# 1ST INTERNATIONAL SYMPOSIUM ON CATCH IDENTIFICATION TECHNOLOGIES Bergen (Norway) - November, 2<sup>nd</sup>-3<sup>rd</sup>





# Real-time automatic total catch monitoring

Juan Carlos Ovalle<sup>1</sup>, Carlos Vilas<sup>1</sup>, Julio Valeiras<sup>2</sup>, Esther Abad<sup>2</sup>, Eva Velasco<sup>2</sup>, Ricardo I. Pérez-Martín<sup>1</sup> and **Luís T. Antelo**<sup>1</sup>



<sup>1</sup>Biosystems and Bioprocess Engineering Group (Bio2Eng) Instituto de Investigaciones Marinas (IIM-CSIC) - Vigo

<sup>2</sup>Centro Nacional Instituto Español de Oceanografía-CSIC Centro Oceanográfico de Vigo















#### 1. MOTIVATION

- The successful implementation of the Common Fisheries Policy (CFP) depends, at a large extent, on the capacity to quantify total catches on board commercial vessels.
- Because of the large number of fishing vessels and the high number of trips to be monitored, classic monitoring methods, mainly based on inspections, are not effective → The use of electronic devices to quantify fishing catches is gaining relevance.
- The data provided by such devices, in combination with mathematical models, may be used to assess the state of the different fishing stocks and to optimize the fishing activity.
- Increasingly though, technology has quickly developed during the last years to provide vision and artificial intelligence-based, remote Electronic Monitoring (REM or EM systems), at lower costs, and with more potential to cover large areas than traditional monitoring strategies.













#### 1. MOTIVATION

#### The Advantages of REM

for wildlife, fishers, retailers & consumers



#### **End discarding**

Efficient monitoring of the net hauling & fish sorting process will encourage fishers to fish more selectively & discard less.



#### Protects wildlife

lelps to monitor & reduce bycatch levels and reduce impacts on marine wildlife such as sharks, seabirds & cetaceans.



#### Healthier ocean

Helps to facilitate stock recoveries and support marine ecosystems, teeming with life, which will absorb more carbon from the atmosphere.

Deter overfishing &

illegal fishing activities

enforcement tools & reward

fishers who are using best

practices at sea.

Will be used to support stronger



#### **Confident fishers**

Data supports decisions on stock management, enabling shers to adopt sustainable harvest strategies.



#### Confident consumers, responsible retailers

Provides fishers with verifiable evidence of what they are seeing, haul-by-haul, to evidence responsible practices at sea.



scientific data

REM can capture widespread data to provide a full picture of fishing activity & help us better understand our seas.



#### Safequards Marine Protected Areas (MPAs)

GPS, sensors & video can monitor fishing gear and help protect key marine habitats & help us understand the impacts of fishing on wildlife.



#### **Data Trends**

Patterns relating to fishing gear issues, fish stocks, & biological data can be identified over a long-time scale.



#### Non-biased data

In comparison to traditional methods where fishers & observers can interpret the catch information differently.



#### Al tools

Can identify specific species for conservation surveys & verify whether species are subject to landing obligation.



#### Cheaper data

REM systems allow data to be gathered at a fraction of the cost in comparison to traditional systems.



#### Increased and improved data

Rather than a 'snapshot' of sampling, REM captures video data of all hauls which can be stored & reviewed at a later date.



#### Faster access and response to data

Managers can respond quicker to events & give fishers the best opportunities based on what they are currently experiencing.



#### Meeting marine conservation targets

REM systems can help fish stocks to recovery by encouraging more selective fishing & minimise impacts on marine wildlife & habitats.



#### Mitigation use

**REM reveals if fishers** are following mitigation measures & whether it is working to help reduce wildlife bycatch.

SOURCE: https://www.mcsuk.org/ocean-emergency/sustainable-seafood/our-sustainable-seafood-work/transparentsea/











**DATA** 





#### 2. THE iOBSERVER CONCEPT





- Its main objective is to automatically identify and quantify the whole catch on board fishing vessels.
- It is installed over the conveyor belt, just before the fishing separation zone, taking images of everything that crosses the conveyor belt during fish separation. The recognition software automatically analyzes every image, identifies all individuals, estimates their length and generates a catch report.

