Open quantum rotors: Connecting correlations and physical currents

Ricardo Puebla, Alberto Imparato, Alessio Belenchia and Mauro Paternostro

1 Instituto de Física Fundamental, IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain
2 Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, United Kingdom
3 Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, Building 1520, DK-8000 Aarhus C, Denmark
4 Institut für Theoretische Physik, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany

(Received 26 January 2022; accepted 9 September 2022; published 28 October 2022)

We consider a finite one-dimensional chain of quantum rotors interacting with a set of thermal baths at different temperatures. When the interaction between the rotors is made chiral, such a system behaves as an autonomous thermal motor, converting heat currents into nonvanishing rotational ones. Such a dynamical response is strongly pronounced in the range of the Hamiltonian parameters for which the ground state of the system in the thermodynamic limit exhibits a quantum phase transition. Such working points are associated with large quantum coherence and multipartite quantum correlations within the state of the system. This suggests that the optimal operating regime of such a quantum autonomous motor is one of maximal quantumness.

DOI: 10.1103/PhysRevResearch.4.043066

I. INTRODUCTION

There is a growing, cross-disciplinary interest in the understanding of the way quantum features affect the laws of thermodynamics [1–5] and explore the limits to thermal machines operating at the nanoscale [6–12]. While, so far, the focus of such investigations has been primarily put on simple quantum systems involving only a few degrees of freedom, the assessment of the thermodynamic performance of quantum many-body systems as working media of potential quantum motors have recently started to receive attention [13–18].

Autonomous thermal motors are of particular interests for the thermodynamics of both classical [19–24] and quantum processes [25–31]. Such devices are able to convert thermal currents into motion, and thus possibly work. Their most salient feature is that they can operate without the intervention of an external agent that changes their Hamiltonian, making their design ideal for application purposes. Autonomous quantum refrigerators have a similar task, cooling down a reservoir at the expenses of heat currents [32–34].

Recent work has shown that collective phenomena such as synchronization and classical phase transitions can enhance the dynamic and thermodynamic performances in systems of interacting molecular motors [35–37], of interacting work-to-work transducers [38–40], in a 2D system of classical rotors driven out of equilibrium by a temperature gradient [41], or in an out-of-equilibrium Frenkel-Kontorova model undergoing a commensurate-incommensurate phase transition [24]. These are a fascinating phenomena arising from the collective behavior in a many-body system [42], which divide the phases of matter characterized by different properties depending on the external conditions. This phenomenon also applies to quantum systems, where quantum fluctuations—rather than thermal ones—can trigger quantum phase transitions (QPTs) [43].

At a quantum critical point, the ground state of the system develops singular behavior, typically accompanied by the closing of the energy gap [43] with the first excited state and diverging quantum correlations [44–46], among other features.

The study of autonomous thermal motors and refrigerators based on quantum many-body effects could thus potentially allow for the identification of possible performance enhancements stemming from collective quantum phenomena such as a QPT. In this paper, we investigate the thermodynamics of an autonomous system in proximity of a QPT. We consider a finite-size one-dimensional chiral clock model (CCM) consisting of interacting quantum rotors. In the thermodynamic limit of infinitely many constituents, this model exhibits a well-characterized QPT [47–50]. A dimer of quantum rotors with chiral interaction has been shown to give rise to a rotational current, when connected to two baths at different temperatures, as a result of the lack of thermal equilibrium and owing to the broken rotational symmetry [30]. In the multicomponent system considered here, we find that such a dynamical response is maximal for values of the Hamiltonian parameters that result in a QPT in the thermodynamic limit. Although the rotational current turns out to always be finite, such a phenomenon is reminiscent of the diverging response to a change in an external thermodynamic force in systems at equilibrium in proximity of a phase transition, a phenomenon whose onset we are able to witness despite the finiteness of the system that we address. Furthermore we elucidate the relation between quantum correlations and...
thermodynamic currents in the considered CCM. While the unveiled phenomenology does not imply necessarily a causal link between the emergence of mechanical currents and the onset of many-body criticality, the interplay between these effects is suggestive of a strong role played by collective phenomena on the performance of heat-to-mechanical current conversion in such autonomous device. We emphasize that in this paper we only study the rotational currents of the rotors and the heat currents exchanged with the baths. The problem of work extraction entails the conversion of rotational motion into linear motion, a problem of technological interest, but of difficult implementation in the microscopic realm.

