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Abstract: The original Friedmann (1922) and Lemaitre (1927) cosmological model corresponds to a
classical solution of General Relativity (GR), with the same uniform (FLRW) metric as the standard
cosmology, but bounded to a sphere of radius R and empty space outside. We study the junction
conditions for R to show that a co-moving observer, like us, located anywhere inside R, measures
the same background and has the same past light-cone as an observer in an infinite FLRW with
the same density. We also estimate the mass M inside R and show that in the observed universe
R < rS ≡ 2 GM, which corresponds to a Black Hole Universe (BHU). We argue that this original
Friedmann–Lemaitre model can explain the observed cosmic acceleration without the need of Dark
Energy, because rS acts like a cosmological constant Λ = 3/r2

S. The same solution can describe the
interior of a stellar or galactic BHs. In co-moving coordinates the BHU is expanding while in physical
or proper coordinates it is asymptotically static. Such frame duality corresponds to a simple Lorentz
transformation. The BHU therefore provides a physical BH solution with an asymptotically deSitter
metric interior that merges into a Schwarzschild metric exterior without discontinuities.

Keywords: cosmology; dark energy; general relativity; black holes

1. Introduction

A Schwarzschild black hole (BH) metric (SBH, in Equation (A12)) corresponds to a
singular object of mass M, whose event horizon, rS ≡ 2 GM, prevents getting information
from the interior r < rS to any exterior observer. Physically, a singular point does not
make much sense. The concept of physical infinity is not a scientific one if science involves
testability by either observation or experiment [1]. So if the SBH is not a proper physical
solution all the way to r = 0, are there other physical solutions for the metric inside
observed BHs? The internal metric and BH content are in fact important to understand
gravitational wave emission, BH interactions, BH formation or the origin of BHs as dark
matter candidates (see Refs. [2,3] and references for some discussion). We look here for an
alternative solution to the SBH interior, defined as an object of energy-mass M and size
0 < R < rS that reproduces the SBH metric, i.e., it is approximately empty, on the outside
r > rS. The corresponding mean energy density at R = rS = 2 GM, as measured by an
observer outside (in flat empty space) is:

ρBH =
M
V

=
3r−2

S
8πG

. (1)

regardless of its contents. Even when the BH is static outside, a static solution for the BH
interior cannot exist for regular matter or radiation because it requires a minimal Buchdahl
radius [4]: R > 9

8 rS, which is larger than rS and it is therefore not a BH (the mass inside
rS is smaller than rS/2G, so there is no event horizon). However, objects with external
mass M and sizes R = rS have been observed. What is then inside a BH? For a perfect
fluid, to achieve such a density, the radial pressure inside a BH needs to be negative (see
Ref. [5] and references therein). Cosmologist are used to this type of fluids, which are called
Quintessence, Inflation, or Dark Energy (DE). Could the inside of a BH be DE [6]? Could it
also be an expanding universe, like ours? If so, what can this tell us about our universe?
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Here, we explore this idea more generally: a non static but uniform GR solution inside
a finite R that we call the FLRW cloud (or FLRW*) based on the Lemaitre [7] cosmological
model. As it is well known (see, e.g., Ref. [8]), it was Lemaitre who first published and
realised the meaning and implications of the distance-redshift relation (ṙ = Hr) that
made Hubble famous. Lemaitre noticed that this was a consequence of Einstein’s new
theory of gravity described by the (later known as) Friedmann–Lemaitre–Robertson–Walker
(FLRW) flat metric in co-moving coordinates ξα = (τ, χ, θ, δ), which corresponds to an
homogeneous and isotropic (usually assumed infinite) space-time:

ds2 = fαβdξαdξβ = −dτ2 + a(τ)2
[
dχ2 + χ2dΩ

]
, (2)

For a perfect fluid with density ρ and pressure p, the solution to GR field equations is
well-known. The different energy conservation and acceleration equations reduced to (see
Equation (10).73 in Ref. [9]):

H2 ≡
(

ȧ
a

)2
=

8πG
3

ρ = H2
0

[
Ωma−3 + ΩRa−4 + ΩΛ

]
, (3)

where ρc ≡
3H2

0
8πG and ΩX ≡ ρX

ρc
, where Ωm and ΩR represents the current (a = 1) matter

and radiation density, respectively, and Ωm + ΩR + ΩΛ = 1. The cosmological constant
term ΩΛ results from: ρΛ ≡ Λ

8πG . This is the standard cosmological (ΛCDM ) model. Given
ΩX , we can solve Equation (3) to find a(τ). In this paper, we will use these same equations
to make the two points below, which will be discussed in more detail in the corresponding
section as shown:

Section 2: A FLRW cloud (FLRW*) is also a GR solution. The FLRW metric with a finite
spherical volume of proper radius r ≡ aχ = R is also a GR solution. When FLRW* is
inside its Schwarzschild radius R ≤ rS and the space outside can be approximated as
empty, this is a BHU. This solution for a BH interior is different from the SBH solution.

Section 3: A BHU without DE has the same observable background as ΛCDM . The ob-
served cosmic acceleration can be understood as resulting from a BHU without DE,
where rS = 2 GM acts like as an effective Λ term, with Λ = 3/r2

S. A co-moving
observer, anywhere within R in a BHU, sees the same background as an observer in
the ΛCDM with the same density.

Sections 2 and 3 are dedicated to each of the points above. As we will show, the ex-
istence of the FLRW* solution is not a new result but its interpretation in the light of the
observed cosmic acceleration and the BHU is new. In Section 2.2 we present a new calcula-
tion of junction conditions for the FLRW* space that will allow us to address the second
point above, which is the main result presented in this paper. We end with a discussion
and comparison with literature in Section 4 and leave the notation and known solutions for
the Appendices A–D.

2. The FLRW Cloud (FLRW*)

The FLRW* metric is given by the same flat FLRW metric in Equation (2) with the
constraint r = aχ < R. We will approximate r > R to be empty, like we do for local
solutions of regular stars or BHs in our universe. The FLRW* solution is then globally
inhomogeneous and localized. There are several ways to show that FLRW* is an exact
solution to GR equations. Here we present two alternative derivations. The first one is
based on known classical literature of GR solutions. The second one is an explicit derivation
using junction conditions for the join manifold, where we will find what are the constraints
on R(τ) for the solution to work as a function of proper co-moving time. Misner and
Sharp [10] already studied these junction conditions in Tµν back in 1964 and concluded
that we can smoothly join the FLRW* metric with the SBH metric as long as the pressure is
p = 0 at r = R, which is the condition for a constant mass M inside R. As we will argue,
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this p = 0 condition is fulfilled for both the timelike and the null hypersurface of radius
r = R(τ) presented here in Section 2.2. This result will then be used in Section 3 to show
that both the FLRW and the FLRW* models have the same observable universe, despite
the fact that FLRW* is a local solution and the observer could be anywhere, not necessarily
at the centre. In Appendix B we present another way to look at these results based on the
frame duality.

2.1. Classical Solutions

The first evidence for the FLRW* solution in GR comes from the original expanding
universe discovery presented by Lemaitre ([7], English translation [11]). The same FLRW*
solution was published before by Friedmann in 1922 ([12], English translation [13]), who
even estimated M ' 5× 1021M�, close to its observed value today (see Equation (33)).
The special relevance of Lemaitre’s work over Friedmann’s was to connected the FLRW*
solution to the observed expansion law. The infinite FLRW metric can of course be re-
covered in the limit R → ∞ and this has been the model adopted as the standard model
of modern Cosmology. However, the finite cloud was further explored by Tolman [14],
Oppenheimer and Snyder [15], and Misner and Sharp [10]. For a more extended review,
see Ref. [16]. As detailed in Tolman [14] in his Application e), a combination of different
FLRW distributions (with different densities at different radius) is also a solution to GR
field equations. This is a consequence of the corollary to Birkhoff’s theorem [17] for spheri-
cally symmetric GR solutions. This corollary is equivalent to Gauss theorem in classical
mechanics or electromagnetism. For an isotropic energy-mass distribution, the space-time
geometry inside a region of radius R depends only on the content within R (and it is not
influenced by the content outside R). Each sphere r < R evolves with independence of
what is outside r > R. This solution has also been generalized by Vaidya [18] for the
interior of the Schwarzschild metric r < rS and found the particular cases of the FLRW*
and the Schwarzschild (SBH) solutions.

