Descubrimiento de Graptolitos arenigienses en la escama de Rioseco (Zona Cantábrica, N. de España)

Discovery of arenig graptolites in the Rioseco Thrust-Sheet (Cantabrian Zone, N. of Spain)

GUTIERREZ MARCO, J. C. y RODRIGUEZ, L.

En este trabajo se da a conocer el hallazgo de *Azygograptus undulatus* CHEN y XIA en un tramo pelítico-arenoso situado por encima de la Cuarçita de Barrios *s.str.* dentro de la escama de Rioseco, que se equipara convencionalmente a la «serie de transición» de otras localidades asturianas. La especie mencionada permite atribuir al Arenig estos niveles, siendo la primera vez que se registra su presencia fuera de China.

Palabras clave: Ordovícico, Arenig, Graptolitos, Zona Cantábrica, España.

Graptolites have been collected for the first time from the «transitional beds» overlying the Barrios Formation (≡Armorican Quartzite) in a single locality of eastern Asturias (N. Spain), within the Cantabrian zone of the Hesperian Massif (fig. 1). The studied material pertains to a dichograptid species with single-stipled rhabdosome and distinctive prothecal folds (fig. 2). It has been identified and described as *Azygograptus undulatus* CHEN & XIA, constituting thus the first report of this species outside China.

Key words: Ordovician, Arenig, Graptolites, Cantabrian zone, Spain.

GUTIERREZ MARCO, J. C. (Dpto. de Paleontología e Instituto de Geología Económica (CSIC-UCM), Facultad de Ciencias Geológicas, Universidad Complutense, 28040-MADRID). RODRIGUEZ, L. (Laboratoire de Géologie Structurale et Tectonophysique, Université Paul Sebatier. 38, rue de 36 ponts, 31-TOULOUSE)
INTRODUCCION

La presencia de materiales ordovícicos por encima de las cuarcitas atribuídas al Arenig es un hecho relativamente raro en la zona Cantábrica del Macizo Hespérico, donde existe por lo general una laguna estratigráfica muy característica entre el techo de la Formación Barrios (Tremadoc-Arenig) y las pizarras silúricas de la Formación Formigoso. Al este de la Cuenca Carbonífera Central asturiana, la amplitud de esta laguna es todavía mayor, y abarca hasta finales del Devónico o principios del Carbonífero. No obstante, en el borde oriental cabalgante de dicha Cuenca (escama de Laviánea), adyacente al cual se sitúan los hallazgos que presentamos, la sucesión ordovícica prosigue por encima de la Cuarzita de Barrios con una unidad de pizarras que intercala algunos niveles de hierros oolíticos, denominada Pizarras del Sueve o Formación Sueve. En opinión de algunos autores, dicha unidad puede equipararse a las Pizarras de Luarca de la zona Asturoccidental-leonesa y los Cabos Peñas y Vidriás, habiendo proporcionado en diversos puntos restos de trilobites, braquiópodos, graptolitos, moluscos y microfósiles de pared orgánica de edad Llanvir inferior a Llandeilo inferior (ADADOR y JUNQUERA, 1916; HERNANDEZ SAMPELAYO, 1942; PELLO y PHILIPOT, 1967; JULIVERT et ALTERS., 1968; CRAMER-DIEZ et ALTERS., 1972; GERVILLA et ALTERS., 1973; HAMMANN, 1983; GUTIÉRREZ MARCO, 1986; ARBUZU et ALTERS., en preparación). Aunque la continuidad lateral de las Pizarras del Sueve es relativamente grande dentro de la escama de Laviánea a ambos lados de la falla de Ventaniella (aprox. 40 kms), la unidad desaparece acuñándose hacia el sur a lo largo de la mencionada estructura y no vuelve a ser registrada en ningún otro punto de la Cordillera Cantábrica. En otras regiones más orientales como el manto del Ponga y norte de los Picos de Europa, los afloramientos ordovícicos quedan por tanto limitados a las cuarcitas de la Formación Barrios, sobre las que se apoyan directamente las areniscas del Devónico superior o los materiales carboníferos. En este contexto resulta interesante destacar el hallazgo que aquí presentamos, pues se trata de la primera localidad situada al este de la escama de Laviánea donde existen materiales ordovícicos en continuidad con la Cuarzita de Barrios, tal y como ha podido concretarse tras el estudio de los fósiles encontrados.