- Steel waterproof case
  - ✓ Dimensions: 40x23x26cm; Weight: 18kg Touch screen
- Industrial camera
- Industrial computer: Image recognition software Lighting system: Led strip lights (diffuser films)

















# 1st PROTOTYPE

Developed within the LIFE iSEAS project (LIFE13 ENV/ES/000131)





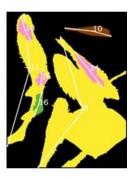
- Image recognition software for 17 species based on parameters: color, texture, shape.
- It has been intensively tested in 10 oceanographic campaigns (170.000 images acquired) and on board 3 commercial vessels on 9 fishing trips in Portugal and Northwest Cantabrian Sea (around 35.000 images acquired)

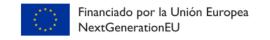
## Main problems

- ✓ Similar species
- ✓ Overlapped individuals
- ✓ Lighting problems

Separated individuals







Overlapped individuals



















# 2<sup>nd</sup> PROTOTYPE

Development under the **SICAPTOR project** of the Pleamar Program (Fundación Biodiversidad) co-funded by the EMFF (European Maritime and Fisheries Fund)



• Image recognition software for 14 target species (ICES regions 8c/9a, including similar species) based on DEEP LEARNING ALGORITHMS

| FAO 3A Code | Scientific name            | Common name      |
|-------------|----------------------------|------------------|
| BIB         | Trisopterus luscus         | Pouting          |
| GUG         | Trigla gurnardus           | Grey gurnard     |
| GUN         | Trigla lyra                | Piper gurnard    |
| GUR         | Aspitrigla cuculus         | Red gurnard      |
| GUU         | Chelidonichthys lucerna    | Tub gurnard      |
| HKE         | Merluccius merluccius      | Hake             |
| HOM         | Trachurus trachurus        | Horse mackerel   |
| LDB         | Lepidorhombus boscii       | Four spot megrim |
| MEG         | Lepidorhombus whiffiagonis | Megrim           |
| MAC         | Scomber scombrus           | Atlantic makerel |
| RJC         | Raja clavata               | Thornback ray    |
| RJM         | Raja montagui              | Spotted ray      |
| RJN         | Leucoraja naevus           | Cuckoo ray       |
| WHB         | Micromesistius poutassou   | Blue whiting     |

- Three different algorithms, based on deep learning, were developed:
  - Species identification (Detection bounding box)
  - Species identification (Instance segmentation)
  - Length estimation (Regression)
- These algorithms use input data to *learn* from them:
  - Inputs are images of the fishes
  - ➤ Learning algorithm (Artificial Neural Network) contains a number of parameters that are tuned minimizing the error between inputs and prediction algorithms









# 2<sup>nd</sup> PROTOTYPE INSTALLATIONS

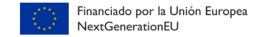


It has been tested in 1
oceanographic campaign and
on board 3 commercial vessels
on 30 fishing trips in Portugal
and Northwest Cantabrian Sea



### **Oceanographic vessels**






#### **Commercial vessels**







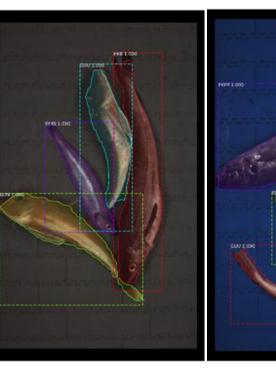


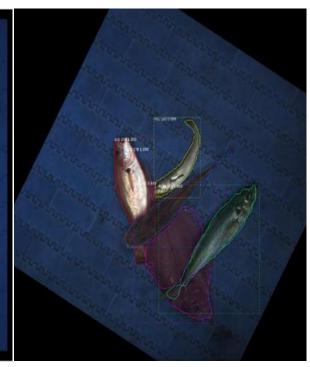


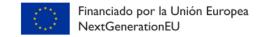




# 2<sup>nd</sup> PROTOTYPE


#### ON SHORE IMAGES WITH LOW OVERLAPPING


#### Species identification algorithm


#### Type of images on the test set

- Same conditions as training/validation pictures
- Maximum overlapping area 15%
- Images were labelled by a human observer (objective and non objective species)

#### **Identification results**





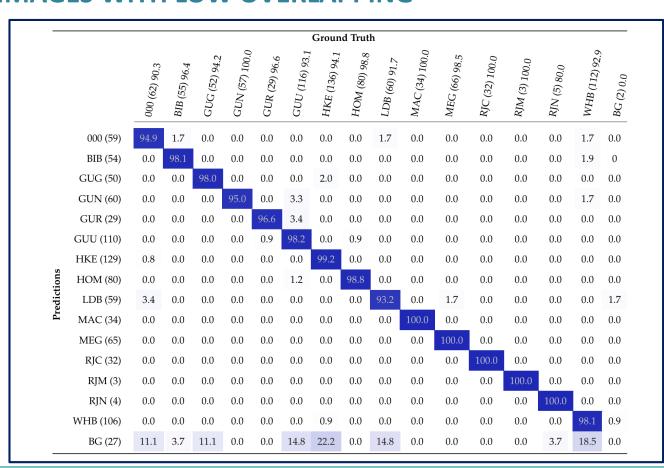




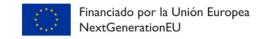







# 2<sup>nd</sup> PROTOTYPE

#### ON SHORE IMAGES WITH LOW OVERLAPPING


#### Species identification algorithm

Type of images on the test set

- Recall: % of correct identifications → 98% (average)
- Precision: % of correct identifications among the positives → 95% (average)