Because R is finite, there is a finite energy-mass M inside R. This can be estimated
using the Hawking quasi-local mass, which reduces to the Misner–Sharp mass in spherical
symmetry [19,20]. For the FLRW* metric the Misner–Sharp mass is (see Appendix D):

M =
∫ χ∗

0
4πR2ρ(τ)

(
∂R
∂χ

)
dχ =

1
2G

R3H2(τ) =
4π

3
R3ρ(τ) (4)

where R ≡ aχ∗ and H ≡ ȧ/a. We can now define the corresponding Schwarzschild radius
rS ≡ 2 GM and ask the following question: is R ≤ rS? If the answer is yes, then the FLRW*
is inside its own gravitational radius rS and the FLRW* metric corresponds to the interior
of a BH, which we call the Black Hole Universe (BHU). We will later see in Section 3 that
this indeed is the situation that corresponds to our observed Universe.

Can the BHU solution be used to described an observed BH? The answer seems
affirmative as the BHU has all the desired BH properties: the SBH metric outside rS and
some energy content inside which is not a singular point. The FLRW* solution has a past
singularity. In part II of this series (paper II from now on) we explore how the BHU could
be formed to avoid such singularity.

2.2. Junction Conditions for FLRW*

We can arrive at the finite FLRW* solution using Israel’s junction conditions [21,22].
We will combine two solutions to Einstein’s field equations with different contents:

ρ(t, r) =

{
ρ inside for V4

− , i.e.,: r < R
0 outside for V4

+ , i.e.,: r > R
. (5)

on two sides (V4
− and V4

+) of a hypersurface junction Σ which is just given by proper
coordinate junction r = R. The inside metric, g−, is the FLRW metric and the outside one,
g+, is the SBH metric. The junction conditions require that the metric and its derivative



Symmetry 2022, 14, 1849 4 of 22

(the extrinsic curvature K) match at Σ. This means that the joint space provides a new
solution to Einstein’s field equations in V4 = V4

− ∪V4
+ (FLRW+SBH). In many situations,

as in the Bubble Universes (see Section 4), this does not work and the junction requires
a surface term (the bubble) to glue both solutions together (see also Ref. [23] for a more
general consideration). We will show that for both timelike and null hypersurface the
junction conditions are satisfied for FLRW+SBH and there are no surface terms. In this
section, we follow closely the notation in Section 12.5 of Ref. [9] with ds2 = gabdxadxb

where a = 0, 1, 2, 3 for the 4D metric and ds2
Σ = hαβdyαdyβ with α = 0, 1, 2 for the 3D

induced metric: i.e., gab restricted to the Σ hypersurface.

2.2.1. Timelike Junction

We start by choosing a timelike hypersurface for Σ, fixed in co-moving coordinates
at some value χ∗. This can be identified with a causal boundary, like the freefall col-
lapse/expansion of a star of fixed mass M or the particle horizon of Cosmic Inflation
χ§ = χ∗ = (ai Hi)

−1, where ai and Hi are the scale factor and Hubble rate when inflation
begins [24]. The spherical shell radius R follows a radial geodesic trajectory in the FLRW
metric. This corresponds to a FLRW cloud of fixed energy-mass M that is expanding or
contracting. The induced 3D metric h−αβ for dyα = (dτ, dδ, dθ) and fixed χ = χ∗, is:

ds2
Σ− = h−αβdyαdyβ = −dτ2 + a2(τ)χ2

∗dΩ2 (6)

The only free variable remaining is τ, the FLRW co-moving time (the angles are free
but they are the same in both metrics, as we have spherical symmetry). For the outside
Schwarzschild frame, the same junction Σ+ is described by some unknown functions
r = R(τ) and t = T(τ), where t and r are the time and radial coordinates in the physical
frame of Equation (A5) of the SBH. We then have:

dr = Ṙdτ ; dt = Ṫdτ, (7)

where the dot refers to derivatives with respect to τ. The induced metric h+ estimated from
the outside SBH metric (in Equation (A12)) becomes:

ds2
Σ+ = h+αβdyαdyβ = −Fdt2 +

dr2

F
+ r2dΩ2

= −(FṪ2 − Ṙ2/F)dτ2 + R2dΩ2 (8)

where F ≡ 1 − rS/R. Comparing Equation (6) with Equation (8), the first matching
condition h− = h+ results in:

R(τ) = a(τ)χ∗ ; FṪ =
√

Ṙ2 + F ≡ β(R, Ṙ) (9)

For any given a(τ) and χ∗ we can find both R(τ) and β(τ). We also want the derivative
of the metric to be continuous at Σ. For this, we estimate the extrinsic curvature K± normal
to Σ from each side of the hypersurface (Σ±) as:

Kαβ = −[∂anb − ncΓc
ab]e

a
αeb

β (10)

where ea
α = ∂xa/∂yα and na is the 4D vector normal to Σ. The outward 4D velocity is

ua = ea
τ = (1, 0, 0, 0) and the normal to Σ− on the inside is then n− = (0, a, 0, 0). On

the outside ua = (Ṫ, Ṙ, 0, 0) and n+ = (−Ṙ, Ṫ, 0, 0). It is straightforward to verify that:
naua = 0 and nana = +1 (for a timelike surface) for both n− and n+. The extrinsic curvature
estimated with the inside FLRW metric, i.e., K− is:

K−ττ = −(∂τn−τ − aΓχ
ττ)eτ

τeτ
τ = 0

K−θθ = aΓχ
θθeθ

θeθ
θ = −aχ∗ = −R (11)
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where we have used Equation (9) and the following Christoffel symbols for the FLRW:

Γτ
ττ = Γτ

τχ = Γχ
ττ = Γχ

χχ = 0 ; Γτ
θθ = a2χ2

∗H (12)

Γχ
τχ = Γτ

χχa−2 = H ; Γχ
θθ = −χ∗

For the SBH metric we have:

Γt
tt = Γr

tr = 0 ; Γr
θθ = −FR ; (13)

Γt
tr = −Γr

rr = Γr
ttF
−2 =

rS
2FR2

which results in K+:

K+
ττ = R̈Ṫ − ṘT̈ +

ṪrS
2R2F

(Ṫ2F2 − 3Ṙ2) =
β̇

Ṙ
K+

θθ = ṪΓr
θθ = −ṪFR = −βR (14)

where we have used the definition of β in Equation (9). In both cases Kδδ = sin2 θKθθ ,
so that K−δδ = K+

δδ follows from K−θθ = K+
θθ . Comparing Equation (11) with Equation (14),

the matching conditions K−αβ = K+
αβ require β = 1, which, using Equation (9) gives:

R =
[
r2

HrS

]1/3
(15)

This reproduces the FLRW energy-mass M inside R in Equation (4). The time equation is:

Ṫ =
1

1− R2H2 (16)

which is the generalization of Equation (A20) for Ḣ 6= 0 and agrees with ∂τt = (1+ 2ΦW)−1

in Equation (A17) for 2ΦW = −H2R2, so it corresponds to a time dilation in the co-
moving frame (ṙ = Hr).

For constant rS the timelike Σ, only works for a dust (p = 0) matter dominated FLRW
metric r2

H ∝ a3, as only in this case Equation (15) agrees with R = aχ∗ with a constant χ∗.
This corresponds to a FLRW dust cloud of fix energy-mass M expanding or collapsing.
This case illustrates well the point we want to make. For p 6= 0 we need to consider a null
junction, which allows for a general H(τ), see Section 2.2.3.

