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Abstract: This article presents an approach to address the problem of localisation within the au-
tonomous driving framework. In particular, this work takes advantage of the properties of polytopic
Linear Parameter Varying (LPV) systems and set-based methodologies applied to Kalman filters to
precisely locate both a set of landmarks and the vehicle itself. Using these techniques, we present
an alternative approach to localisation algorithms that relies on the use of zonotopes to provide a
guaranteed estimation of the states of the vehicle and its surroundings, which does not depend on
any assumption of the noise nature other than its limits. LPV theory is used to model the dynamics
of the vehicle and implement both an LPV-model predictive controller and a Zonotopic Kalman
filter that allow localisation and navigation of the robot. The control and estimation scheme is
validated in simulation using the Robotic Operating System (ROS) framework, where its effectiveness
is demonstrated.

Keywords: autonomous driving; LPV modelling; optimal estimation; interval methods

1. Introduction

In the last few years, there has been a strong development in the automotive area
towards making cars autonomous. A vast number of lines of research can be found,
covering the perception of the environment to control strategies that drive the car through
a given environment. In this work, the autonomous driving problem is narrowed, focusing
on the localisation of the vehicle. From the control perspective, one of the most interesting
techniques in autonomous driving is Model Predictive Control (MPC). We aim to use this
technique and complement it with an appropriate localisation algorithm; thus, the work
from Alcalá et al. [1], a state-of-the-art LPV-MPC, was used as the control technique. This
decision was motivated by the promising results obtained in the past with the mentioned
control technique, which are enhanced through the application of LPV models, allowing
solving the optimisation problem in a linear manner.

The purpose of this paper is to enhance the reliability of localisation algorithms by
means of introducing interval calculus in the estimation, motivating the usage of Zonotopic
Kalman Filters (ZKF), as presented in Combastel [2], which were extended to the LPV
framework in this work. Similar techniques have already been explored; for instance,
Yu et al. [3] used ellipsoids instead of zonotopes, proving an enhanced performance with
respect to classical Kalman filters. It can be seen that the main advantage of this line of
work is that by dealing with both noise and disturbances in an interval manner, there is no
need to make any assumption regarding their nature, which leads to systems that behave in
a guaranteed manner as long as they are bounded, this being a more realistic restriction to
meet in real applications. To our knowledge, this is the first study using LPV and dynamic
models in a set-based manner within the autonomous driving localisation problem.
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This paper presents a control estimation architecture for solving the autonomous
driving problem in an unknown environment, taking advantage of optimal control the-
ory. As the purpose of this research does not include the development of an exploration
algorithm, the proposed scheme is integrated with a spline-based path planning module,
presented in Alcalá et al. [1] and tested in a simulated scenario using ROS.

2. Related Work

The localisation problem has been widely studied within the robotics field, and it is still
an ongoing problem. However, it is worth noting that the main focus of the current research
is on solving the feature detection, while applying well-known Kalman filters, Monte
Carlo methods, or some of their variations, as presented in Singandhupe and La [4]. These
techniques can be used with a wide variety of sensor arrays; for instance, Ramesh et al. [5]
relied on using point cloud data to perform Simultaneous Localisation And Mapping
(SLAM), while Bhamidipati and Gao [6] merged the information from both the camera
and GPS, using zonotopes to enhance the robustness of the estimation. In another line of
work, we can see that other research works aimed to isolate the localisation problem and
used previously computed maps to simplify the problem. For instance, Wan et al. [7] used
Kalman filters to fuse the data from GNSS, LiDAR, and an inboard sensor rig to locate the
vehicle in a known environment.