**Confusion matrix** 













# 2<sup>nd</sup> PROTOTYPE

#### ON SHORE IMAGES WITH LOW OVERLAPPING

#### Length estimation algorithm

## Type of images on the test set

- Same conditions as training/validation pictures
- Maximum overlapping area 15%
- Images were labelled by a human observer (objective and non objective species)

#### **RESULTS**

| Species | MAE (mm) | MAPE (%) | Species | MAE (mm) | MAPE (%) |
|---------|----------|----------|---------|----------|----------|
| BIB     | 6        | 3.0      | LDB     | 10       | 4.5      |
| GUG     | 7        | 3.3      | MAC     | 9        | 2.6      |
| GUN     | 11       | 3.3      | MEG     | 7        | 2.5      |
| GUR     | 6        | 2.9      | RJC     | 15       | 5.4      |
| GUU     | 7        | 2.3      | RJM     | 6        | 1.3      |
| HKE     | 15       | 5.0      | RJN     | 12       | 2.1      |
| HOM     | 11       | 3.4      | WHB     | 8        | 3.2      |

- Maximum error: 5.4%
- Mean absolute error: 9.2 mm
- Resolution used by biologists is around 5 or 10 mm

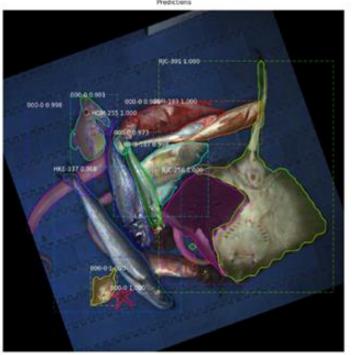


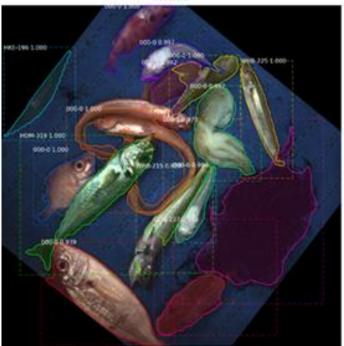


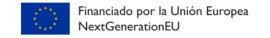




# 2<sup>nd</sup> PROTOTYPE


## ON SHORE/ON BOARD IMAGES WITH MODERATE OVERLAPPING


#### Species identification algorithm


#### Type of images on the test set

- Images with a larger degree of overlapping
- Objective species were labelled by a human observer
- Non-objective species were not labelled

#### **Identification results**











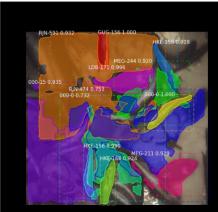




# 2<sup>nd</sup> PROTOTYPE

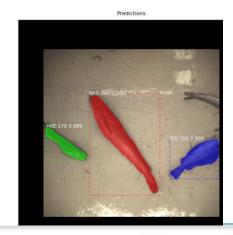
#### **COMMERCIAL VESSELS WITH HIGH OVERLAPPING**

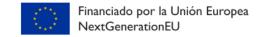
#### Species identification algorithm


#### Type of images on the test set

- Commercial vessel
- Worse lighting conditions, water accumulation, white conveyor belt
- Images were not labelled (no confusion matrix)
- Human observer:
  - a) Weight per species