2.2.2. The GHY Boundary Term

The action inside an isolated BH is bounded by the event horizon r < rS and we need
to add the GHY boundary term SGHY to the action in Equation (A4), where:

SGHY =
1

8πG

∮
∂V4

d3y
√
−h K (17)

As explained in Appendix A, we need to add this term to the action for Einstein’s field
Equation (A2) to be valid. We will next show that this term acts exactly like a Λ term in the
action. So even if we start with a global Λ = 0 term, the action inside a BH generates a Λ
term that is equal to Λ = 3/r2

S.
The integral in Equation (17) is over the induced metric at ∂V4, which corresponds to

Equation (6), i.e., ∂V4 = Σ at R = rS:

ds2
∂V4

= hαβdyαdyβ = −dτ2 + r2
SdΩ2 (18)
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So the only remaining degrees of freedom in the action are time τ and the angular
coordinates. We can use this metric and Equation (11) to estimate K:

K = Kα
α =

Kθθ

R2 +
Kδδ

R2 sin2 θ
= − 2

R
= − 2

rS
(19)

We then have
SGHY =

1
8πG

∫
dτ 4πr2

S K = − rS
G

τ (20)

The Λ contribution to the action in Equation (A4) is:

SΛ = − Λ
8πG

V4 = −
r3

SΛ
3G

τ (21)

where we have estimated the total 4D volume V4 as that bounded by ∂V4 inside r < rS:
V4 = 2V3τ, where the factor 2 accounts for the fact that V3 = 4πr3

S/3 can be covered both
during collapse and during expansion, and both paths are available to the action inside rS.
Comparing the two terms we can see that we need Λ = 3r−2

S or equivalently rΛ = rS to
cancel the boundary term. In other words: evolution inside a BH event horizon induces a
Λ term in Einstein’s field equations even when there is no Λ term to start with. Such an
event horizon is only a boundary for outgoing geodesics, i.e., expanding solutions. This
provides a fundamental interpretation to the observed Λ as a causal boundary [25,26].

2.2.3. Null Junction

A null junction has degeneracies that require more elaborate consideration. Here we
give a brief account of such a calculation. For more details, see Ref. [22]. We choose Σ
to be a radial null surface in the FLRW metric, i.e.,: dτ = adχ. This results in a radial
coordinate χ∗(τ), which is not always constant and that we want to identify with the FLRW
event horizon of Equation (32). At any given time the corresponding physical distance is
r∗(τ) = a(τ)χ∗(τ) with χ̇∗ = 1/a. For the outside Schwarzschild coordinate system, Σ+ is
described as previously by Equation (7). The induced inside metric h− is then:

h−αβdyαdyβ = a2χ2
∗dΩ2 = r2

∗(τ)
[
dθ2 + sin2(θ)dδ2

]
(22)

This has to agree with h+ in Equation (8). The first matching conditions h− = h+ are
in this case:

R = r∗(τ) = aχ∗ ⇒ Ṙ = HR + 1 (23)

F2Ṫ2 = Ṙ2 ⇒ Ṫ = ± Ṙ
1− rS/R

(24)

The outward 4D velocity is ua = ea
t = (1, 1/a, 0, 0), so it has a radial component in the

co-moving frame. For a null surface we define a transverse extrinsic curvature [22]. We use
the same notation as in Equation (10) with the difference that n is now a transverse null
vector: naua = 0 and nana = 0. We then have: n− = A(1,−a, 0, 0) where A = A(τ) is an
arbitrary function of τ. On the outside ua = (Ṫ, Ṙ, 0, 0) and n+ = (−Ṙ, Ṫ, 0, 0) as before,
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but where we have now used the new matching condition above Ṙ = FṪ in Equation (24).
Using the Christoffel symbols in Equations (12) and (13), we find:

K−ττ = −∂τn−τ − 2AΓχ
τχ −

1
a

∂τn−χ −
A
a2 Γτ

χχ = 0

K+
ττ = R̈Ṫ − ṘT̈ +

ṪrS
2R2F

(Ṫ2F2 − 3Ṙ2) = 0

K−θθ = AΓτ
θθ − aAΓχ

θθ = AR(HR− 1)

K+
θθ = ṪΓr

θθ = −ṪFR = ±ṘR (25)

K±δδ = sin2 θ K±θθ

Thus, the second matching conditions K−αβ = K+
αβ together with Equation (23) results in:

Ṙ = HR + 1 ; A = ±HR + 1
HR− 1

(26)

The left hand side is fulfilled for any H(τ) as long as R = aχ∗ is a null geodesic (i.e.,
χ̇∗ = 1/a), which is our starting point in Equation (23) and agrees with Equation (A25) for
V0 = 1. The right hand side fixes the normalization A = A(τ) of n− in Σ−.

When a is small, the null geodesics R = R∗ in the integral of Equation (32) is dominated
by the late time value of HΛ = 1/rS and this means that the FLRW event horizon χ∗ is ap-
proximately fixed in co-moving coordinates. This reproduces the junction in Equation (15).
Note how R > rH implies that R < rS, this is illustrated in Figure 1.

Figure 1. Illustration of the BHU inside the event horizon rS = 2 GM. This is a Schwarzschild (empty)
metric outside (r > R) and a FLRW metric with a Hubble radius rH = c/H inside (r < R). The BHU
solution in Equation (15) requires R = [r2

HrS]
1/3. This means that there is a region with matter outside

the Hubble radius R > r > rH (yellow shading, see also Figure 2).

On the opposite limit, when H is constant: H = HΛ = r−1
Λ we have Ṙ = 0 and R =

rΛ = rH = rS. This results in 2Ψ = 2Φ = −H2R2 = −rS/R = −1 (see Equation (A19))
in the junction Σ. This makes sense because dS metric null events are fixed in physical
coordinates. Note that we have p = 0 at r = R because R∗ > rH (see also Appendix D and
Section 4) as required by the Misner and Sharp [10] boundary condition.
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2.2.4. The GHY Null Boundary Term

We estimate the GHY boundary term to the action SGHY following the steps in Section 2.2.2.
We use the formalism in Ref. [27] for boundaries of null surfaces. This is similar to what we did
before with the difference that the induced metric is now 2D instead of 3D:

ds2
∂V4

= qABdzAdzB = r2
SdΩ2 (27)

SGHY =
1

8πG

∮
∂V4

dλd2z⊥
√

q (Θ + κ) (28)

where κ is the non-affinity coefficient: la∇alb = κlb and Θ ≡ qABΘAB = Kθθ
R2 + Kδδ

R2 sin2 θ
.

We can use Equation (25) to find Θ = −2Ṙ/R = −2κ. So the corresponding trace of the
extrinsic curvature is:

Θ + κ = − Ṙ
R

(29)

For ∂V4 we have R = rS and Ṙ = 2. Thus, we recover the same result as Equation (19).
From this we can arrive at the same conclusion that the boundary GHY term fixes rΛ = rS.

3. The Observable Universe

One could wonder if an observer that is off-centered and close to the boundary r = R
of the FLRW* space could see anisotropies due to the change in the background at r > R.
We will study this point in this section. Let us start by assuming the infinite FLRW space,
as most cosmologist seem to believe, for the ΛCDM model (flat FLRW with Λ 6= 0).
The physical observable Universe is given by the past null cone integral of the FLRW metric
in Equation (2):

RO(τ) = a(τ)
∫ τ0

τ

cdτ

a(τ)
= a

∫ 1

a

da
Ha2 (30)

This is also what cosmologists call the proper angular diameter distance. It gives
the proper distance radius (r = aχ) at time τ when the light signal was emitted so that it
reaches us today at time τ0 or a = 1 (see Section VI in [28]). This is shown in Figure 2 for
the ΛCDM model as a dashed green line. We can only see photons emitted along this green
line radial trajectory (in all directions). Therefore, this is the observable universe.