SITUACION DEL YACIMIENTO Y RASGOS ESTRATIGRÁFICOS DE LA SUCESIÓN FOSILIFERA

La localidad estudiada en este trabajo se encuentra situada aproximadamente 2.700 m al NNE del pueblo de Rioseco (Asturias), en la ladera oeste del pico «La Cumbré» y dentro del paraje conocido como «El Unquero». Este lugar es atravesado por un camino que asciende en dirección NNE desde Campiellos hasta el collado de altitud 1.009 m comprendido entre los montes «Carba» y «La Cumbré». En su recorrido entre las cotas 780 a 800 m (datos tomados del Mapa Militar de España esc. 1:50.000, ser. L, 1.a ed. 1984), el camino deja a su derecha (en su margen meridional) unos afloramientos poco perceptibles de areniscas finas y lutitas gris oscuras donde se ubica el yacimiento fosilífero. Este tramo está situado estratigráficamente por encima de la Formación Barrios (s.str.), cuyo techo da un resalte morfológico unos metros más al este y está representado por cuarcitas blancas dispuestas en bancos decimétricos, orientados según una dirección N 170° E y con buzamiento de 15° hacia el OSO. La sucesión observada a partir de este punto comprende los siguientes tramos (espesores medidos en sentido estratigráfico):

- 14,8 m: litología no observable (tramo cubierto por derrubios);
- 1,9 m: areniscas finas de color claro (blancuzcas a amarillentas) dispues-
tas en niveles centimétricos, separados por intercalaciones de lutitas micácias de tonos grisácios;

- 0,5 m: lutitas gris oscuras que pasan gradualmente a limolitas más claras y micácias, con algunas intercalaciones centimétricas de areniscas finas. En la parte superior de este tramo (localidad R-IV) se han encontrado restos de graptolitos identificados como:

* Azygograptus undulatus CHEN y XIA

que permiten atribuir al Arenig superior estos niveles y de cuya descrip-

![Diagrama de localizaciones geográficas](image_url)
ción trata el último apartado de este trabajo.

— 5,5 m: Cuarcitas de grano muy fino, blancuecas a pardas por alteración, dispuestas en niveles centimétricos con un relieve distintivo frente a los tramos anteriores. En la base del mismo existen niveles arenosos menos compactados que contienen de fósiles indeterminables.

La sucesión descrita está recubierta de modo disconforme por las areniscas y conglomerados de la unidad equiparada con la Formación Ermita (Devónico superior) en la escama de Laviana, que aquí apenas aflora, aunque su presencia es deducible de la gran cantidad de fragmentos de litología similar (conglomerados, areniscas) recogidos en el tramo cubierto correspondiente, en cuya parte inferior afloran dos bancos decimétricos de cuarcitas (dir. N 143° E, buz. 20°SO) que pertenecen posiblemente a la unidad antes mencionada.

CORRELACION DE LOS AFLORAMIENTOS ESTUDIADOS

Respecto a la consideración estratigráfica de estos 22 m de sucesión ordovícica detectados a techo de la Cuarcita de Barrios típica, su litología y edad nos impiden correlacionarla con las Pizarras del Sueve de la vecina escama de Laviana, que en dicha estructura también se apoyan concordantes sobre la Formación Barrios. Por ello cabe preguntarse si el techo de esta última unidad es marcadamente diacrónico o registra cambios de facies importantes en pocos kilómetros; o bien si entre las Formaciones Sueve y Barrios existe un pequeño hiato sedimentario equivalente al tramo fosilífero estudiado en la escama de Rioseco. Para esclarecer el primer supuesto disponemos en la actualidad de pocos datos paleontológicos referidos a la Cordillera Cantábrica, si bien los obtenidos en áreas extensas de los Macizos