#### **RESULTS**


- Good if overlapping is not too high
- Bad with high overlapping



#### **Identification results**



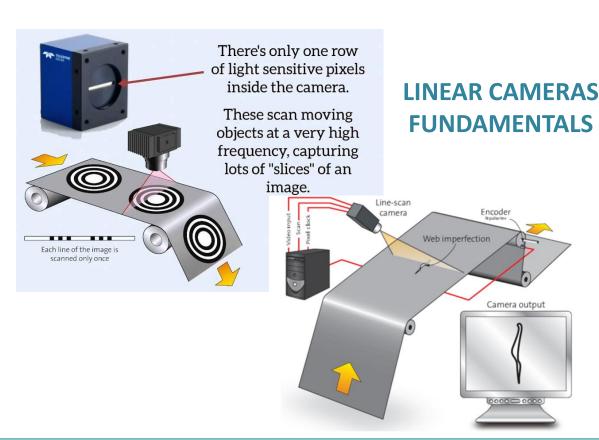


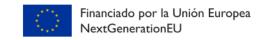












# 3<sup>rd</sup> PROTOTYPE

On-going Development under the **SICAPTOR2.0** project of the Pleamar Program (Fundación Biodiversidad) co-funded by the EMFF (European Maritime and Fisheries Fund)



- To carry out the computations in a computer outside the iObserver:
  - ✓ Reduce size and weight of the iObserver
  - ✓ Increase computational capabilities (reduce cost)
- Explore the use of linear and matrix (+flux algorithm) cameras
  - **✓ Lower lightning requirements**
  - ✓ But requires perfect coordination with belt movement required













# 3<sup>rd</sup> PROTOTYPE

- Moving the processing hardware out of the case brings great benefits:
  - a) It facilitates the development of much more powerful and standard solutions.
  - b) It is easily upgradeable.
  - c) Specialized hardware is not necessary, which implies lower costs.
  - d) The processing equipment can be used for other tasks (for example: REDBOX application for the management of hauls/trips, casts and catches).
  - e) The capture hardware update cycle (longer cycles) and the processing one (shorter cycles) are decoupled, resulting in long-term cost optimization.











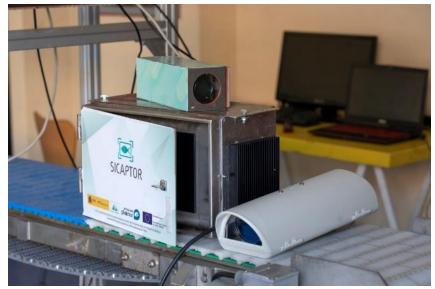




|                    | iObserver SICAPTOR                                          | iObserver2.0 Linear                                                                   | iObserver2.0 Matrix                                                                 |  |
|--------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| TYPE OF CASE       | Watertight stainless Steel IP68                             | Watertight stainless steel APG<br>Serie 38S IP68 for food<br>applications             | Waterthight IP66                                                                    |  |
| DIMENSIONS         | 400x230x260 mm                                              | 279x106x97 mm                                                                         | 466x127x113 mm                                                                      |  |
| WEIGHT             | 18 kg                                                       | 3 kg                                                                                  | 2.7 kg                                                                              |  |
| CAMERA             | Matrix JAI GO-5000C, 5 MP resolutiond and a 1" color sensor | Linear 7.04um 2048x2-26kHz-<br>Color-CMOS-GigE                                        | Matrix JAI GO-5000C, 5 MP resolutiond and a 1" color sensor                         |  |
| COMPUTATION MODULE | Industrial computer inside de case                          | On the bridge                                                                         | On the bridge                                                                       |  |
| LIGHTING SYSTEM    | 4 LED linear spotlights (with diffuser films)               | 1-2 LED spotlights IP69K EFFI-<br>FLEX-IPK69-30-000-TR-P3-LS<br>(with diffuser films) | 2 LED spotlights IP69K EFFI-<br>FLEX-IPK69-30-000-TR-P3-LS<br>(with diffuser films) |  |

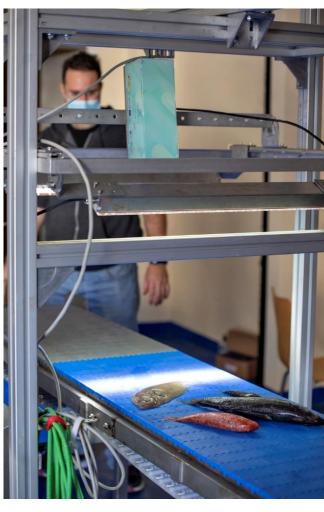







MINISTERIO DE AGRICULTURA, PESCA Y ALIMENTACIÓN


























































- Two differentiated categories of images were generated both at testing inland facilities and on board the R/V Miguel Oliver (of the Spanish General Secretary of Fisheries) during the DESCARSEL0921 campaign:
  - **Training images.** These are images intended to train and calibrate the detection algorithms. That is why it is important that these present the maximum number of specimens of each target species, in the greatest number of positions, both of the specimen (ventral, dorsal, lateral, straight, curved...) and on the conveyor belt (centered, attached to the sides, corners, perpendicular, parallel, etc.). Two subsets of images were obtained from these:
    - a) Images of individual specimens, both target and non-target species.
    - b) Images with several specimens, some with overlap and others without overlap between them, both of target and non-target species.
  - Images of complete hauls for calibration and evaluation of system results. The objective of this set of images is to evaluate the performance of the system with real sets in conditions that can be reproduced on board a commercial vessel.