The remainder of this paper is organized as follows. In Sec. II, we introduce the basics of the CCM. In Sec. III, we consider the interaction of the rotors with independent thermal baths with staggered temperatures. We characterize the nonequilibrium steady state (NESS) of the model by looking at the tunneling and thermal currents. In Sec. IV, we connect the particle currents at the steady state with the correlations of work extraction entails the conversion of rotational motion above, as

\[ H_{ccm} = -f \sum_{k=1}^{M} (\sigma_k^+ + \sigma_k^-) - (1-f) \sum_{k=1}^{M} (\mu_k^{*} \mu_{k+1} + \text{H.c.}) \]

(1)

where \( f \) is the control parameter that accounts for the relative weight between the free and interaction terms, and \( \varphi_k \) the so-called chiral phases. We assume periodic boundary conditions, so that \( \mu_{k+1} = \mu_k \). Here the local operators \( \mu_k \) and \( \sigma_k \) for the \( k \)th rotor, are defined, in the vertex basis introduced above, as

\[
\mu_k = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & \nu & 0 & \cdots & 0 \\
0 & 0 & \nu^2 & \cdots & 0 \\
0 & 0 & 0 & \cdots & \nu^{N_r-1}
\end{bmatrix},
\]

\[
\sigma_k = \begin{bmatrix}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & 0 & \cdots & 0
\end{bmatrix}
\]  

with \( \nu = e^{i2\pi/N_r} \). The first term of the Hamiltonian encodes the dynamics of the individual rotors and gives rise to tunneling currents between their internal levels (cf. Fig. 1). For a particle at the vertices of a regular polygon, the tunneling currents can be visualised as describing the hopping of the single system between such vertices induced by the rotor internal Hamiltonian. The second term in the Hamiltonian encodes the interaction between nearest neighbors.

The model possesses a global \( Z_3 \) symmetry and, classically, presents two phase transitions in 2D [53]. The interaction potential breaks a specific rotational symmetry when \( \varphi_k \neq q\pi/N_r \) in a dimer (\( M = 2 \)) Refs. [30], while on a lattice model with periodic boundary conditions the same broken symmetry arises when a staggered phase is considered [41]. This is a necessary condition for the emergence of the rotational (particle) currents, as we will also see in the following (cf. Sec. III A). In this context, the order parameter of the model is the total magnetization \( m = \sum_k (\mu_k^2 + \mu_k^4) / M \). From now on, we will focus on the minimal configuration allowing for nonzero currents, namely the case of \( N_r = 3 \). It should be noted that, our model is similar to the one investigated in Ref. [50] where the role of \( \sigma \) and \( \mu \) was interchanged. There, it was argued that the phase transition experimentally found in a one–dimensional chain of trapped alkali-metal atoms [54] belongs to the universality class of the \( Z_3 \) chiral clock model considered here. In Refs. [49,50], the structure of the phase diagram of the CCM with \( N_r = 3 \) and homogeneous chiral phase \( \varphi_k = \varphi \) was investigated in detail, showing that for small values of \( \varphi \) there is a direct transition from the ordered (\( f \ll 1/2 \)) to a disordered phase (\( f \gg 1/2 \)). For large chirality (\( \varphi > \pi/6 \)), the two phases are separated by an incommensurate phase. In Appendix A, we provide a brief summary of the symmetry-breaking QPT taking place in the ground state of \( H_{ccm} \), while we refer to Refs. [49,50] for a thorough inspection of the model’s critical features.
III. OPEN SYSTEM DYNAMICS: CORRELATIONS VS CURRENTS

We are interested in exploring the physics of the CCM when interacting with thermal baths. In particular, we consider the case in which each rotor is in contact with an independent thermal reservoir and partition our system in two sub-lattices consisting of even (e) and odd (o) rotors, respectively. The inverse temperature of the two sub-lattices is set to be \( \beta_e \) and \( \beta_o \), respectively, and we will assume \( \beta_e \neq \beta_o \), in general, thus realizing a staggered-temperature configuration (cf. Fig. 1 for a schematic illustration). As it will be shown later on in this section, the temperature difference gives rise to thermally driven mechanical currents in the system that are sustained asymptotically in time. The system thus evolves towards a nonequilibrium steady state (NESS), whose properties we now aim at characterizing.