Hespérico y Armoricano muestran que el final de la sedimentación de las unidades arenosas del tipo «Cuarcita Armoricana» no conlleva diacrónimos apreciables y ocurre dentro del Arenig, pudiendo situarse el límite Arenig/Llanviri a corta distancia de la base de las unidades pelíticas suprayacentes, en la misma base de ellas (cuando existen interrupciones sedimentarias) o bien dentro de las alternancias cuarcítico-pizarrosas tipificadas como «series o capas de transición» (HARRMANN et ALTERS, 1982). En este sentido, el tramo arenoso de Rioseco con graptolitos del Arenig puede ser considerado como una de tales «series de transición», cuya presencia esporádica en diversos puntos de la zona Cantábrica plantea problemas conceptuales y nomenclatoriales acerca del límite superior de la Formación Barrios (ver resumen en JULIVERT y TRUYOLS, 1983), resueltos de forma diferente en cada localidad según los autores implicados. Dentro de la región de pliegues y mantos, estas «capas de transición» están representadas en puntos aislados de la unidad de Somiedo-Correcilla, valle del Luna, Pajares y parte oriental de la unidad de la Sobia-Bodón (VAN DEN BOSCH, 1969; VELANDO et ALTERS, 1976; LEYVA et ALTERS, 1984; C. Aramburu, com. escr., 1985), habiendo proporcionado diversos icnofósiles atribuídos al Arenig (BALDWIN, 1978). Otra sucesión asimilable a las «capas de transición» se reconoce a lo largo de los flancos oriental (zona Cantábrica) y occidental (zona Asturoccidental-Leonesa) del antiforme del Narcea, donde por encima de la Cuarcita de Barrios y la Serie de los Cabos típica se sitúa un tramo pelítico o pelítico-arenoso de 40-100 m de espesor, que contiene ocasionalmente intercalaciones volcánicas o niveles delgados de hierro oolítico. Este se ve sucedido por un tramo muy destacado de cuarcitas blancas en bancos gruesos, cuya potencia varía en sentido N-S a lo largo del flanco O del antiforme desde 80-100 m hasta 10-20 m, mientras que en el otro flanco se mantiene en torno a los 25-35 m. Aun-

Volviendo a la discusión planteada por el tramo arenoso de Rióseco, los datos expuestos hasta aquí permiten considerarlo también como una de estas «series de transición» acorde con su contexto estratigráfico (a techo de la Fm. Barrios, naturaleza pelítico-arenosa culminando con cuaritas, escasa probabilidad de constituir una facies local dentro de la última Fm. mencionada) y cronoestratigráfico (presencia de graptolitos del Wereing). Respecto a la ausencia de este tramo en la escama de Laviana, donde el contacto entre las Formaciones Barrios y Sueve es muy neto al menos en sus aflora- mientos típicos del O. de Ribadesella, cabe destacar la implicación de un posible hiato sedimentario al concluir el depósito de la unidad cuarcítica. Aunque esto es sólo una hipótesis de trabajo para estudios posteriores, lo cierto es que en el sector del Sueve, el límite entre ambas Formaciones lo constitu- ye una capa de hierro oolítico, a corta distancia de la cual (6 m por encima) se sitúan los primeros hallazgos de graptolitos del Llanvirn inferior (PELLO y PHILIPPOT, 1967; GERVILLA et al., 1973). La relación de alguna de estas capas de hierro con discontinuidades estratigráficas es obvia en otras sucesiones ordovícicas de la zona Cantábrica y Cordillera Ibérica (HAMMANN et ALTERS, 1982; GUTIERREZ MARCO, 1986). De existir en el Sueve el hiato mencionado, éste podría explicar el menor espe- sor de las pizarras al O. de Rióseco, donde la sedimentación se había reanudado en una fase más tardía (incluso posterior al depósito de los hierros oolíticos del sector septentrional), por lo cual los horizontes fosilíferos del Llandeirlo se encuentran relativamente pró- ximos al techo de la Cuarcita de Barrios. Conviene aclarar que la variación de potencia de la Formación Sueve en sentido N-S (de más de 100 m a menos de 50 m) no se debe en este caso a la erosión post-ordovícica o al diaclasis del techo de la Formación Barrios, explicaciones ambas descartadas por todos los autores preceden- tes. Otra posible interpretación habría que buscarla en la menor tasa de sedimentación arcillosa («condensación» de la secuencia) deducible para el sector meridional, que se habría mantenido uniforme a lo lar- go de las épocas Llanvirn a Llandeirlo inferi- or mientras que el sector del Sueve reci- bía muchos más aportes, alternando con etapas en las que predominaba la sedimentación química. La comprobación de esta hipótesis requiere los mismos estudios sedimen- tológicos y bioestratigráficos de detalle que se precisan para constatar el posi- ble hiato basal (equivalente cuando menos a las «capas de transición» de la escama de Rióseco), labor actualmente en curso de rea- lización (ARBIZU et ALTERS, en prepara- ción).
OBSERVACIONES PALEONTOLOGICAS (Por G. C. Gutiérrez Marco)