Instance segmentation algorithm with Mask R-CNN for the segmentation and identification of captured species

Regression algorithm with a modified MobileNet-V1 convolutional neural network for fish length estimation

- SICAPTOR: 15 identified classes (14 target species, including size + Other species).
- SICAPTOR 2.0: 31 identified classes (14 target species, including size + 16 non-target species + Other species category).
- Using the test set, the **recall** obtained is 96% and the **accuracy** is 92%. Both accuracy and sensitivity drop very slightly compared to SICAPTOR → It is the price to pay for a much more powerful algorithm:
  - a) It allows to differentiate more than twice as many species.
  - b) It works with both SICAPTOR matrix camera and SICAPTOR 2.0 linear camera images.
  - c) The set of tests has been calculated incorporating a greater number of complex images with multiple fish and overlap.













- The **regression algorithm for size estimation** is created from a convolutional Network MobileNet-V1 trained from scratch, modified to include as input the results of the segmentation algorithm.
- This algorithm was adapted to work with the new version with 31 species of SICAPTOR 2.0 and was re-entangled by adding the new set of images.
- The Mean Absolute Percentage Error (MAPE) obtained is 3.1%, calculated on the fraction of correct identifications of the target species; the Mean Absolute Error (MAE) is 9mm, improving the results of previous versions.

|             | BIB  | GUG  | GUN  | GUR  | GUU  | НКЕ  | ном  | LDB  | MAC  | MEG  | RJC  | RJM  | RJN  | WHB  |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| MAE<br>(mm) | 6    | 6    | 10   | 7    | 9    | 16   | 11   | 7    | 9    | 6    | 10   | 7    | 11   | 9    |
| MAPE        | 2.7% | 3.0% | 3.4% | 3.0% | 2.9% | 5.2% | 3.2% | 3.4% | 2.8% | 2.0% | 3.5% | 2.0% | 2.0% | 3.9% |













• As a **NOVELTY**, we are using different alternatives to apply multiple object tracking algorithms with segmentation, in the literature identified as **MOTS** (*Multiple Object Tracking and Segmentation*) with the idea of solving the problem of fish cut at the edges of each consecutive frame during the haul recording procedure and qualitative and quantitative analysis of each haul.





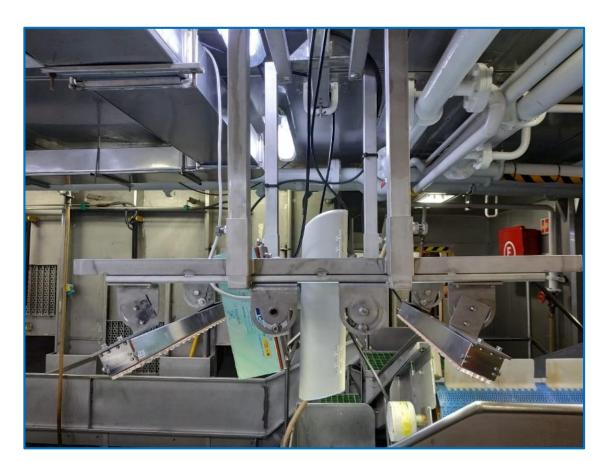

















- Carried out during the scientific campaigns DESCARSEL0921 and DESCARSEL0921 to study the selectivity during trawling operations and high survival of discards in the Cantabrian-Northwest Fishing Ground.
- Led by the Spanish Institute of Oceanography Oceanographic Center of Vigo (IEO-CSIC).
- Carried out in On the R/V Miguel Oliver (of the Spanish General Secretary of Fisheries)