This research was performed from a control systems point of view; thus, all the
considerations related to sensing and computer vision are considered solved, even though
they are under development. As presented in Cadena et al. [8], most of the localisation
techniques implemented in the state-of-the-art approaches heavily rely on probabilistic
Kalman filters or their variations, some of the most-popular implementations being the
Extended Kalman filter (EKF), as e.g., the one proposed in Paz et al. [9], or FastSLAM, as for
instance, the work of Roh et al. [10], which relied on a combination between Monte Carlo
sampling methods and the EKF. Another research line approaches the estimation problem
not from the probabilistic point of view, but based on interval calculus, some examples
being Mustafa et al. [11] and Fabrice et al. [12]. Moreover, an interval version of the particle
filter was proposed by [13], exploring how set theory can be used to enhance the robustness
of the algorithm through applying the q-satisfied intersection. More recently, we have
seen how zonotopes can be applied in manipulators to reduce the inherent uncertainty of
probabilistic models, leading to more consistent estimates in Li et al. [14].

In terms of addressing the inherent linearisation problem in most of the SLAM algo-
rithms, we can see that there have been attempts at solving it with similar techniques to
the LPV approach proposed in this work; for instance, Guerra et al. [15] applied a similar
approach to the nonlinear kinematic model of a tricycle robot; in another line of work,
Pathiranage et al. [16] used fuzzy logic to address the nonlinearity of the sensor models.
On the other hand, we can see how model switching can also be used to enhance the
performance of the system when facing variable noise conditions, as can be seen in [17].

3. Background Material

In this section, the preliminary knowledge required for the formulation of the set-based
state estimation scheme proposed in this paper is introduced. Firstly, the basic zonotope
operations are presented, and secondly, a reduction method to address dimensionality
issues is explored.

3.1. Zonotopes

Zonotopes are a class of convex polytopes defined as p-dimensional hypercubes in an
Rn space, formed by a centre, cz, and a radius matrix, Rz:

[Z] = cz + Rz (1)

In the following, the most relevant properties used can be found, as presented in
paper [18]:
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1. The sum of two zonotopes is denoted as the Minkowski sum, and for z1 and z2:

[Z3] = [Z1] + [Z2] = cz3 + Rz3 (2)

where

cz = cz1 + cz2 Rz3 = [Rz1 Rz2 ]

2. A unitary zonotope is defined by R = I with appropriate dimensions.
3. The convex hull of a zonotope is defined as the smallest centred interval vector

containing Rnxp.
R = rs(R) (3)

where rs() denotes a row sum operator, which generates a diagonal matrix, whose
elements are defined by:

rs(R)ii =
p

∑
j=1
|Rij| (4)

The motivation behind using these types of sets is that their basic operations can be
easily handled as simple matrix manipulation, which ensures low computational costs
when operating with them.

A visual representation of a zonotope can be found in Figure 1, obtained from [19]. It
can be seen that a set in the space is approximated by a polytope, represented by using both
cz and Rz, which are the central point of the polytope and its shape. In this way, we can
apply the numerical tools presented in this section to propagate a given initial set under
given conditions, being the robot inputs and the noise limits of the system. In this particular
representation, we would expand the shape over time, generating a bounded set for each
time instant k that encloses all the possible states of the system.

Figure 1. Graphical representation of a zonotope.

3.2. Dimensional Reduction of a Generation Matrix

As can be seen in the previous section, consecutive operations with zonotopes might
lead to arbitrarily large matrices, which makes the implementation of a reduction strategy
necessary. The algorithm used relies on a heuristic presented in [18] and is formalised in
Algorithm 1.

Algorithm 1 Dimensional reduction of a generation matrix.
1: Define d, stating the maximal zonotope complexity
2: Sort the column vectors R in decreasing order based on their euclidean norm, leading
to:

R = [Q1 . . . Qd−2Qd−1Qd]

3: Replace each set [Qd−1Qd] by its interval hull.
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4. Modelling

The vehicle used to implement the proposed algorithms is a 1:10 RC Car designed
by the University of Berlin. It has been designed to allow an autonomous navigation
and mapping by having a LiDAR, depth cameras, encoders, an IMU, and a GPS module.
Furthermore, the vehicle can be actuated through a steering servo drive and a DC motor.