Los graptolitos obtenidos en el curso de este trabajo por uno de los autores (L. R.) proceden en su totalidad de un mismo horizonte de la serie transición (ver apdo. segundo), y pertenecen a una única especie, representada entre nuestro material por más de una treintena de ejemplares que incluyen restos proximales y fragmentos de estípes atribuibles al dichograptido *Azgyograpthus undulatus* CHEN y XIA, 1974.

El material estudiado muestra claramente que el rhabdosoma está formado por una sola estipe que crece a partir de la sícula en posición declinada o subhorizontal en el primer tramo de su recorrido (fig. 2), curvándose luego gradualmente en sentido dorsal para adoptar una disposición reclinada frente a la sícula. El ángulo de divergencia estipe/sícula oscila normalmente entre 120 y 125° (valor dorsal; 55-60° ventralmente). Parte de los ejemplares estudiados corresponde a fragmentos de estípes aisladas por 10-12 tecas, cuyas dimensiones permiten suponer una longitud total para el rhabdosoma superior a 13 mm. La anchura dorsal de la estipe aumenta de forma gradual desde la región inicial, donde oscila entre 0,14 y 0,16 mm en el punto de contacto con la sícula y 0,7 mm a nivel de la apertura de la primera teca, hasta un máximo de 1 mm, logrado entre las tecas 5-7, que se mantiene en sentido distal.

Las tecas son alargadas y presentan pliegues protocales acentuados, que confieren a la línea dorsal de la estipe el trazado característico de la especie. Estas ondulaciones dorsales se manifiestan por igual a lo largo de toda la estipe entre las tecas 3 a 12, estando menos marcadas solamente en la proteca 2 (figs. 2a, c, g). Algunos ejemplares presentan pliegues protocales más pronunciados (figs. 2g-h), cuyo aspecto resulta de la compresión lateral de la estipe con una cierta componente dorso-ventral. Las dimensiones medias de las tecas maduras (posteriores a la 3.ª) oscilan entre 1,9-2,3 mm de longitud y 0,42-0,47 mm de anchura apical, sin contar el dentículo que forma cada apertura con su margen ventral libre respectivo (anchura apical considerándolo: 0,5-0,56 mm). Los septos intertecales tienen un trazado rectilíneo a débilmente arqueado y representan aproximadamente la mitad de la longitud de las tecas, por lo que el solapamiento de éstas cobra un valor de 1/2 a lo largo de toda la estipe. El margen ventral libre de las tecas posee una curvatura suave que se acentúa en sentido apical debido a la proximidad del dentículo (el ángulo margen ventral/apertura se sitúa en torno a los 25-35°). Por esta razón, la inclinación tecal con el eje de la estipe aumenta desde valores de 9-23° (14,4° de media) hasta otros de 38-50° (promedio: 42,2°) en el tramo inmediato a cada apertura. Estas últimas se disponen perpendiculares a la dirección de crecimiento de las tecas y resultan algo cóncavas en perfil lateral. El número de tecas contabilizadas en todo el rhabdosoma oscila entre 7 y 8 en 10 mm, rango que permanece siempre constante llegando en ocasiones a alcanzar sus extremos.