Figure 2. Proper radial distances R = a(τ)χ in units of c/H0 as a function of cosmic time (given
by the scale factor a ) for a flat ΩΛ = 0.75 FLRW metric. The Hubble horizon c/H (blue line), is
compared to the observable universe Ro in Equation (30) (dashed green line) and the FLRW Event
Horizon R∗ in Equation (32) (red line). This figure is the same for an infinite FLRW and for a finite
one. The only difference is that in the former we assume that r > R (magenta and grey shaded
regions) have the same uniform density as the rest, while in the FLRW cloud we assume them to
be (approximately) empty. Direct observations can not tell the difference because those regions are
outside our past light-cone.
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What is striking about the RO curve is that it is not a monotonic function of τ (or
a): photons reach a maximum radius and then return. This is easy to understand: as we
look back around us, the distance travelled by photons increases with increasing redshift
z = 1/a− 1. However, because the universe is expanding, the scale factor (and proper
distance) decreases with increasing redshift. So there is a point where these two effects
cancel each other out and we reach a maximum proper distance. From there on, the
expansion (or backwards contraction) dominates until all points merge in the past. Ellis
and Rothman [28] use the analogy with gravitational lensing: as we follow our lightcone
back into the past, the gravitation of the matter it encloses causes refocusing so it reaches
a maximum and then contracts. However, note that there is no light bending here: paths
are just stretched by the expansion. In co-moving coordinates R0/a does monotonically
increase with redshift (see Figure 3). A null past geodesic in the FLRW metric: ds = 0
corresponds to χ̇ = −1/a (the minus sign reflects incoming radial direction) so that:

ṙ = ȧχ + aχ̇ = Hr− 1 (31)

So the maximum radius (ṙ = 0) corresponds to the point where RO intercepts the
Hubble horizon r = rH ≡ 1/H in our past, shown as a blue line in Figure 2. The maximum
occurs at z ' 1.5 or RO ' 0.4. So we have never seem photons from distances larger than
about 40% of our Hubble horizon (c/H0) today, even for an infinite FLRW space.

The red line in Figure 2 shows a null geodesic R = R∗, where R∗ is the FLRW
Event Horizon:

R∗(a) = aχ∗ = a
∫ ∞

a

da
Ha2 <

1
HΛ
≡ rΛ (32)

where χ∗ is the corresponding co-moving scale. This is the maximum distance ever travel by a
photon (outgoing radial null geodesic or Event Horizon [28] at cosmic time τ or a). For small
a the value of χ∗ is fixed to a constant χ∗ ' 3rΛ (this corresponds to a time-like geodesic for
a matter dominated universe). Thus, the physical trapped surface radius R∗ increases with
time. As we approach a ' 1 the Hubble rate becomes constant and R∗ freezes to a constant
value R∗ → rΛ. No signal from inside R∗ can ever reach outside, just like in the interior of
a BH. We will identify R∗ with the size of the FLRW* as indicated by Equation (26), and rΛ
with rS (as explained in Section 2.2.4). For ΩΛ ' 0.7 and H0 ' 70 km/s/Mpc, we have that
R < rS, where:

rS = H−1
0 Ω−1/2

Λ ' 1.6× 1023 km ; M =
rS
2G
' 5.5× 1022M� (33)

This bound on R < rS might seem puzzling at first because R = a(τ)χ, so that for
a fixed co-moving coordinate χ, the R coordinate can grow unbounded as a(τ) grows to
infinity. However, note that as a(τ) grows to infinite the integral in Equation (32) (which
represents the co-moving distance, χ∗, travel by a photon) goes to zero, because there is
increasingly less time available for the photon to travel. Another way to understand this
is to look at Figure A1 or Equation (A20) where we can see that a given fixed coordinate
distance χ in dS space acts like an Horizon: proper coordinates r and proper time τ,
asymptotically freeze for t→ ∞.

Given that RO < R, as indicated by Figure 2, can we distinguish with observations an
infinite FLRW universe from a finite FLRW* one? Let us try to answer this question next.

3.1. The Black Hole Universe

Even when we have assumed the standard infinite FLRW, we still have something
that resembles very much the inside of a BHU within FLRW*. The first thing to notice is
that R = rΛ ≡ 1/HΛ corresponds to R = rS = 2GM in Equation (4). The observed H tends
to a constant H = HΛ so that ρ becomes static. So we can identify rΛ with rS. Following
Birkoff’s theorem, if we approximate the outside of rΛ to be empty space, we will then
have a SBH space outside. This is the definition of a BH. However, note that it does not
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have the same interior as the static SBH. The interior is the FLRW metric and is only static
in the limit rH → rΛ.

More generally, rH behaves like an apparent BH event horizon (see also Ref. [29]) as
the energy-mass inside r < rH is always 2GM in Equation (4) and the density is the same
as the density of a BH in Equation (1). It is only apparent because rH is moving as the
universe expands. However, observations tell us that H approaches a constant value and
we have that asymptotically rH → rΛ = R∗ (see Figure 2) so that the FLRW event horizon
in Equation (32) becomes a static BH. This is what we call the BHU.

We can also find the same result if we look at this from the prespective of deSitter
space. The infinite ΛCDM universe asymptotically tends to a deSitter (dS) space. There is a
frame duality for a dS space (i.e., Equation (A20)) that allows us to equivalently describe
the dS Universe as either static (in proper coordinates) or exponentially expanding (in
co-moving coordinates). In proper coordinates the Universe is static with a radial metric
element: grr = (1− H2

Λr2)−1 and uniform density ρ. The region r < 1/HΛ is causally
disconnected from r > 1/HΛ (see Equation (A14)) . The energy-mass inside this region
corresponds to that of a BH inside rS = 2 GM, where M in Equation (4) is the energy-mass
inside 1/HΛ. However, for this to be a BH we need the outside r > 1/HΛ to be empty.
In the infinite FLRW universe the outside should have the same density as the inside. As
shown in previous subsection we can not observationally tell (at least from the center)
if there is or there is no matter outside rΛ because that region of space-time is causally
disconnected from the rest. Moreover, as we have already seen, Birkhoff’s corollary tell us
that it does not matter what is outside if we have spherical symmetry.

This means that if we are at the centre of such a BH, we can not distinguish between
the finite and the infinite FLRW spaces. So you may argue that this is not a scientific
question [1]. However there are other considerations. A constant density everywhere,
independent of time, corresponds to the Steady State Universe solution (similar to that
originally proposed by Einstein) and is not asymptotically flat at infinity. In fact dS metric
becomes singular at infinity. In that respect, the BHU solution is more easy to understand
and implement given that empty space is asymptotically flat. In the FLRW*, the region of
the Universe with content is finite, which avoids the need to explain how to place matter at
infinite distances in a finite amount of time [25,26]. Having an asymptotically flat space
also helps defining the mass and avoids some inconsistencies of the dS interpretation (see
also Appendix D).

We thus conclude that if we are at the centre of such BH, we can not tell if we have a
finite or an infinite FLRW space, just because RO < R. However, what happens when the
observer is not at the centre of the BH?

3.2. Off-Centred Co-Moving Observer

The metric in Equation (2) is the same for the infinite or the finite FLRW model, as long
as a(τ) is the same, which only requires that the energy density inside R is the same.
The only difference is given by the coordinate restriction r = aχ < R[a] for the FLRW
cloud. Both spaces are therefore equivalent for an observer whose past light-cone does
not intersect R(a). In the discussion and in part II of this paper we will mention possible
observational differences related to the local nature of the FLRW cloud and the origin of
fluctuations. Here we will only discuss if an observer sees the same background.