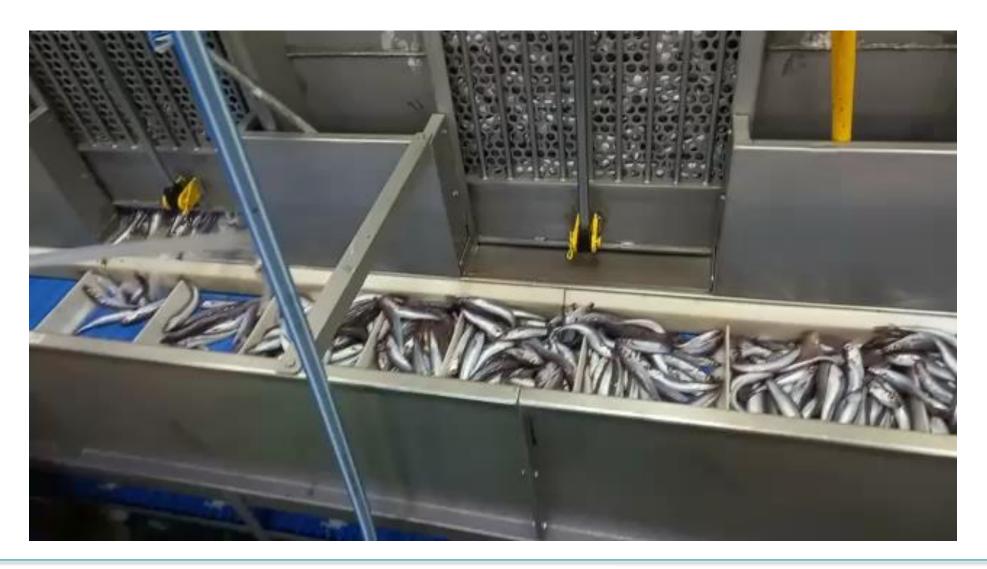













MINISTERIO DE AGRICULTURA, PESCA Y ALIMENTACIÓN





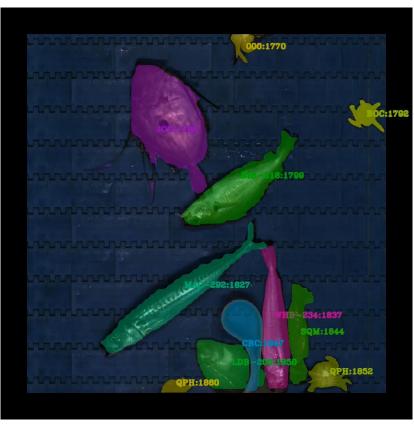



















# Deep learning recognition with multiple object tracking output















#### **DESCARSEL0921 iOBSERVER 2.0 results** by species for codends and target species

#### **Average WAPE 49%**

| spc | GT weight | Pred weight | WAPE | GT detected | True detection |
|-----|-----------|-------------|------|-------------|----------------|
| BIB | 46384     | 36825       | 31%  | 74%         | 93%            |
| GUG | 636       | 416         | 131% | 17%         | 26%            |
| GUN | 1436      | 1066        | 52%  | 61%         | 83%            |
| GUR | 6186      | 5288        | 17%  | 84%         | 98%            |
| GUU | 2086      | 3693        | 82%  | 98%         | 55%            |
| HKE | 186763    | 193136      | 12%  | 96%         | 92%            |
| НОМ | 88050     | 67893       | 25%  | 76%         | 99%            |
| LDB | 38753     | 28673       | 26%  | 74%         | 100%           |
| MAC | 18690     | 15101       | 22%  | 79%         | 98%            |
| MEG | 5846      | 12414       | 123% | 94%         | 44%            |
| WHB | 127490    | 111069      | 17%  | 85%         | 98%            |
|     | 522320    | 475574      | 49%  | 76%         | 81%            |

The model has difficulties with species with few individuals or with very similar appearance

GT Weight: observed weight (g) Pred Weight: predicted weight (g)

WAPE: Weighted Average Percentage Error

GT detected: Fraction of observed weight correctly detected

True detected: Fraction of correct predicted weight

#### Grouping similar species: **Average WAPE 20%**

| spc | GT weight | Pred weight | WAPE | GT detected | True detection |
|-----|-----------|-------------|------|-------------|----------------|
| BIB | 46384     | 36825       | 31%  | 74%         | 93%            |
| GUX | 10344     | 10463       | 22%  | 90%         | 89%            |
| HKE | 186763    | 193136      | 12%  | 96%         | 92%            |
| HOM | 88050     | 67893       | 25%  | 76%         | 99%            |
| LEZ | 44599     | 41087       | 11%  | 90%         | 98%            |
| MAC | 18690     | 15101       | 22%  | 79%         | 98%            |
| WHB | 127490    | 111069      | 17%  | 85%         | 98%            |
|     | 522320    | 475574      | 20%  | 84%         | 95%            |

Results greatly improve by grouping similar species, such as gurnards and megrims, as in comercial classification.