Due to the nature of the algorithms, a mathematical formulation of the behaviour of the
system is required. In this section, the estimation model is presented. Firstly, the equations
of the model are introduced, and secondly, those expressions are reformulated in an LPV
manner. Note that both the vehicle and landmark behaviour are treated independently and
ultimately are merged into a unique LPV model.

4.1. Nonlinear Vehicle Model

In this work, a dynamic bicycle model based on the approximation of a four-wheeled
vehicle into a two-wheeled one is used, as proposed in [1]. This approach analyses the forces
applied to the vehicle and derives a set of equations describing the dynamic behaviour of
the system. The resulting equations are reformulated as a continuous time nonlinear model:

ẋ = f (x, u) (5)

where the state and control vectors, respectively, are defined as

x =



vx
vy
ω
x
y
θ

, u =

[
δ
a

]
(6)

Applying the bicycle model formulation leads to:

ẋ = vx cos θ − vy sin θ

ẏ = vx sin θ + vy cos θ

θ̇ = ω

v̇x = amotor − Fd f +
−Fy f sin δ

m
+ ωvy

v̇y =
Fy f cos δ + Fyr

m
−ωvx

ω̇ =
Fy f a cos δ− Fyrb

I

(7)

where
Fy f = C f α f α f = δ− atan(

vy + aω

vx
)

Fyr = Crαr αr = atan(
bω− vy

vx
)

(8)

Additionally, a friction term Fd f is introduced to model the influence of the static
friction force and drag force that act to oppose the movement of the vehicle. µ, ρ, and g are
the static friction coefficient, the air density at 25 ◦C, and the gravity, respectively. Cd is the
product of the drag coefficient and vehicle cross-sectional area.

Fd f =
1
2 Cdρair A f (vx)2 + µmg

m
(9)

State variables vx, vy, and ω represent the body frame velocities, i.e., linear in x, linear
in y, and angular velocities, respectively. States x, y, and θ represent the world frame
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position coordinates as translations in both the x and y axis and a rotation with respect
to the z axis. The control variables δ and a are the steering angle at the front wheels and
the longitudinal acceleration vector on the rear wheels, respectively. Fy f and Fyr are the
lateral forces produced in the front and rear tires, respectively. Front and rear slip angles
are represented as α f and αr, respectively, and C f and Cr are the front and rear tire stiffness
coefficients. m and I represent the vehicle mass and inertia, and l f and lr are the distances
from the vehicle centre of mass to the front and rear wheel axes, respectively. All the
dynamic vehicle parameters are properly defined in Table 1.

Table 1. Dynamic model parameters of the vehicle.

Parameter Value Parameter Value

l f 0.125 m lr 0.125 m
m 1.98 kg I 0.03 kg m2

C f 68 Cr 71
µ 0.05 ρ 1.225 kg m3

CdA 0.03 m2 g 9.8 m
s2

4.2. LPV Modelling of the Vehicle

An LPV model relies on redefining the expression presented in (5) by means of
embedding the nonlinear nature of the equations into matrices that depend on a set of
scheduling variables φ according to [20]:

xk = Arobot(φ)xk−1 + Brobot(φ)uk−1 + wk

yk = Crobot(φ)xk + vk
(10)

φ being a set of variables known as scheduling variables, which modify the value of the A,
B, and C matrices to adapt them to the current vehicle operating point.