Let us now assume a co-moving observer at our time τ0 (a = 1) but located at some
arbitrary position inside the FLRW cloud. Without lost of generality, we can still choose its
angular coordinates to be at the origin and only study the radial constraints. Let us call
r0 = aχ0 the radial proper coordinate where the off-centred observer is located. We then
have by construction that χ0 < R[a = 1], as we want the observer to be co-moving with the
matter inside. If we ignore the fact that there is a boundary r < R[a] (that moves in time),
the observable universe RO around r0 is obviously the same as the one in Equation (30),
because the FLRW cloud is uniform and it has the same dynamics as the ΛCDM universe
everywhere inside R. This can also be understood as a simple shift of the radial coordinates.
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The condition that the null past light-cone of r0 does not cross R[a] anytime in the past
is then:

R[a] > RO[a] + r0 (34)

As argued before (e.g., in Equation (26)), R corresponds to the FLRW event horizon
R[a] = R∗[a] in Equation (32). Using Equation (30) for RO[a] and Equation (32) for R[a] we
then have that Equation (34) becomes:

χ0 <
∫ ∞

1

da
Ha2 = R[a = 1] (35)

This condition is clearly fulfilled because, by construction, r0 needs to be inside R
today: χ0 < R(a = 1).

As the off-centred observer looks back, the observable past light-cone RO grows, but R
grows by the same amount, so no photons from the boundary r > R can reach χ0. Figure 3
illustrates this result. We thus conclude that no matter where the off-centred observer is
located within the FLRW cloud today, the observer will see the same background universe
as the one seen by an observer located in the centre.

Figure 3. Same as Figure 2 in co-moving coordinates (linear scale). The two dashed green lines are
the past-line cones RO for an observer at the centre (lower line) or 90% off centred (upper line). The
difference between the FLRW event horizon R = R∗ and RO is constant in co-moving coordinates
(see Equation (35)). This is why all observers within R today see the same homogeneous background
and cannot observe photons with r > R anytime in their past light-cone.

4. Discussion and Conclusions

The solution in Equation (A22) corresponds to what we here call a FLRW cloud
(FLRW*). That such FLRW* solutions exist is well known since Friedmann and Lemaitre,
see Section 2.1. When R < rS we call it a Black Hole Universe (BHU). Such a BH is not static
inside, which explains why it avoids the constraint R > 9rS/8 in Ref. [4]. We have studied
the junction conditions (see Section 2.2) to show that the joint manifold (FLRW+SBH) is
also a solution to EFE and there are no surface terms in the junction.

Contrary to the standard Cosmological model of the infinite FLRW space or ΛCDM
universe, here we have assumed that the background outside R is flat with k = 0 and
Λ = 0, as in empty space. The field equations of GR are local and can not change k or Λ,
which are global geometrical values, regardless of the matter or Tµν content. We therefore
adopt the most simple topology, that of empty space, unless we find some evidence or
good reason to the contrary. So we do not expect a global curvature or Λ in the BHU (this
will be discussed further in paper II of the BHU series). As it happens with the exterior
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of the SBH space, the exterior metric of the BHU does not need to be exactly empty and
could also be a perturbation inside a lower density FLRW or a dS metric (e.g., see Ref. [30]
and Equation (A7) or Equation (A15)). So in the BHU we could have two nested FLRW
manifolds (as in "Application e)" of Ref. [14]). This is illustrated in the bottom right of
Figure A2. We can have smaller BHs inside larger BHs or smaller FLRW submanifolds
inside larger FLRW universes. Mathematically this looks like a Matryoshka (or nesting)
doll [31] or a fractal structure [32]. However, physically, each BH has a different energy-
mass and therefore different physical properties, expansion time, and internal structure.

The fact that the universe might be generated from the inside of a BH has been
studied extensively in the literature [33–38]. Most of these previous approaches involve
modifications to Classical GR and will not be discussed here. There are also some simple
scalar field ϕ(x) examples (e.g., Ref. [35]) which presented models within the scope of a
classical GR and classical field theory with a false vacuum interior. A particular case are
Bubble or Baby Universe solutions where the BH interior is de-Sitter metric [3,6,39–43]. The
BHU solution is similar, but has some important differences. In the BHU, no surface term
(or Bubble) is needed and the matter and radiation inside are regular–not just false vacuum
solutions. There is no need for a false vacuum in the BHU because rS plays the role of Λ.
In this respect, the BHU is not quite a Bubble Universe.

A deSitter BH interior without bubble has been proposed before by several authors
(e.g., Refs. [44,45]). However, the idea has been criticised by Poisson and Israel [46], who
argued that such a combination is not possible because of the O’Brien–Synge junction
condition, which requires p = 0 in the junction, as already pointed out by Misner and
Sharp [10]. Another source of concern comes from the fact that the resulting deSitter+SW
solution represents a non singular BH, which seems to contradict Penrose’s singularity
theorems [47] (however, see also Ref. [48] who argues that this matter is not settled
yet). Unlike the deSitter metric, the BHU (or the FLRW*) metric is not static and has a
past singularity. The BHU becomes deSitter only asymptotically when R → rS. In that
limit we have argued here that rS becomes a boundary to the Einstein–Hilbert action (see
Equations (A4) and (20)), because nothing can escape rS. So there is no action or pressure in
the junction. More generally, because of causality, perturbations freeze out for separations
r > rH .

In the 1970s Pathria [31] and Good [49] proposed that the FLRW space could be
the interior of a BH. However, these were not proper GR solutions, but just incomplete
analogies (see Ref. [50]). The model by Zhang [32] has the same name and similar features
to our BHU proposal, but it is built as a new postulate to GR and not as a solution to a
classical GR problem. Our BHU solution is quite different from that of Ref. [33], who just
speculated that all final (e.g., BH) singularities ’bounce’ or tunnel to initial singularities
of new universes. The solution by Stuckey [51] with Λ = 0 agrees well with the time-like
junction in Section 2.2.1, but does not interpret the observed cosmic acceleration as resulting
from rS. Poplawski [52] proposed the torsion in the Einstein–Cartan gravity model with Λ
to generate a non singular bounce that results in a BH universe. We instead use Classical
GR without torsion and argue that Λ is not needed once you realise that you are inside a
BH that produces the same effect.

Criticising some of these previous results, Knutsen [50] argued that p and ρ in the
homogeneous (infinite) FLRW solution are only a function of co-moving time and can not
change at r = rS to become zero in the exterior. However, this is no longer the case for the
FLRW* solution discussed here, where we have an inhomogeneous local universe.

As shown in Section 3, a co-moving observer located anywhere inside a local FLRW*
sees the same background as a co-moving observer of an infinite FLRW universe with
equal density content. We can also understand this curious behaviour in the dual frame
by considering radial null events in deSitter metric, which follow Equation (A14). If the
FLRW cloud is moving or rotating within a larger background, this could show as a dipole
in the CMB. Such a dipole has already been observed, but it is usually interpreted as a local
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flow. This interpretation has recently been challenged by new observations of our local
neighbourhood (see [53]).

The BHU solution does not require a Λ term or Dark Energy to explain cosmic accel-
eration. As shown in Section 2.2.2, the BH event horizon rS corresponds to a boundary
in the action, which has the same effect as Λ. Note how this is quite different from the
LBT model [54], which tries to explain cosmic acceleration with a local spherical void
centred around us. You could in principle picture our FLRW* as an LBT model with a
central over-density (instead of a void) where the outside background (r > R) is empty.
This is quite different in scale and signature from the LBT. Moreover, the LBT provides a
smooth transition between the two backgrounds while in the BHU the two backgrounds
are causally separated by an event horizon (R = R∗ in Equation (32)). Due to all these
differences, the observation constraints that defeat the LBT model (see Ref. [54]) do not
affect the BHU, which has the same observed background as the ΛCDM universe.