La sícula tiene forma cónica alargada (casi tubular) y su región apical está curvada en sentido opuesto al de la estipe. Sus dimensiones son algo menores que las restantes tecas del rhabdosoma, variando entre
FIGURA 2

a
b
c
d
e
f
g
h
1,26-1,5 mm de longitud y 0,25-0,28 mm
de anchura apertural (0,16 mm a nivel del
punto de separación estipe/sícula). El extremo
apical de la sícula es afilado y se prolonga
en un nema delgado (0,02 mm de anchura)
del que normalmente se conservan vestigios en conexión que miden 0,11-0,28
mm de longitud. En el extremo opuesto de
la sícula encontramos una región apertural
fuertemente cóncava en vista lateral (figs.
2c,g) que está flanqueada por unos márgenes
agudos entre los que destaca con diferen-
cia el del lado opuesto a la estipe. La teca
1 surge en la mitad inferior de la cara conve-
sa de la metasícula, y diverge de ella a 0,33
mm de distancia por encima de su apertura.
El margen ventral libre de esta primera teca
mide 1,56-1,82 mm de longitud, equiva-
lente a la separación de su apertura frente a
la sícula.

Entre todos los graptolitos orдовicios,
as formas cuyo rhabdosoma presenta una
sola estipe (como resultado de la supresión
de todas las dicotomías hasta afectar a la de
primer orden) comprenden más de una
treintena de especies agrupadas en los géne-
ros *Azysgraptus* NICHOLSON, 1875 (Di-
chograptilina, Dichograptilidae), *Parazygo-
graptus* KOZLOWSKI, 1954 (Dichograptilina,
Dichograptilidae), *Nicholsonograptus*
BOUCEK y PRIBYL, 1951 (Dichograptilina,
Sinograptidae) y *Parazygnograptus* MU,LEE
y GEH,1960 (Virgellina, Incertae familias).
Dentro de los mismos la presencia de los
pliegues protocales se considera típica de la
mayor parte de las especies de *Nicholsonog-
graptus* y en general de todos los Sinográ-
tidos (BULMAN, 1970; FORTEY y COO-
PER, 1986). No obstante, *Nicholsonograptus*
posee unas teca muy elaboradas (de aspecto
tubular con excavaciones geniculares,
«muescas» dorsales, aperturas introvertidas
con espinas mesiales y procesos laterales,
etc.) cuya morfología difiere claramente del
material cantábrico, pese a la presencia en
éste de pliegues protocales destacados. Dí-
cha característica adquiere pues una trascen-
dencia sistemática secundaria, sobre todo
porque se conoce también entre algunos gé-
neros no pertenecientes a la familia Sinog-
graptidae como *Maenodograpthus*, *Cymato-
graptus*, *Dichellograpthus* (Jiangxigraptus),
Azysgraptus y *Pseudodisograpthus* (cf. MU
et al., 1979). Dentro del género *Azysgrap-
tus s. str.*, la presencia de pliegues pro-
tocales solo ocurre en *A. undulatus* CHEN y
XIZ, si bien algunos ejemplares de *A. sueci-
cus* MOBERG del Arenig de Checoslova-
quia poseen una línea dorsal con ondulacio-
nes muy suaves (cf. BOUCEK, 1973: figs.
2c y 2e-g en el texto), cuyo aspecto puede
estar influido por la orientación de la estipe
en el sedimento previa a la compactación
gravitacional. Aunque *A. undulatus* mues-
tra un nivel de divergencia de la teca 1 clara-
mente situado por encima de la base de la
sícula, en este trabajo no lo adscribimos a
las categorías subgenéricas propuestas por
OBUT y SENNIKOV (1984), quienes separan
el grupo de especies con el carácter men-
cionado de aquellas formas cuya estipe sur-
ge en la región de la sícula contigua a la
apertura, consideradas por ellos como *Azys-
graptus* (*Metazygograptus*). En la especie
tipo propuesta para este subgénero (*A. sueci-
cus*), el carácter aludido es meramente
conservacional, y la distinción subgenérica
debía afrontarse en su caso tras la revisión
de los 18 taxones de nivel especie o subspe-
cie incluidos en el género *Azysgraptus*.
Algunos de sus representantes más típicos y
difundidos (por ejemplo *A. suecius* MO-
BERG, *A. lapworthi* NICHOLSON y *A.
eivionicus* ELLES) fueron definidos además
de una forma inadecuada y confusa (ZALAS-
IEWICZ, 1986). Por ello tampoco hemos
creído oportuno precisar más la identifica-
ción del material cantábrico en el seno de
A. undulatus, cuya subespecie nominal
muestra un rango considerable de variación