This technique allows expressing the system as linear with respect to both states
and control actions by embedding the nonlinearities in the system matrices. In general,
the system keeps being nonlinear; however, by instantiating φ at a given time instant, it is
possible to extend classical control techniques (as, e.g., LMIs) designed for linear systems:

Arobot(φ) =



A11 A12 A13 0 0 0
0 A22 A23 0 0 0
0 A32 A33 0 0 0

cos(θ) − sin(θ) 0 0 0 0
sin(θ) cos(θ) 0 0 0 0

0 0 1 0 0 0

 , (11a)

Brobot(φ) =



− 1
m sin δC f 1

1
m cos δC f 0
1
I cos δC f a 0

0 0
0 0
0 0


, (11b)
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being

A11 = −µ A12 =
C f sin δ

mvx
(11c)

A13 =
C f a sin δ

mvx
+ vy A22 = −

Cr + C f cos δ

mvx
(11d)

A23 = −
C f a cos δ− Crb

mvx
− vx A32 = −

C f a cos δ− bCr

Ivx
(11e)

A33 = −
C f a2 cos δ + b2Cr

Ivx
(11f)

where the vector of scheduling variables φ is defined by a combination of states and
control inputs.

φ =
[

vx vy cos(θ) sin(θ) δ
]T (12)

This formulation needs to be slightly modified to be used in further sections of this pa-
per, as a discrete model is required. The discretisation procedure is trivial by approximating
the derivative terms by their finite differences.

4.3. Landmark Modelling

In this section, the observation model of the system is derived considering that the
vehicle provides us with the following measurement, m, which can be unequivocally related
to the landmark i:

mi = [ri(k), α1
i (k)]

T (13)

ri(k) being the distance between the centre of the vehicle and the landmark and α
j
i a

bearing measurement. In order to simplify the definition of an observation model, these
measurements are expressed as Cartesian coordinates related to the COG of the robot. This
approach leads to

xr
lmi

(k) = −xrcos(θ)− yrsin(θ) + xw
lmi

cos(θ) + yw
lmsin(θ) (14a)

yr
lmi

(k) = xrsin(θ)− yrcos(θ)− xw
lmi

sin(θ) + yw
lmcos(θ) (14b)

In order to model the behaviour of the landmarks, we need to express the landmarks,
xw

lmi
(k) and yw

lmi
(k), as part of a differential model, which, due to their static nature, have a

zero derivative:

ẋw
lmi

= 0 (15)

ẏw
lmi

= 0 (16)

Finally, this formulation needs to be rewritten as an LPV model, the matrices Almi
, Blmi

,
and Clmi

being defined considering the set of states presented in Equation (17) and N being
the number of landmarks considered by the model:

x = [vx, vy, ω, x, y, θ, xw
lm1

, yw
lm1

, . . . , xw
lmN

, yw
lmN ] (17)

Almi
=

[
0 0 . . . 0 0
0 0 . . . 0 0

]
(18)

Blmi
=

0
...
0

 (19)
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Clmi
=

[
0 0 0 −cos(θ) −sin(θ) 0 cos(θ) sin(θ)
0 0 0 sin(θ) −cos(θ) 0 −sin(θ) cos(θ)

]
(20)

4.4. LPV Modelling of the System

It is straightforward to generate a differential model, as presented in Equation (10)
by considering Equations (11) and (16). The resulting model can be reformulated in an
LPV manner:

A(φ) =


Arobot 0 . . . 0

0 Alm1 . . . 0
...

...
...

...
0 0 . . . AlmN

 (21a)

B(φ) =


Brobot

0
...
0

 (21b)

C(φ) =


Crobot 0 0 . . . 0
01,6 Clm1 0 . . . 0

...
...

... . . .
...

01,6 0 0 . . . ClmN

 (21c)

φ being a new set of scheduling variables,

φ =
[

vx vy cos(θ) sin(θ) δ
]T (22)

Both terms wk and vk are related to the disturbances and sensors, respectively, and
their covariances are defined by Q and R.

Q =


Qrobot 0 . . . 0

0 0 . . . 0
...

...
...

...
0 0 . . . 0

 (23a)

R =


Rrobot 0 . . . 0

0 Ry1 . . . 0
...

...
...