While we can not differentiate with background observations in our past light-cone
between an infinite and finite FLRW, an observer could in principle detect differences
between spaces by measuring tidal forces. However, note that both spaces are identical
in the internal submanifold and we find no defects or discontinuities in the junction with
the external SBH space (see Section 2.2). The yellow region in Figures 1 and 2 contains
primordial frozen perturbations, which we can observe today, and could be different in
each model, depending on the formation mechanism. In paper II we will address the issue
of how the BHU forms. This will provide an observational window to distinguish the
BHU from the standard Big Bang model that emerged out of Cosmic Inflation. We can
observe transverse perturbations in the CMB that are larger than R. At the time of CMB
last scattering, R corresponds to an angle θ = χ∗/χo ' 60 deg. Such super-horizon scales
could be related to the so-called CMB anomalies, deviations with respect to inflationary
predictions from ΛCDM (see Refs. [26,55–60] and references therein), or the apparent
tensions in measurements from different cosmic scales or times [61]. The BHU can also be
challenged by a measurement a the DE equation of state ω 6= −1. This would indicate that
cosmic acceleration is not solely caused by the BHU event horizon rS.

The BHU model allows for a Perfect Cosmological Principle, the one advocated by
Einstein (when he introduced Λ) and the Steady State Cosmology [62–64]. However, there
is no need for ad hoc matter creation (the C-field) to explain the observed cosmic expansion.
The frame duality in Equation (A19) explains how we can have at the same time an
expanding universe in co-moving coordinates (as observed by the Hubble–Lemaitre law)
and an asymptotically static BHU in the outside Schwarzschild frame.
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Appendix A. Some Simple Solutions

Given the Einstein–Hilbert action [9,68–70]:

S =
∫

V4

dV4

[
R− 2Λ
16πG

+ L
]

, (A1)
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where dV4 =
√−gd4x is the invariant volume element, V4 is the volume of the 4D spacetime

manifold, R = Rµ
µ = gµνRµν is the Ricci scalar curvature and L the Lagrangian of the

energy-matter content. We can obtain Einstein’s field equations (EFE) for the metric field
gµν from this action by requiring S to be stationary δS = 0 under arbitrary variations of the
metric δgµν. The solution is [9,70,71]:

Gµν + Λgµν = 8πG Tµν ≡ −
16πG√−g

δ(
√−gL)
δgµν , (A2)

where Gµν ≡ Rµν− 1
2 gµνR andL is the matter Lagrangian. For perfect fluid in spherical coordinates:

Tµν = (ρ + p)uµuν + pgµν (A3)

where uν is the 4-velocity (uνuν = −1), ρ, and p are the energy-matter density and pressure.
This fluid is made of several components, each with a different equation of state p = ωρ.

Equation (A2) requires that boundary terms vanish (e.g., see Refs. [9,72,73]). Otherwise,
we need to add a Gibbons–Hawking–York (GHY) boundary term [74–76] to the action:

S =
∫

V4

dV4

[
R− 2Λ
16πG

+ L
]
+

1
8πG

∮
∂V4

d3y
√
−h K. (A4)

where K is the trace of the extrinsic curvature at the boundary ∂V4 and h is the induced
metric. In Section 2.2.2 we show that the GHY boundary results in a Λ term when the
evolution happens following a FLRW* metric inside an expanding BH event horizon.
To cancel the GHY term we need rΛ = rS. That Λ is a GHY term was originally proposed
in Ref. [26].

Spherical Symmetry in Physical Coordinates

The most general shape for a metric with spherical symmetry in physical orSchwarzschild
coordinates (t, r, θ, δ) can be writen as:

ds2 = gµνdxµdxν = −(1 + 2Ψ)dt2 +
dr2

1 + 2Φ
+ r2dΩ2 (A5)

where Ψ(t, r) and Φ(t, r) are the two gravitational potentials. The Weyl potential ΦW is the
geometric mean of the two:

(1 + 2ΦW)2 = (1 + 2Φ)(1 + 2Ψ) (A6)

Ψ describes propagation of non-relativist particles and ΦW the propagation of light. For p =
−ρ we have Ψ = Φ = ΦW . Equation (A5) can also be used to describe the SBH solution (or
any other solution) as a perturbation (2|Φ| < 1) around a FLRW background:

ds2 ' −(1 + 2Ψ)dt2 + (1− 2Φ)a2dχ2 + a2χ2dΩ2 (A7)

where r = a(τ)χ and t ' τ. The same result follows from perturbing the FLRW metric in
Equation (2).

Solutions to EFE for Equation (A5) are well known, e.g., see Equation (7.51) in Ref. [9].
For a static perfect fluid BH with arbitrary ρ(r) inside rS and empty space (Λ = 0) outside,
we have G0

0 = −8πGρ(r). This can be solved using m(r):

Φ(r) = −Gm(r)
r

= −G
r

∫ r

0
ρ(r) 4πr2dr (A8)

so the interior r < rS of a BH has [77]:

Φ(r) =

{
−GM/r for ρ(r) = M δD(r)
− 1

2 (r/r0)
2 for ρ(r) = ρ0 ≡ 3

8πr2
0

(A9)
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Ψ(r) depends on G1
1 and p(r). For p = −ρ we have G0

0 = G1
1 and the general solution with

Λ 6= 0 is:

Φ = Ψ = −Gm(r)
r
− Λr2

6
(A10)

The remaining EFE in Equation (A2) are G2
2 = G3

3 and correspond to energy conservation
∇µTµ

ν = 0. For a co-moving observer u = 0 in a perfect fluid of Equation (A3):

∂tρ = − ρ + p
1 + 2Φ

∂tΦ. ; ∂r p =
ρ + p

1 + 2Ψ
∂rΨ (A11)

Note how ρ = −p results in constant ρ and p in time and everywhere, but with a
discontinuity at 2Φ = 2Ψ = −1. This means that ρ and p could be constant but different in
both sides of 2Φ = 2Ψ = −1. This is addressed with the study of junction conditions in
Section 2.2. We can also consider anisotropic pressure p‖ 6= p⊥ ([5,38]) which can result
from non canonical scalar field ([78]).

Empty space (ρ = p = ρΛ = 0) in Equation (A10) results in the SBH metric:

2Φ = 2Ψ = −2GM/r ≡ −rS/r (A12)

There is a trapped surface at r = rS (2Φ = −1). Outgoing radial null geodesics
cannot leave the interior of rS, while incoming ones can cross inside. The solution to
Equation (A10) for ρ = p = M = 0, but ρΛ 6= 0 results in deSitter (dS) metric:

2Φ = 2Ψ = −r2/r2
Λ ≡ −r2H2

Λ = −r28πGρΛ/3 (A13)

where ρΛ is the effective density: ρΛ = Λ/(8πG) + V(ϕ). We can immediately see that
this solution is the same as the interior of a BH with constant density in Equation (A9) with
ρ0 = ρΛ.

dS metric corresponds to the surface of a hypersphere of radius rΛ in a flat spacetime
with an extra spatial dimension (see Appendix C). This has a constant positive Ricci
curvature R = 4Λ and a finite volume inside rΛ. As in the SBH metric, the dS metric also
has a trapped surface at r = rΛ (2Φ = −1). Radial null events (ds2 = 0) connecting (0, r0)
with (t, r) follow:

r = rΛ
rΛ + r0 − (rΛ − r0)e−2t/rΛ

rΛ + r0 + (rΛ − r0)e−2t/rΛ
(A14)

so that it takes t = ∞ to reach r = rΛ from any point inside. The SBH metric is singular at
r = 0, while dS is singular at r = ∞. However, note that this singularity can not be reached
from the inside because of the trapped surface at rΛ in Equation (A14). The inside observer
is trapped, like in the FLRW case. Both metrics are equivalent for H = HΛ (see [79,80])
which explains why the dS metric reproduces Cosmic Inflation in co-moving coordinates.

For M and ρΛ constant, the solution to Equation (A10) is:

2Φ = 2Ψ = −r2H2
Λ − rS/r, (A15)

which corresponds to dS-SW (dSW) metric, a SBH within a dS background. Solution of a
BH inside a FLRW metric also exist (e.g., see Ref. [30]). Here we will show that GR solutions
also exist for a FLRW inside a BH (or inside a larger FLRW metric).

