X 10-2 and F = 4.9 X 10-2. A low-pass-filtered
version of the same reconstruction is shown in Plate 2(e).
These SA reconstructions are less noisy than those provided
by FA, although they are shifted upward, which is probably
the reason for their slightly higher error.

Plate 2(f) shows the FA reconstruction of the same object
with a S/N ratio of 4 and with E = 4.4 X 10-2 and F = 6.6 X
10-2. On the other hand, plate 1(g) shows the SA recon-
struction from these data with E = 8.86 X 10-2 and F = 9.1 X
10-2. Once again, these errors are slightly higher than those
of the FA reconstruction although its visual appearance is
less noisy. Thus, although these cost and error functions are
a good measure of the convergence of the corresponding
algorithm, they have a certain discrepancy with respect to
the visual quality of the reconstructions. Curiously, if one
calculates the cost function of the above reconstructions, as
in Eq. (2), but also divides each residual r by the central
maximum of the autocorrelation data, one obtains F = 2.5 X
10-6 for the FA reconstruction in Plate 2(b) and F = 1.6 X
10-6 for the SA reconstruction in Plate 2(d) as well as F = 2.5
X 10-5 for FA reconstruction in Plate 2(f) and F = 1.18 X
10-5 for the SA reconstruction in Plate 2(g).

Plates 3(a)-3(f) show reconstructions from data obtained
by means of a computer simulation of speckle interferome-
try data obtained by convolving the original object [shown in
Plate 2(a)] with each of 100 speckled point-spread functions
representing different realizations of the turbulent atmo-
sphere according to a certain model.2 7 The resulting power
spectrum data are practically equal to those of the noiseless

(a) (b)

Fig. 4. (a) Autocorrelation and (b) power spectrum of the object
shown in Plate 2(a).
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spectrum but are set to zero at high frequencies whenever
they are less than a threshold value equal to 10-2 times the
maximum. Plate 3(a) shows the reconstruction given by
FA, and plate 3(b) shows a low-pass-filtered image of that
picture. The reconstruction obtained by means of SA and
its low-pass-filtered version are shown in Plates 3(c) and
3(d), respectively. These are clearly less noisy than those of
Plates 3(a) and 3(b).

Interesting results may be obtained by using a combina-
tion of FA and SA algorithms. Since FA is fast, one can take
advantage of this by using it first; one can then attempt to
improve the result by introducing it as a first guess in the SA
algorithm. In this case the starting value of T, however, may
be set much lower (according to the cost function).

In the example to be shown next, we have used a starting
value T = 0.1. (Obviously, very high values of T would
perturb all pixels of the FA input in such a way that it would
be completely disturbed, whereas a relatively low initial T
may keep some features of the input while pushing it up
from the relative minimum.) This will save a considerable
amount of computing time. Plate 3(e) shows the recon-
struction of the object shown in Plate 2(a), obtained in this
way by using the speckle interferometry simulation data.
The input to the SA was the FA reconstruction [Plate 3(a)].
A low-pass-filtered version of the reconstruction is shown in
Plate 3(f). The quality of either Plate 3(e) or Plate 3(f) is
not better than that of Plate 3(c) or Plate 3(d); however, the
computing time is made much shorter by taking advantage
of FA reconstruction; it is possible to reduce it almost by a
factor of 3.

Plate 4(a) shows a picture of a quasar with a double nucle-
us, under study at present at the IAC, compressed to 32 X 32
pixels. Its autocorrelation and power spectrum are shown
in Figs. 4(a) and 4(b), respectively, again represented by a
logarithmic scale of gray levels. The FA reconstruction
from noiseless data in the power spectrum is shown in Plate
4(b); its error is E = 7.1 X 10-2, and its cost function value is
F = 7.8 X 10-2; the values for the initial guess were E= = 0.55
and F0 = 261248. By introducing this result as the input in
the SA algorithm and starting it at T = 0.1, we obtained the
reconstruction shown in Plate 4(c); the error was E = 2.6 X
10-3, and the cost function value was F = 8.5 X 10-6. The
improvement in the reconstruction obtained by using SA is
remarkable.

Attempts were also made to introduce a SA reconstruction
as the initial guess in a FA reconstruction. However, FA
behaved as with a random input; namely, it improved the
result only if it worked with a random input too, but it
tended to stagnate otherwise. SA, on the other hand, im-
proved the reconstructions when necessary, showing a re-
markable ability to take the iterations out of a relative mini-
mum. In fact, we also observed that a steady improvement
was obtained by successive repetitions of the SA algorithm,
each time starting at a moderately low temperature, say, T =
0.1.

Another possibility that was tested was as follows. The
reconstruction was taken from a relative minimum by slight-
ly raising T, say, to T = 0.1, and then, instead of following
with SA, a quenched version was applied, i.e., the value of T
was abruptly dropped to T 0. The following plates show
this effect on a reconstruction given by FA. Plate 5(a)
shows a FA reconstruction of the object shown in Plate 2(a);

its error was E 8 X 10-3. The pixels of this reconstruction
are perturbed at T = 0.1 until equilibrium is reached, and
then a quenched SA (T = 0) process follows. This Monte
Carlo procedure is repeated 10 times, each one starting with
a slightly lower T. The result is shown in Plate 5(b); it has
an error of E -t 10-3 (once again the visual appearance is
much better than the corresponding decay in E), and its
resemblance to the original is excellent. A similar result
would be obtained by applying 10 times the SA starting at
moderately low T.

The above example shows that the SA algorithm can be
exploited fully at the expense of increasing the computing
time.

4. CONCLUSIONS

In this paper we have reported the possibilities of an im-
proved version of the SA algorithm2' for solving the problem
of phase retrieval. From our computer observations, we
infer that SA requires a long computing time. It does not
yield a quick spectacular reconstruction in a short time.
However, it has the great advantage that it does not require
the introduction of clever guesses or constraints; anyone
with an average VAX computer or the equivalent at hand
can use it. It seems to be flexible enough to permit the
incorporation of a priori constraints. This flexibility makes
it interesting for dealing with noisy data. Its behavior is, as
far as we have observed, uniform, and the reconstruction
may be steadily improved by increasing the steps of the
algorithm or even by repeating it by increasing the T param-
eter slightly to take the iteration out of a local minimum. It
is also robust to noise. We believe that optimum use of the
SA algorithm can be made by first taking advantage of the
possibilities of FA, from the computing-time point of view.
FA should be run first; then SA can improve the result when
necessary. Its actual power in dealing with large arrays, we
believe, is dependent on present-day computing costs.
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