...
0 0 . . . RyN

 (23b)

where Qrobot and Rrobot are the noise covariance matrices associated with the vehicle.
Finally, the state vector is formed by the six original states of the model and two

extra states for each landmark, while the output vector has the five original states and two
additional ones for each landmark:

x = [vx, vy, ω, x, y, θ, xw
lm1

, yw
lm1

. . . , xw
lmN

, yw
lmN

] (24a)

y = [vx, ω, x, y, θ, xr
lm1

, yr
lm1

, . . . , xr
lmN

, yr
lmN

] (24b)

This formulation is dimensionally varying, as in an unknown environment, the number
of observer landmarks is not fixed, which makes it unsuitable with LMI design tech-
niques. A solution to this issue is fixing the number of landmark processes each time
to one and then replacing the information depending on which landmark is observed.
This assumption holds as long as we consider the vehicle position independent of the
landmark measurements.
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5. Localisation Algorithm

In this section, the formulation of a zonotopic observer of an uncertain discrete dy-
namic system is presented, including the algorithm used and its implementation in a
real system.

5.1. Algorithm

The aim of using zonotopic observers is the possibility of expressing the prediction
as a region in an Rnx space defined by a zonotope. This region embeds all the possible
states reachable by the robot given certain bounds on both measurement and system noise.
In this approach, the model can be written as follows:

xk = Axk−1 + Buk−1 + Ewwk, (25a)

yk = Cxk + Evvk (25b)

As this is a set-based approach, both noise sources are defined as bounded by a unitary
hypercube centred at the origin:

w = 〈0, Inw〉, (26a)

v = 〈0, Inv〉 (26b)

Similarly, the set of states is represented using zonotopes.

X = 〈cio
x , Rio

x 〉 (27)

The equations of this observer can be derived by defining a Kalman filter where the
Gaussian pdfs are replaced by zonotopic sets.

x̂k+1 = Ax̂k + Buk + Ewwk + L(yk − ŷk) (28a)

ŷk = Cx̂k + Evvk (28b)

Then, by substituting Equation (28a) in Equation (28b), the expression of x̂ can be eas-
ily generated:

x̂k+1 = (A− LC)x̂k + Buk + Ewwk +−LEvvk + Lyk (29)

Finally, by applying the properties of zonotopic operators, the expressions of both the
centre and generator matrix are defined as follows:

cio
x = cio

p + L(yk−1 − Ccio
p ), (30a)

Rio
x = [(I − LC)Rp

io↓ − LEv] (30b)

where:

cio
p = Acio

x + Buk−1, Rio
p = [ARx

io↓Ew] (31)

In this set of equations, the operator ↓ is used to symbolise a dimensional reduction of the
zonotope. The presented structure requires the computation of an observer gain, which can
be obtained by minimizing the FW radius of 〈cio

x p, Rio
x p〉. This was covered in depth in [2].

5.2. Design Technique

The gain of the observer is computed by exploiting the LPV formulation of the system.
One of the advantages of this type of formulation is that it allows designing the optimal
Kalman gain at each of the vertices defined by extreme values of the scheduling variables
(see Table 2).
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Table 2. Scheduling variables’ limits.

Scheduling Variable Minimum Maximum

Vx 0.1 3.5
Vy −2 2

cos(θ) −1 1
sin(θ) −1 1

δ −0.3 0.3

Defining those limits leads to the computation of 25 steady-state Kalman gains, which
are derived by means of the LMI in Equation (32), presented in [21]. It is remarkable that
the purpose of this computation is to derive optimal estimation gains for the estimator
and, furthermore, ensure the stability of the algorithm by means of embedding stability
conditions inside within the following LMI:

−Y YAi −WT
i Ci YQT Wi

AT
i Y− CTW −Y 0 0

QY 0 −I 0
WT 0 0 −R−1

 < 0, (32a)

[
γI I
I Y

]
> 0 (32b)

The solution of this LMI is obtained by finding Y and Wi for each vertex i. Finally, each
of those gains can be computed as Li = (WiY−1)T . Then, a Kalman gain can be derived at
each operational point by applying a weighted interpolation:

µi(φ) =
N

∏
j=1

ξ(αj, β j) (33a)