We also consider a generalization of the dS metric, which we call dS extension (dSE),
which is just a recast of the general case:

2Φ(t, r) ≡ −r2H2(t, r) ≡ −r2/r2
H (A16)
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Appendix B. Frame Duality

Consider a change of variables from xµ = [t, r] to co-moving coordinates ξν = [τ, χ],
where r = a(τ)χ and angular variables (θ, δ) remain the same. The metric gµν in Equation (A5)
transforms to fαβ = Λµ

α Λν
βgµν, with Λµ

ν ≡ ∂xµ

∂ξν . If we use:

Λ =

(
∂τt ∂χ t
∂τr ∂χ r

)
=

(
(1 + 2ΦW)−1 arH(1 + 2ΦW)−1

rH a

)
(A17)

with 2Φ = −r2H2 and arbitrary a(τ) and Ψ, we find:

fαβ = ΛT
(
−(1 + 2Ψ) 0

0 (1 + 2Φ)−1

)
Λ =

(
−1 0
0 a2

)
(A18)

In other words, these two metrics are the same:

− (1 + 2Ψ)dt2 +
dr2

1− r2H2 = −dτ2 + a2dχ2 (A19)

The dSE metric in Equation (A16) with 2Φ = −r2H2 corresponds to the FLRW metric
with H(t, r) = H(τ): this is a hypersphere of radius rH that tends to rΛ (see Appendix C). This
frame duality can be understood as a Lorentz contraction γ = 1/

√
1− u2 where the velocity

u is given by the Hubble–Lemaitre law: u = Hr (which results from r = aχ). An observer
in the Schwarzschild frame, not moving with the fluid, sees the moving fluid element
adχ contracted by the Lorentz factor γ: adχ ⇒ γdr. For constant H, the FLRW metric
corresponds to the interior of a BH with constant density in Equation (A9). A Lorentz factor
γ also explains dτ = γ−1dt as time dilation. Given a(τ), we can find Ψ and τ = τ(t, r). For
a(τ) = eτHΛ we have 2Ψ = 2Φ = −r2H2

Λ and (see [79,81]):

t = t(τ, χ) = τ − 1
2HΛ

ln [1− χ2/χ2
H ], (A20)

where χH = 1
aHΛ

and reproduces dS metric (see Ref. [80] for some additional discussion).
In co-moving coordinates, the metric is inflating exponentially: a = eτHΛ , while in physical
coordinates it is static. Figure A1 illustrates how this is possible and shows how τ = τ(t, r)
freezes to a constant as t → ∞ (this is because χH shrinks to zero). Note also how ∂τt =
(1 + 2ΦW)−1 in Equation (A17) for 2ΦW = −r2H2 is the generalization of Equation (A20)
for Ḣ 6= 0.

Consider a solution with spherical symmetry as in Equation (A5) where we have matter
ρm = ρm(t, r) and radiation ρR = ρR(t, r) inside some radius R and empty space outside:

ρ(t, r) =

{
0 for r > R
ρm + ρR for r < R

. (A21)

For uniform density inside this we should reproduce the FLRW solution for r < R
and the SBH solution for r > R. This follows from Gauss law (or the corollary to Birkhoff’s
theorem [16]) where each sphere r < R collapses independent of what is outside r > R. To
see this more explicitly for the interior solution, we use the dSE notation in Equation (A16):
2Φ(t, r) ≡ −r2H2(t, r) ≡ −r2/r2

H , so that:

2Φ(t, r) =
{
−rS/r for r > R
−r2H2 for r < R

(A22)

At the junction r = R, we find that:

R = [r2
HrS]

1/3, (A23)
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which matches Equations (15) and Equation (4). For a regular star R > rS so the expansion
is subluminar because R < rH . Our Universe has R > rH (we observe super-horizon scales
in the CMB), which, using Equation (A23), requires R < rS: i.e., we are inside our own
BH! For r < R we can change variables as in Equation (A17)–(A19). In the co-moving
frame of Equation (A19), from every point inside the BHU, co-moving observers will
have the illusion of an homogeneous and isotropic space-time around them, with a fixed
Hubble–Lemaitre expansion H(τ). This converts the dSE metric into the FLRW metric. So
the solution is H = H(τ) and R(τ) = [rS/H2(τ)]1/3. Given ρ(τ) and p(τ) in the interior
we can use Equation (3) to find H(τ) and R(τ):

H2(τ) =
8πG

3
ρ(τ) =

rS
R3(τ)

(A24)

Figure A1. Logarithm of physical radius r = a(τ)χ (top) and co-moving time τ (bottom) as a function
of Schwarzschild time t in Equation (A20) for a(τ) = eτHΛ and different values of χ. All quantities
are in units of 1/HΛ. For early time or small χ: τ ' t. A fix χ acts like an Horizon: as t⇒ ∞ we have
τ ⇒ − ln χ (dotted), which freezes inflation to: r = aχ⇒ e− ln (HΛχ)χ = 1/HΛ (dashed).

This corresponds to a homogeneous FLRW* of fix energy-mass M = rS/2G confined
inside R(τ). The co-moving radius χ∗ corresponding to R is χ∗(τ) ≡ R(τ)/a(τ). We can
see how R can be related with a (free-fall) geodesic radial shell:

dR
dτ

= a
dχ∗
dτ

+ χ∗
da
dτ

= V0 + HR = V0 + (rS/R)1/2 (A25)

where V0 ≡ aχ̇∗. For a time-like geodesic of constant χ∗ (dχ = 0) we have V0 = 0 and
Ṙ = HR, which reproduces Equation (A23). For a null-like geodesic (adχ = ±dτ): V0 = ±1.
The case V0 = +1 corresponds to R = R∗ in Equation (32) from which we can immediately
see that rS = rΛ. So even when Λ = 0, the energy-mass M inside R generates rΛ = rS
(see also Section 2.2.2). We can integrate Equation (A25) to find R(τ), for a fix V0 and
rS, regardless of ρ(τ). This shows that a solution for R(τ) exist for any content inside R.
To complete the solution, i.e., to find Ψ and τ = τ(t, r), we need to solve Equation (A17)
with 2Φ = −r2H2(τ). For H(τ) = HΛ the solution is Ψ = Φ and Equation (A20). The
FLRW metric with H = HΛ becomes the dS metric in Equation (A13). Such solutions are
illustrated in Figure A2.
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Figure A2. Spatial representation of ds2 = (1 + 2Φ)−1dr2 + r2dθ2 2D metric embedded in 3D
flat space for: deSitter (dS, bottom left, 2Φ = −r2/r2

∗), FLRW (r(τ) < r∗, blue sphere inside dS),
Schwarzschild (SW, top left, 2Φ = −r∗/r) and two versions of the combined BHU metrics. The yellow
region shows the projection coverage in the (x, y) plane. In the top right figure we show a BHU with
dS (or FLRW) interior and SBH metric exterior joint at the Event Horizon r∗ = 2GM = 1/HΛ (red
circles). The BHU solution has in general two nested FLRW metrics joined by the SBH metric (bottom
right). See Appendix C for a more detailed explanation.