#### **DESCARSEL0921 iOBSERVER 2.0 results** per haul for codends and target species

#### **Average WAPE 18%**

| haul | overlap | GT weight | Pred weight | WAPE | GT detected | True detection |
|------|---------|-----------|-------------|------|-------------|----------------|
| 5    | 4       | 44262     | 44225       | 6%   | 97%         | 97%            |
| 6    | 4       | 26484     | 24744       | 9%   | 92%         | 99%            |
| 9    | 8       | 42324     | 36636       | 33%  | 77%         | 89%            |
| 13   | 5       | 18674     | 16980       | 12%  | 89%         | 98%            |
| 14   | 2       | 12008     | 9926        | 24%  | 79%         | 96%            |
| 15   | 5       | 8968      | 8372        | 8%   | 93%         | 99%            |
| 16   | 2       | 29062     | 29951       | 8%   | 97%         | 95%            |
| 17   | 3       | 11110     | 9972        | 13%  | 88%         | 98%            |
| 18   | 6       | 7120      | 5938        | 20%  | 82%         | 98%            |
| 20   | 3       | 21064     | 18288       | 20%  | 83%         | 96%            |
| 21   | 5       | 55054     | 50630       | 19%  | 87%         | 94%            |
| 23   | 6       | 34757     | 23981       | 36%  | 66%         | 96%            |
| 24   | 5       | 9685      | 9106        | 14%  | 90%         | 96%            |
| 26   | 7       | 41558     | 39704       | 11%  | 92%         | 97%            |
| 27   | 7       | 43204     | 47600       | 24%  | 93%         | 84%            |
| 28   | 9       | 70340     | 55388       | 31%  | 74%         | 94%            |
| 31   | 3       | 46646     | 44133       | 21%  | 87%         | 92%            |
|      | 4.9     | 522320    | 475574      | 18%  | 86%         | 95%            |

GT Weight: observed weight (g) Pred Weight: predicted weight (g)

WAPE: Weighted Average Percentage Error

GT detected: Fraction of observed weight correctly detected

True detected: Fraction of correct predicted weight

#### Grouping similar species: **Average WAPE 16%**

| haul | overlap | GT weight | Pred weight | WAPE | GT detected | True detection |
|------|---------|-----------|-------------|------|-------------|----------------|
| 5    | 4       | 44262     | 44225       | 4%   | 98%         | 98%            |
| 6    | 4       | 26484     | 24744       | 8%   | 93%         | 99%            |
| 9    | 8       | 42324     | 36636       | 33%  | 77%         | 89%            |
| 13   | 5       | 18674     | 16980       | 9%   | 91%         | 100%           |
| 14   | 2       | 12008     | 9926        | 20%  | 81%         | 98%            |
| 15   | 5       | 8968      | 8372        | 8%   | 93%         | 99%            |
| 16   | 2       | 29062     | 29951       | 8%   | 97%         | 95%            |
| 17   | 3       | 11110     | 9972        | 13%  | 88%         | 98%            |
| 18   | 6       | 7120      | 5938        | 17%  | 83%         | 100%           |
| 20   | 3       | 21064     | 18288       | 13%  | 87%         | 100%           |
| 21   | 5       | 55054     | 50630       | 17%  | 88%         | 95%            |
| 23   | 6       | 34757     | 23981       | 32%  | 69%         | 100%           |
| 24   | 5       | 9685      | 9106        | 13%  | 91%         | 96%            |
| 26   | 7       | 41558     | 39704       | 10%  | 93%         | 97%            |
| 27   | 7       | 43204     | 47600       | 20%  | 95%         | 86%            |
| 28   | 9       | 70340     | 55388       | 27%  | 76%         | 96%            |
| 31   | 3       | 46646     | 44133       | 17%  | 89%         | 94%            |
|      | 4.9     | 522320    | 475574      | 16%  | 88%         | 97%            |

Calculating by haul, the weighted effect of the most abundant species improves the final result.













- Promising results, but further research is needed.
- The main obstacle is the high overlap of the fish on the conveyor belt → Develop a mechanical fish separation system + collaboration of crews.



WAPE full hauls

Overlap

80%

70%

- Increase and improve the catalog of annotations by incorporating samples with a complete and balanced distribution by species and length.
- Improve and incorporate the latest advances in DL recognition algorithms.
- More tests on commercial ships.