intraspecífica relativa a la dirección de cre-
cimiento de la estipe, longitud y solapa-
miento de las teca y pronunciamento de los
pliegues protocales (MU et al., 1979).
Uno de tales morfotipos extremos (con on-
dulaciones destacadas y teca más inclina-
las son correlacionados por los autores asiáticos con la parte superior de la Zona Nitidus y la Zona Gibberulus del Arenig británico (LU et al., 1976; MU et al., 1979; LI, 1983), pero según COOPER y FORTEY (1982), el equivalente más probable de la biozona de A. suecicus china es la parte baja de la Zona Hirundo británica, equiparada con el Arenig superior. En cualquier caso, la cuestión no puede ser dirimida con el material español por el carácter aislado del hallazgo, asignable al Arenig en función de la distribución estratigráfica de la especie en China; aunque dada su posición por encima de la Cuarcita de Barrios también podemos considerar una edad relativamente tardía dentro de la época mencionada (congruente por lo tanto con la opinión de COOPER y FORTEY, op. cit.). El género Azygograptus es característico del Arenig en toda la provincia atlántica de graptolitos (Gran Bretaña, Suecia, Noruega, Checoslovaquia, España, URSS, China, Australia?-Nueva Zelanda? y Marruecos), desconociéndose con certeza en las regiones más típicas de la provincia pacífica y en niveles posteriores al Arenig, donde normalmente ha sido confundido con Nicholsonograptus y Pseudazygograptus. Esta distribución tan influenciada por controles paleolatitudinales (por ejemplo con la temperatura superficial del agua) y su presencia en sedimentos de áreas epicratónicas, nos indica que Azygograptus forma parte de las asociaciones epiplanctónicas de graptolitos, capaces de habituar medios relativamente someros (COCKS y FORTEY, 1982; FORTEY, 1984). Por lo que respecta a las relaciones planteadas entre el SO. de China y España durante el Ordovícico inferior, da da la presencia común y exclusiva de A. undulatus, sólo cabe manifestar que las nociones paleobiogeográficas más recientes (GUTIERREZ MARCO y RABANO, en prensa) tienden a considerar ambas regiones como situadas en paleolatitudes elevadas próximas a los márgenes del continente de Gondwana. En tales condiciones, el intercambio entre las faunas planctónicas se pro-
duciría también a través de las áreas más internas de las plataformas o «terranes» circundantes a este último continente, por lo que es posible deducir una presencia futura de esta y otras especies en áreas poco estudiadas con graptolitos orдовicos como el N. de África, Oriente medio y Europa meridional. De la escasez de hallazgos de estos elementos episplantónicos-someros da cuenta el hecho de que A. undulatus haya sido descubierto de modo prácticamente casual con posterioridad a un estudio monográfico sobre los graptolitos orдовicos españoles que considera medio centenar de especies procedentes de cerca de 100 localidades fosilíferas distribuidas por todo el Macizo Hesperico (GUTIERREZ MARCO, 1986). Asimismo, A. undulatus constituye el graptolito más antiguo encontrado dentro de la zona Cantábrica, pues los supuestos ditecoídes del Cámbrico medio descritos por SDZUY (1974) podrían representar colonias sésiles de escifópólipos del orden Coronata MAAS, 1903 (Scyphozoa, Scyphomedusae: cf. MIERZEJEWSKI, 1986).

AGRADECIMIENTOS

Al Dr. D. Miguel Arbizu y Dña. Carmen Alvarez, del Departamento de Paleontología de la Universidad de Oviedo, por la asistencia de todo tipo recibida para la culminación de este artículo. A D. Carlos Aramburu (Dpto. Estratigrafía, Oviedo) por sus informaciones sobre diversos afloramientos inéditos de la «serie de transición» en la Cordillera Cantábrica, así como por la lectura crítica de este artículo. A D. Eulogio Martín Castellanos (Dpto. Paleontología, Madrid), por la realización de las fotografías reunidas en la fig. 2.

Recibido 13-IV-87
Admitido 2-IV-87

BIBLIOGRAFÍA

LEYVA, F.; MATAS, J. y RODRIGUEZ FERNAN-

PELLO, J. y PHILIPPOT, A. (1967): Sur la présence du Llanvitr au Puerto Sueve (zone orientale des Astu-