We describe the open system dynamics via the local Gorini-Kossakowski-Sudarshan-Lindblad (GKLS) master equation

\[
\dot{\rho} = -i[H_{ccm}, \rho] + \sum_{k=1}^M D_k(\rho),
\]

with local dissipators

\[
D_k(\bullet) = \sum_{j,j'} W_{j,j'}^k \left[ L_{j,j'}^k \cdot L_{j,j'}^{k\dagger} - \frac{1}{2} \{ L_{j,j'}^{k\dagger} L_{j,j'}^k, \cdot \} \right],
\]

defined in terms of the jump operators \( L_{j,j'}^k = \ket{\psi} \bra{j} \) with \( \ket{j} = \ket{j_1, \ldots, j_M} \) with \( j_k = 0, \ldots, N_e - 1 \). Each of the local dissipators \( L_{j,j'}^k \) induces an incoherent transition between states \( \ket{j} \) and \( \ket{j'} \), weighted by the rate \( W_{j,j'}^k \) where only the spin of the \( k \)th rotor is rotated, that is, \( \ket{j} \rightarrow \ket{j'} \) is obtained by \( j_k \rightarrow (j_k \pm 1) \mod N_e \).

The transition rates \( W_{j,j'} \) from \( \ket{j} \) to \( \ket{j'} \) fulfill the local detailed balance

\[
W_{j,j'}^k/W_{j',j}^k = e^{\rho_j (E_j - E_{j'})},
\]

where \( E_j = \bra{j} H_{ccm} \ket{j} \). The energies \( E_j \) entering the local detailed balance condition Eq. (5) are not eigenvalues of the total system Hamiltonian \( H_{ccm} \) as a consequence of the choice of local basis \( \{|j_k\} \) defining the jump operators, see, for instance, Refs. [46,55]. For the transition rates, we take \( W_{j,j'}^k = \gamma_k (E_j - E_{j'}) \) with

\[
\gamma_k(\omega) = \frac{\sigma[\omega]}{1 - e^{-\beta_k[\omega]}} \zeta(\omega) \quad \text{and} \quad \zeta(\omega) = \begin{cases} e^{\beta_k[\omega]} & \omega \leq 0, \\ 1 & \omega > 0, \end{cases}
\]

so as to match the corresponding expression for a generic bosonic bath with global detailed balance [56], and where \( \sigma \) is a microscopic rate. Before proceeding further, a note is in order. As it is well known, local master equations can be problematic from a thermodynamic point of view [57,58]. However, it should be noted that this conclusion has recently challenged by a stream of works [34,59–61] pointing towards a reconciliation of local master equation and thermodynamics. In particular, it has been shown that the local master equation is not, in general, at odds with the second law of thermodynamics as far as the proper expression for the heat currents is considered. In the specific case under study, we can split the Hamiltonian in its diagonal and nondiagonal part in the \( \{|j\} \) basis as \( H_{ccm} = H_D + H_{ND} \), which allows us to introduce the individual energy currents

\[
\dot{Q}_{D,k} = \text{tr}(\rho \partial_{\xi}^* [H_D]), \quad \dot{Q}_{ND,k} = \text{tr}(\rho \partial_{\xi}^* [H_{ND}]),
\]

where \( \partial_{\xi}^* \) is the dual of \( \partial_{\xi} \). In the steady state \( \dot{\rho} = 0 \), and using the adjoint master equation of (3), one obtains the energy conservation condition, that reads

\[
d \langle \dot{H}_{ccm} \rangle = 0 = \sum_k \dot{Q}_{D,k} + \dot{Q}_{ND,k}.
\]

It is useful to remark that the standard definition of heat flux when dealing with a local master equation would read \( \dot{Q}_k = \text{tr}(\rho \partial_{\xi}^* [H_{ccm}]) = \dot{Q}_{D,k} + \dot{Q}_{ND,k} \). Unfortunately, using \( \dot{Q}_k \) leads in general to violations of the second law of thermodynamics (cf. Ref. [57] for an example). However, it is the weighted sum of \( Q_{D,k} \)'s that enters the second law of thermodynamics and gives a positive entropy production rate \( \Sigma = dS/dt = \sum_k \beta_k Q_{D,k} \geq 0 \), consistently with the second law [34], and one should really focus on the individual currents. Equation (3) can be derived starting from a microscopic model for the baths, the system, and the interaction Hamiltonian. At such microscopic level, energy conservation holds for the total Hamiltonian (baths, system, bath–system interaction). Eq. (8) expresses energy conservation for the system alone, when its dynamic has already been coarse-grained. Thus by interpreting the first term on the right-hand side of such equation as the heat current flowing into the system from the baths [34], we can conclude that the nondiagonal term is the residue energy flowing into/from the system because of the mismatch between the eigenbasis of the Hamiltonian and the chosen system-bath interaction described by the jump operators \( L_{j,j'} \). Furthermore, in another consistent thermodynamic interpretation \( \dot{Q}_{ND,k} \) can be associated to a work rate within a microscopic collisional model framework [61]. For further details on this construction, we refer the interested reader to Ref. [34]. An alternative approach to the thermodynamic consistency of the local master equations is discussed, e.g., in Ref. [62].