αj =
φj − φj(k)

φj − φj
(33b)

β j = 1− αj (33c)

ξ being the function computing all possible combinations and N the number of scheduling
variables in φ. This allows the definition of L as

L(φ) =
2N

∑
i=1

µi(φ)Li (34)

5.3. Designing towards a Practical Implementation

It is clear that due to the nature of the system, there are two subsystems clearly differ-
entiated, which represent both kinematic and dynamic behaviours. During preliminary
experiments, it was found that the rate at which this state evolves is dramatically different,
and in order to maintain a proper estimation of the kinematic states, the algorithm had to
run at a frequency of around 200 Hz. This could lead to performance problems in certain
robots; thus, it was decided to explore a cascade architecture, which allows considering
both the dynamics and kinematics of the vehicle independently.

In order to do so, firstly, the state vector defined in Equation (24) needs to be split in
two parts, the dynamic system being defined by

xd = [vx, vy, ω] (35a)

yd = [vx, ω] (35b)
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and the kinematic dynamic system being defined by

xk = [x, y, θ, xw
lm1

, yw
lm1

, . . . , xw
lmN

, yw
lmN

] (36a)

yk = [x, y, θ, xr
lm1

, yr
lm1

, . . . , xr
lmN

, yr
lmN

] (36b)

This implies a redefinition of the matrices A, B, and C for each subsystem considering as
the inputs of the dynamic system the outputs of the kinematic one. Those matrices are
redefined as follows:

Ad = A[1 : 3, 1 : 3] Bd = B[1 : 3, 1 : 2] Cd = C[1 : 3, 1 : 3] (37)

Ak = A[3 : m, 3 : m] Ck = C[1 : 3, 1 : 3] (38)

Bk =



cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1
0 0 0
0 0 0
−1 0 0
0 −1 0


(39)

m being the dimension of the A matrix.
Once both subsystems have been uncoupled, it is trivial to apply the design method-

ology presented in Section 5.2. Then, they are implemented in a cascade manner, taking
into account the need to have a temporal correspondence between both of them, ensur-
ing that the estimation of the dynamic states is aligned with the measurements of the
kinematic ones.

6. Implementation

In this section, the implementation of the proposed navigation algorithm within the
autonomous driving framework is proposed. Due to the nature of the problem that we
wanted to address, the whole system was implemented in ROS. This ensured a proper
simulation and the scalability of the results into a real platform, as it is trivial to port the
implementation of the codes into the physical RC Car. Furthermore, it provides a realistic
temporal behaviour of the detection hardware. A scheme of the proposed platform is
represented in Figure 2, which represents the layout of the experiments performed in
this work.

Figure 2. Proposed solution outline.

It can be seen that the system is divided into three main parts: control, simulation, and
localisation. Each of these parts is described in the following.
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6.1. Experimentation Environment and Simulation

The simulation platform relies on a numeric model of an RC Car, which simulates the
dynamic behaviour of the robot, allowing the navigation through the scenario presented in
Figure 3, with a representation of both the path to be followed and the landmark. In the
typical SLAM problem, where an exploration algorithm is used to map the unknown
environment, it is decided to use a known track and then locate the landmarks along
the path.

Figure 3. Simulation environment (small dark squares represent the landmarks).

The resulting system relies on a numerical simulation of the dynamical system using
the model presented in Section 4 with noise added to both the control actions and the model
states. This computation updates the position of the robot in the Gazebo environment.
On top of that, we relied on gazebo to simulate landmark detection using a virtual camera
and fiducial markers. The motivation behind this dual scheme is that the numeric model
used to simulate the vehicle was extensively tested and tuned in [1]. Furthermore, we
have perfect knowledge and control over the noise applied to the system, which is an
important requirement due to the nature of the algorithms presented. The camera noise
defined for this experiment was sampled from a uniform distribution bounded to ±0.1 m.
Noise involved in the system can be found in Equation (40), Ev being associated with the
measurements and Ew associated with the model.