Appendix C. Geometrical Representations

To visualize the spatial BHU metric in a 2D plot we consider the most general shape
for a spherically symmetric metric in 2D space (x, y) embedded in 3D flat space (x, y, z) (see
also Section 7.1.3 in Ref. [9]). In polar coordinates (r, θ) with r2 = x2 + y2 and tan θ = x/y
we have:

ds2 =
dr2

1 + 2Φ
+ r2dθ2 (A26)

In 3D space we just have one additional angle, δ, in Equation (A5), but the radial part
is the same. The case Φ = 0 corresponds to flat space: ds2 = dx2 + dy2. The simplest case
with curvature can be represented by a 2D sphere (S2) embedded in 3D flat space using an
extra dimension z:

ds2 = dx2 + dy2 + dz2 ; x2 + y2 + z2 = r2
∗ (A27)

This metric is flat in 3D coordinates, but constrained to r∗, which is the radius of
the sphere and the curvature within the 2D surface of S2. We can replace z by r using:
z2 = r2

∗ − r2 to find:

ds2 = dx2 + dy2 + dz2 =
dr2

1− r2/r2∗
+ r2dθ2 (A28)

so that 2Φ = −r2/r2
∗ just like in the dS metric of Equation (A13) for r∗ = rΛ. It tell us

that dS space corresponds to being in the flat surface of a sphere (like us in Earth). This
is illustrated in the bottom left of Figure A2. Note how (r, θ) are coordinates in the (x, y)
plane. The S2 space is trapped or bounded by r < r∗ (yellow region). The metric changes
signature (becomes imaginary) for r > r∗: this region cannot be reached (white region).
The case r = r∗ (red circles) corresponds to the Event Horizon at 2Φ = −1.
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The Newtonian interpretation of 2Φ = −r2/r2
∗ is that this is caused by a centrifugal

force, like that in the orbit of a satellite. Even when there is no matter, the curvature (or
boundary) is interpreted as a repulsive gravitational force that causes acceleration.

The FLRW metric (or dSE metric in Equation (A19)) corresponds to a smaller sphere S2
(inside dS sphere) with an expanding radius rH(τ) that tends asymptotically to rΛ = 1/HΛ
(see Equation (A19)):

ds2 = dx2 + dy2 + dz2 ; x2 + y2 + z2 = r2
H(τ) (A29)

So, it has the same topology and Event Horizon or trapped surface (red circle) as the
dS metric. It is represented in Figure A2 by a blue sphere inside dS sphere in the bottom left
corner. This illustrates how it is possible that each observer inside sees an homogeneous
space even when the sphere is centred around a given position.

The next simplest case can be represented by a static radius that increases with r, i.e., :
x2 + y2 + z2 = r3/r∗. We can replace z by r using: z2 = r3/r∗ − r2 to find:

ds2 = dx2 + dy2 + dz2 =
dr2

1− r∗/r
+ r2dθ2 (A30)

so that 2Φ = −r∗/r just like in the SBH metric of Equation (A12) for r∗ = 2GM. This is
illustrated in the top left of Figure A2. The case r = r∗ (red circle) corresponds to the Event
Horizon at 2Φ = −1. The Newtonian interpretation for 2Φ = −r∗/r is the inverse square
law for a point mass M: r∗ = 2GM.

The Schwarzschild space is bounded by r > r∗ (yellow region). The metric changes
signature (becomes imaginary) for r < r∗ and this region can not be reached. This coverage
is complementary to the dS or FLRW metric, which only covers the inner region. We
can match the dS and SBH metrics at r = r∗ to cover the full (x, y) plane as in the BHU
metric. Physically, this corresponds to a balance between the centrifugal force, represented
by dS potential 2Φ = −r2/r∗, and the SBH inverse square law, 2Φ = −r∗/r, like what
happens in the circular Keplerian orbits. This matching is the junction in Equation (15)
which corresponds to a causal boundary. This can also be seen as a Lorentz contraction
γ = 1/

√
1− u2 where the velocity u is given by the Hubble–Lemaitre law: u = Hr. The

time duality between the FLRW and SBH frame can also be interpreted as a time dilation,
see Equation (A19).

This BHU metric is shown in the top right of Figure A2, which is asymptotically
Minkowski. The dS metric is the limiting case of FLRW metric and SBH metric is a
perturbation over the FLRW metric. So, more generally, the BHU is a combination of 2
FLRW metrics joined by a SBH metric. The junction happens at the effective value of r∗ = R,
which asymptotically tends to rS = 2GM, corresponding to the inner FLRW. If the outer
FLRW has a mass M′ > M, then the SBH hyperbolic surface will close as another S2 sphere
(bottom right panel) with r′S = 2GM′.

Appendix D. The FLRM* Mass

Contrary to what happens in special relativity, in GR mass, M can not always be
defined globally. This is the case for non asymptotically flat spaces, like dS or FLRW.
Following Hayward [19], consider a spherically symmetric metric in the form:

ds2 = −c2dτ2 + eλdχ2 + r2dΩ2, (A31)

with a perfect fluid inside. We recover units of c 6= 1 to see the non relativistic limit.
The FLRW case corresponds to eλ = a2(τ) and r = aχ. The Misner and Sharp [10] energy-
mass MMS inside a spatial hypersurface Σ, given by χ < χ∗, is:

MMS =
∫

Σ
ρ

(
1 +

ṙ2

c2 −
2MMS

c4r

)1/2

dV3 (A32)
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where dV3 = d3y
√
−h = 4πr2eλ/2dχ is the 3D spatial volume element of the metric in Σ.

The first term corresponds to the material or passive mass (which we call here Mm):

Mm =
∫

Σ
ρ dV3 =

∫ χ∗

0
ρ 4πr2eλ/2dχ (A33)

We can then interpret the next two terms in the integrant of Equation (A32) as the
contribution to M from the kinetic and potential energy. In the non relativistic limit, these
two terms are negligible and MMS = Mm = M. However, in general, as indicated by
Equation (A32), MMS can not be expressed as a sum of individual energies as MMS also
appears inside the integral, reflecting the non-linear nature of gravity.

In the FLRW metric we have Mm = 4/3πR3ρ, where R = aχ∗, because eλ = a2

and r = aχ. For a co-moving observer we have: ṙ2 = H2r2 and using Equation (3):
ṙ2 = 2GMm/(c2r), so the last two terms cancel each other (E = 0) and we find that
MMS = Mm, which we just call M as in Equation (4). For R = R∗ in Equation (32) we have
that for small times (or small a) R is constant in co-moving coordinates, which means that
Ṁ = 0. This is the case even when we have radiation and p 6= 0 because the R∗ integral is
dominated by rS = rΛ for small a. Another way to understand this is to note that R > rH
so that R is always causally disconnected, so there is no pressure at r = R. This (Ṁ = 0) is
also the case in the dS phase because both ρ and R become constant. However, there is an
intermediate regime when we approach the dS phase where M reduces its value (Ṁ 6= 0).
To understand this better, consider the FLRW solution to EFE, i.e., Equation (3):

H2 =
8πG

3
ρ +

Λ
3

=
8πG

3
ρ +

1
r2

S
(A34)

We can see here how H tends to a constant (H2 → 1/r2
S) because ρ → 0, as expan-

sion dilutes the energy content. So the mass for a co-moving observer 2GM = R3H2 in
Equation (4) becomes:

2GM = R3

[
8πG

3
ρ +

1
r2

S

]
(A35)

as R approaches the BH radius rS, the density ρ dilutes to zero (because of exponential
expansion) and all that remains is the SBH mass: 2GM = rS. So, the mass M for a co-
moving observer M has two contributions: one from the kinetic energy of the expansion
and one from the BH’s binding energy, rS. A physical (or Schwarzschild) observer outside
only sees rS because r < rS is causally disconnected.

Mitra [80] noted that there is a contradiction in how global mass conservation is
viewed by different coordinates in dS metric. Mitra pointed out that when the FLRW metric
is dominated by Λ, Equation (4) indicates that the mass M = R3H2/2G is unbounded in
co-moving coordinates because R = eτHΛ χ∗ seems to grow unbounded with time, while H
is constant. While in physical coordinates, the dS metric is static and therefore mass must
be conserved. Part of the problem here is that the dS metric is not asymptotically flat and
therefore mass is not well defined. We saw in Equation (32) that R is in fact bounded and
argued that proper coordinates r and proper time τ, asymptotically freeze out for t→ ∞
(see Figure A1). As R→ rS is finite, M becomes constant if we only integrate inside R (i.e.,
in the FLRW* case). This agrees with both the outside static SBH metric and the inside
asymptotically static dS metric. In other words, the FLRW* metric behaves better than the
FLRW metric because it is asymptotically flat and has a well defined mass, as advocated by
Friedmann–Lemaitre original cosmology (see Section 2.1).
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