A. NESS of the GKLS master equation and particle currents

From the numerical diagonalization of the Liouville super-operator on the right-hand-side of the GKLS master equation, we obtain the unique steady state \( \rho_{SS} \) of the CCM interacting with independent thermal baths. Such state is in general a NESS, however its nature is determined by the choice of parameters of the model. Note that, although the ground state of \( H_{ccm} \) displays a QPT, such abrupt transition is blurred in this open quantum system setting. In order to quantify the nonequilibrium nature of the steady state we turn to look at quantum particle currents in the system.

The definition of quantum particle currents in general is a non trivial task. A formal characterisation has been carried out in Ref. [30] where the authors also investigate a CCM with \( M = 2 \) rotors. For a classical particle hopping on a graph, one can readily define the probability current between any two vertices on the graph which reads

\[
J_{j\rightarrow j'} = W_{j,j'} p_j - W_{j',j} p_{j'},
\]
where \( p_j \) is the instantaneous probability of finding the particle at vertex \( j \), and \( W_j \) is the transition rate from \( j' \) to \( j \). In Ref. [30], the quantum analog of this classical current was defined as the sum of the tunneling and thermal current operators, namely,

\[
J^\text{un}_{j \rightarrow j'} = i(x_j \hat{H}_{\text{ccm}} x_{j'} - x_{j'} \hat{H}_{\text{ccm}} x_j),
\]

\[
J^\text{th}_{j \rightarrow j'} = \frac{1}{2} \sum_{k,j,j'} W_{j,j'}^{(k)} \{ \{ x_j, L_j^{(k)} x_{j'} \} - \{ x_{j'}, L_{j'}^{(k)} x_j \} \},
\]

where \( x_j = |j\rangle \langle j| \) is the projector onto a generic state \( |j\rangle \), \( L_j^{(k)} = |j\rangle \langle j'| \) is the jump operator for the \( k \)th rotor between states \( |j\rangle \) and \( |j'| \) which is weighted by the thermal rate of the \( k \)th bath, and the sum runs over all the possible transitions between pair of states of the system and over all the baths. Note that in Eq. (11), we have introduced the summation indices \( k \) and \( j \) between pair of states of the system and over all the baths. Note that the thermal current reduces to the classical probability current (9) in the classical limit. Recall that we consider jump operators \( L_j^{(k)} \) where only the spin of the \( k \)th rotor is rotated, namely, \( L_j^{(k)} = |j\rangle \langle j'| \) with \( |j\rangle \equiv |j_1, \ldots, j_M \rangle \rightarrow |j\rangle \equiv |j_1, \ldots, j_k \pm 1, \ldots, j_M \rangle \). We will thus refer to the overall rotational (or mechanical) current of the \( k \)th rotor as given by the sum of the two contributions stemming from Eqs. (10) and (11).

Before proceeding further, we shall discuss the general properties of these NESS currents. In order to simplify the notation, in the following, we will omit the subscript \( j \rightarrow j' \) in the steady state currents \( \langle J^\text{un,th}_{j \rightarrow j'} \rangle \), as in the NESS the rotational currents of the \( k \)th rotor are independent of the specific initial and final position considered. We consider staggered chiral phases \( \phi_k = (-1)^f \phi \), which, as discussed below, give homogeneous currents within each of the two sublattices. For \( \phi = q \pi N_q \) \((q \in \mathbb{Z})\), the currents vanish, \( \langle J^\text{un,th}_{j \rightarrow j'} \rangle = 0 \), for each individual rotor \( k = 1, \ldots, M \), \( \forall \beta \) and regardless of the temperature difference among sub-lattices \( \Delta T = 1/\beta - 1/\beta' \). The choice \( \phi_k = (-1)^f \phi \) makes the system rotationally asymmetric, which is a prerequisite for directed rotational currents to arise [41]. Symmetry is restored when \( \phi = q \pi N_q \), and thus the currents vanish. While other symmetry-breaking choices for the chiral phases are possible, the staggered setup makes the properties within each of the two sublattices homogeneous.