Ev =
[
0.1 0.16 0.06 0.06 0.17

]
(40a)

Ew = 10−3[0.2 0.18 1.40 0.13 0.16 0.068
]

(40b)

6.2. Control and Planning

The controller used to drive the car through the world presented in Section 6.1 is
an MPC controller that uses an error-based dynamic model, as presented in [1], along
with a spline-based planner, which exploits the fact that the car can be placed within the
known track while detecting and estimating the position of each landmarks. This planning
approach was covered deeply in [1].

6.3. Localisation

In this section, the implementation of the estimator presented in Section 5.1 is ex-
panded into a localisation approach considering three different scenarios. On the one hand,
we implemented an estimation that deals with the dynamic states of the system, which
operates by solving Equations (29) and (30) with the subsystem associated with the velocity
of the system.

On the other hand, we considered the kinematic estimation connected in a cascade
framework, which deals with both robot and landmark position. Firstly, if no landmark
is detected, the localisation algorithm behaves as a Kalman filter, using the information
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available from the on-board sensors, correcting the information provided by the system
model without considering the terms that involve the landmark detection.

Secondly, if a non-registered landmark is detected, its position is set by consider-
ing the measurement as the real position of the system and instantiating it by applying
Equation (14). Finally, if a registered landmark is detected, the model is updated accord-
ingly, and then, the position of both the landmark and vehicle is updated by merging both
the camera info and the rest of the on-board sensors. This strategy is stated in Algorithm 2.

Algorithm 2 Landmark estimation algorithm.
Initialisation
while Robot is moving do

dataobs ← Observation
datamov ← Odometry
if Landmark detected then

while Landmark list 6= empty do
if New landmark detected then

Add to the map the new location
end if
if Old landmark detected then

Load into the state vector the old location
Update system LPV matrices (22) )
LPV-KF← xk, uk
LPV-KF→ xk+1
Store new estimation

end if
end while
if No landmark detected then

xk = xk[1 : 6]
LPV-KF← xk, uk
LPV-KF→ xk+1

end if
end if
Update robot position, and wait until next movement

end while

7. Experiments and Results

This section is devoted to the assessment of the proposed approach. The experiment
consisted of two complete laps along the circuit proposed in Figure 3. The role of the control
is to complete the laps tracking a certain cruising speed. On the other hand, the localisation
algorithm provides an estimation of both the robot and landmarks detected along the path
along with a region where the position of the robot is considered to be guaranteed.

During this experiment, both the control and estimation were decoupled in order to
ensure that they did not interfere each other. It is worth noting that perfect data association
was assumed; thus, we considered that the only source of uncertainties was the different
noises present in each sensor and the non-perfect modelling, which are both defined as
bounded without any prior knowledge of any distribution. Finally, a comparison between
the proposed algorithm and a widely used localisation algorithm, the Extended Kalman
Filter (EKF), is provided. It is worth noting that in order to keep a proper relation between
both strategies, the EKF implementation was performed using LPV techniques in order to
avoid Euler discretisation.

The EKF for this comparison was implemented with the same structure presented in
Algorithm 2, the only difference being the state estimation, which is generated by applying
Equation (41), where A and C are the model matrices, Q and R are the tuning parameters,
and L is the gain matrix to be applied in the estimation. Predict:
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x̂−k = Ax̂−k−1 + Buk−1 (41a)

P−k = APk−1 AT + Q (41b)

Update:
Lk = P−k CT(CP−k CT + R)−1 (41c)

x̂k = x̂−k + Lk(yk − Cx̂−k ) (41d)

Pk = (I − LkC)P−k (41e)

Firstly, in Figures 4 and 5, the behaviour of the kinematic and dynamic variables of
the system can be seen, the performance of both implementations being very similar, as in
terms of the RMSE, the EKF and its set-membership version both present similar values,
as can be seen in Table 3. This phenomenon was expected, as according to Combastel, both
estimators are equivalent as long as certain conditions are met. However, as the noise
distributions are not assumed when applying intervals, the resulting region will bound the
state of the system under any circumstance, which does not apply to an LPV EKF.