TO INTENSIVELY TEST OUR iOBSERVER2.0 ON REAL FISHING CONDITIONS – GALICIAN **BOTTOM TRAWLER** 



















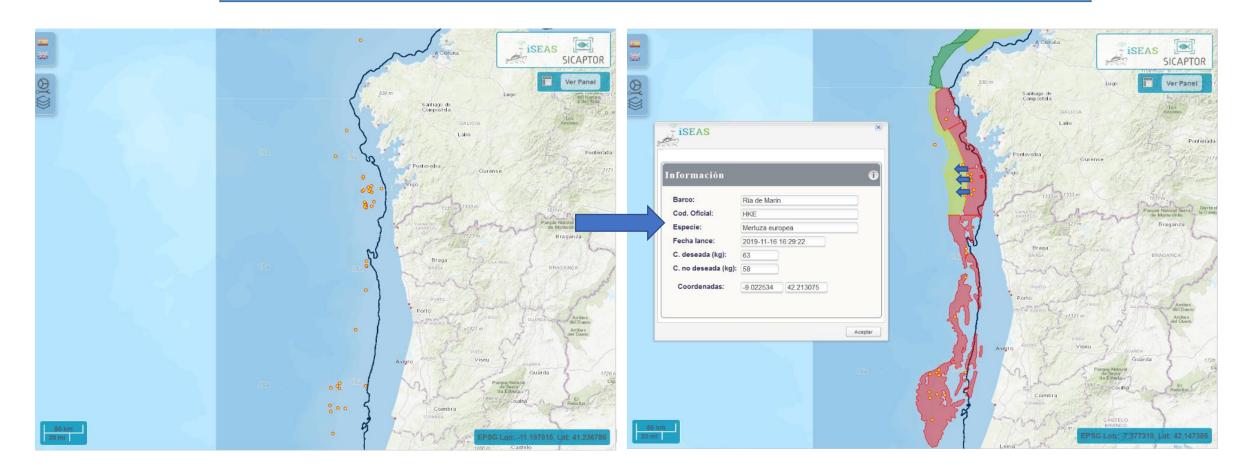



















#### WHAT ARE DOING WITH THE FISHING/TOTAL CATCH DATA? – OUR PROPOSAL





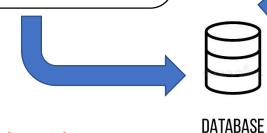



















DEA / iOBSERVER2.0
Data Catch Declaration
Daily Download
Daily Update



Confidentiality

Anonymous data
Discard percentage
Low size percentage
Other









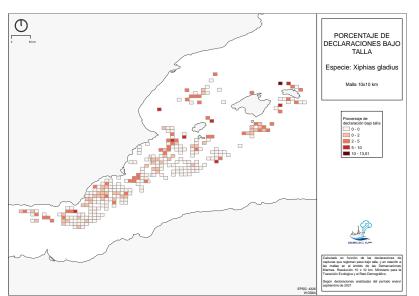


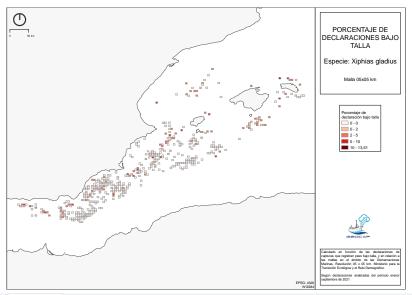


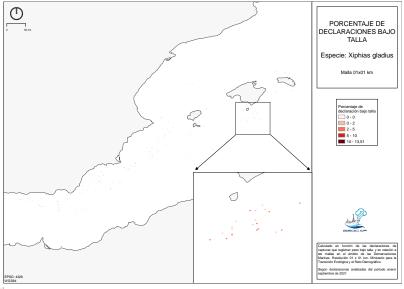

**GEOPORTAL - SDI** 



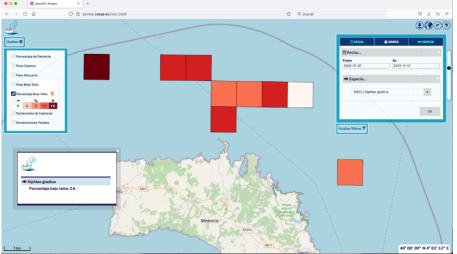

















Dates: 1/1/2021-17/11/2021

**Species: SWO** 

**Percentage under MCRS** 

Grid: 5km x 5km





MINISTER**I**O











# 1ST INTERNATIONAL SYMPOSIUM ON CATCH IDENTIFICATION TECHNOLOGIES Bergen (Norway) - November, 1<sup>st</sup>-3<sup>rd</sup>





# THANK YOU VERY MUCH FOR YOUR ATTENTION

This work has been carried out in part within the framework of the Agreement between the Ministry of Agriculture, Fisheries and Food and the State Agency Spanish Council for Scientific Research (IEO-CSIC), to promote fisheries research as a basis for sustainable fisheries management.





@ltaboadaantelo

#PlanDeRecuperacion #NextGenerationEU







DE CIENCIA