In addition, \( \langle J^\text{un,th}_{j \rightarrow j'} \rangle \neq 0 \) if \( \phi \neq q \pi N_q \) and \( f \neq 0, 1 \), and \( \langle J^\text{un,th}_{j \rightarrow j'} \rangle = 0 \) when \( \Delta T = 0 \). In a similar fashion, the thermal current fulfills \( \langle J^\text{th}_{j \rightarrow j'} \rangle = \sum_{k=1}^{M} \langle J^\text{th}_{j \rightarrow j'} \rangle_k = 0 \) for \( \phi \neq q \pi N_q \) and \( f \neq 1 \), while \( \langle J^\text{th}_{j \rightarrow j'} \rangle = 0 \) for \( \Delta T = 0 \). Thus a nonvanishing temperature gradient \( \Delta T \neq 0 \) is necessary for a net motor effect with nonvanishing \( \langle J^\text{un,th}_{j \rightarrow j'} \rangle \) and \( \langle J^\text{th}_{j \rightarrow j'} \rangle \) to arise. Figure 2 shows the individual steady state currents as a function of \( f \) and \( \phi \) for each of the individual rotors (at even or odd sites) in a CCM with \( M = 6, N_q = 3, \beta_1 = 1, \beta_2 = 1.1, \) and \( g = 0.2 \), which already reveal a nontrivial behavior. The choice of staggered temperatures and chiral phases gives equal currents within each sublattice. A similar behavior is found for different parameter combinations. Inspection of Fig. 2 suggests that the maximum of \( \langle J^\text{un,th}_{j \rightarrow j'} \rangle_k \) is reached at \( f \approx 0.45 \), which is very close to the value \( f \approx 0.46 \) at which a QPT occurs in the ground state of the CCM at thermodynamic limit [cf. Appendix A]. However, the thermal current \( \langle J^\text{th}_{j \rightarrow j'} \rangle_k \) is maximized for a slightly smaller value of \( f \). Also, the insets in Figs. 2(a) and 2(b) show that, in the classical limit \( f = 0 \), the tunneling current is vanishing in both sublattices, while the rotors exhibit the same nonzero thermal rotational frequency. Note that, in spite of the opposite sign of thermal and tunneling currents for each rotor, the net current is nonzero in general, as shown in Fig. 2(e) and (f), which show \( \langle J^\text{un,th}_{j \rightarrow j'} \rangle_k + \langle J^\text{th}_{j \rightarrow j'} \rangle_k \) against \( f \) and \( \phi \), respectively. Although not explicitly shown, the mean square value of the thermal current has a maximum at \( f \approx 1/2 \) while the analogous quantity for the tunneling current gets the value of \( \approx 2 f^2 / 3 \) independently of \( \phi \). This value suggests that all clock states are equally
OPEN QUANTUM ROTORS: CONNECTING CORRELATIONS ... PHYSICAL REVIEW RESEARCH 4, 043066 (2022)

FIG. 3. Total NESS currents $\langle J^{\text{th}} \rangle_T$ and $\langle J^{\text{nn}} \rangle_T$ for $M = 4$ and $M = 6$ rotors and $\beta_i = 1$, $\beta_i = 1.1$ with $g = 0.2$. (a) and (b) are for $\varphi_k = (-1)^f \pi/2$, while (c) and (d) are for $f = 1/2$.

Birds. However, as shown in Sec. IV, such state is not a maximally mixed one as it brings about coherence and nontrivial correlations among the individual rotors.

Figure 3 illustrates the total currents $\langle J^{\text{nn}} \rangle_T$ and $\langle J^{\text{th}} \rangle_T$ for the same parameters as Fig. 2 for $M = 4$ and 6 rotors and $\Delta T \neq 0$. Note that for fixed $M$ the total thermal current is larger than the tunneling one. Furthermore, for the two sizes here considered, $\langle J^{\text{th}} \rangle_T$ is almost constant for increasing number of rotors, while $\langle J^{\text{nn}} \rangle_T$ decreases its value suggesting that for large $M$ the total tunneling current will be negligible with respect to the thermal one. Hence, in the thermodynamic limit, one should expect $\langle J^{\text{th}} \rangle_T + \langle J^{\text{nn}} \rangle_T \sim \langle J^{\text{th}} \rangle_T$.