Table 3. Error comparison.

vx vy w x y θ

LPV EKF 0.0066 0.0747 0.0065 0.0019 0.0019 0.0010
ZKF 0.0088 0.0799 0.0066 0.0020 0.0021 0.0011

Figure 4. Kinematic states.

Secondly, we can see the resulting estimation of all the landmarks detected during the
path; it can be seen that the discussion presented before holds for the rest of the system,
and in terms of accuracy, it presents the same behaviour. It is worth noting that due to the
similarities between each figure, only one landmark was included, which can be found in
Figure 6, while the general behaviour can be seen in Figure 7.

When comparing both implementations, it can be said that the most remarkable
difference between both approaches is that the region that restricts the position does not
depend on any assumed property of the noise other than its bounds, overcoming in this
way one of the limitations of probabilistic implementations of the EKF.
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Figure 5. Dynamic states.

Figure 6. Landmark estimation.

In addition, tests in different conditions to ensure the viability of the algorithm were
performed. In particular, we tested how the noise conditions may degrade the performance
by doubling the noise levels in the landmark location and diminishing the number of
landmarks in the path traversed from seven to four. As can be seen in Table 4, where the
results previously shown have been added as the baseline case, for all tested scenarios, the
performance was similar, showing the robustness of the algorithm in different conditions.

Table 4. Error in different scenarios.

vx vy w x y θ

Baseline case 0.0066 0.0747 0.0065 0.0019 0.0019 0.0010
Noise doubled 0.0071 0.1147 0.0074 0.0021 0.00264 0.0012

4 landmarks 0.0072 0.0676 0.0082 0.0041 0.0034 0.0016
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8. Conclusions and Future Work

In this paper, a zonotopic LPV Kalman filter was proposed as an alternative to the
classical EKF for SLAM applied to autonomous vehicles. The proposed approach was able
to provide a robust estimation in scenarios where, by construction, probabilistic methods
such as the EKF should find their performance trimmed while providing a certain bound
to the states that can be used to enhance security in autonomous navigation. The results
achieved motivate the usage of interval over probabilistic techniques within the framework
studied, as being more flexible in terms of modelling, this ensures proper performance
given any bounded noise.

The work presented in this paper opens the door towards enhancing the security of
algorithms used within the autonomous driving field. As seen in the literature, most of the
state-of-the-art techniques rely on assumptions and relaxations on the characterisation of
both the vehicle and the noise, while we proposed a novel approach that is less constraining
in this sense. On the one hand, applying LPV modelling allows having an exact linear
representation of a nonlinear system. On the other hand, we were able to treat noise by
only assuming known bounds. Furthermore, having guaranteed knowledge about the
maximum and minimum state values at each time instant allows the design of navigation
techniques that can traverse a given path while mathematically ensuring that no collisions
will happen as long as the obstacle is not within the bounds of the estimation.

Along the development of this research, different lines of investigation out of the
scope of the initial hypothesis appeared, and we consider the following to be the most
interesting ones:

• Design control techniques that consider the intervals generated by the localisation to
enhance the application safety.

• Create a framework able to adapt itself towards certain sensor failures by exploring
localisation within the fault detection field.



Sensors 2022, 22, 3672 16 of 17

• Explore how data-based algorithms could be used to improve the modelling of both
the robot and noise.

• Evaluate the performance of the localisation algorithms under extreme circumstances.

In conclusion, we believe that the viability of enhancing probabilistic techniques
by applying interval calculus, in particular zonotopes, was assessed and proven to be
more flexible in terms of noise definition than other techniques in the field. In addition,
the capability of both modelling and designing control estimation algorithms by means of
applying LPV techniques is a feasible solution to deal with nonlinear systems within the
autonomous driving field.
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