We now turn our attention to the steady state heat currents, as given by Eqs. (7). Here the heat currents are positive when flowing from the bath(s) to the system. The results, for two different sets of system parameters, are shown in Fig. 4. As previously done, we have chosen the even sub-lattice to be in contact with the hot bath. We observe that, for a small temperature gradient, the diagonal heat currents are both negative. This can be understood as follows. First, the first law—written in the form $\sum_k (Q_{D,k} + Q_{ND,k}) = 0$—is valid. Second, we recall that the nondiagonal heat current $Q_{ND,k}$ corresponds, within the framework of the collisional model, to the work done or produced when switching on and off the interaction of the system with the colliding particles making up the environment [34,61]. Thus the situation in Fig. 4 where $Q_{D,k} < 0$ for all rotors is compensated by a large and positive $\sum_k Q_{ND,k}$, corresponding to a net amount of work done on the system that is then dissipated in both the cold and hot baths. One can understand this result also noticing that, when $f > 0$ the Hamiltonian in Eq. (1) is not diagonal in the basis $|j\rangle$. Thus Eq. (3) will introduce coherence in the steady state, resulting in a nonzero nondiagonal heat current, as given by the second line of Eq. (7).

For a larger temperature gradient, and one of the two temperatures relatively high, the heat currents exhibits a more classical behavior with a net diagonal current from the hot to the cold baths and a reduced nondiagonal heat current.

In the ground state of the system (1), the thermally driven current $\langle J^{\text{th}} \rangle_k$ vanishes for any $f$: at $T = 0$, there is no heat current to sustain the rotational motion. However, the tunneling current $\langle J^{\text{nn}} \rangle_k$ may in principle be nonvanishing in the ground state: Eq. (10) is indeed the discrete counterpart of the Schrödinger probability current, as discussed in Ref. [30]. We find nevertheless that also $\langle J^{\text{nn}} \rangle_k$ vanishes in the ground state of (1) for any $f$. In Appendix B, we consider the rotated model of (1) with $\sigma \rightarrow \mu$ and $\mu \rightarrow \sigma$, and interestingly find that the $\langle J^{\text{nn}} \rangle_k$ shown a critical-like behavior in the ground state, being nonzero for $f \lesssim f_c$.

IV. CONNECTING CURRENTS TO COLLECTIVE INFORMATION THEORETIC QUANTITIES

The connection between the location, in parameter space, of the quantum critical point of the CCM and that of the optimal particle currents is suggestive of a potential role of collective quantum phenomena in the establishment of the nonequilibrium features of the system. In this section, we explore such suggestion further by making use of a toolbox of information theoretic figures of merit that have been used, in the past, to explore the interplay between quantum critical phenomena and nonclassicality [46,63,64]. In doing so, we unveil the intrinsically collective nature of the features that have been highlighted in our analysis so far.

Quantitatively, we will consider the von Neumann entropy of a subsystem $A$ of a compound $A \cup B$, which is defined as

$$S_A = -\text{Tr}[\rho_A \ln \rho_A],$$

where $\rho_A$ is the density matrix of subsystem $A$. The von Neumann entropy measures the amount of information that is lost when the system is viewed at a coarse-grained level, and it is a fundamental concept in quantum information theory.

This entropy is a natural choice because it captures the essence of quantum nonclassicality, as it quantifies the amount of correlations present in the state. In particular, in the context of open systems, the von Neumann entropy can be used to characterize the nonequilibrium features of the system. When the system is at thermal equilibrium, the entropy reaches a maximum value, which is known as the von Neumann entropy of the thermal state.

On the other hand, when the system is far from thermal equilibrium, the entropy can be used to characterize the degree of nonequilibrium. In particular, the entropy can be used to quantify the amount of correlations that are present in the state, and these correlations are often associated with nonclassical phenomena.

In conclusion, the von Neumann entropy is a powerful tool for characterizing the nonequilibrium features of the system. It can be used to quantify the degree of nonclassicality and to detect the onset of quantum critical phenomena. In future work, it will be interesting to explore the role of other information theoretic quantities, such as the relative entropy and the conditional mutual information, in characterizing the nonequilibrium features of the system.
where $\rho_A = \text{Tr}_B[\rho]$ denotes the partial trace over $B$. Another relevant measure is the negativity $N_A$ [65], which is able to quantify entanglement and is given by

$$N_A = \sum_{\lambda_n < 0} |\lambda_n|,$$

where $\rho^T = \sum_n \lambda_n |n\rangle \langle n|$ is the spectral decomposition of the partially transposed state with respect to subsystem $A$. The total amount of correlations (classical and quantum) shared between the bipartitions $A$ and $B$ can be quantified using on the mutual information

$$I(A : B) = S_A + S_B - S_{A:B},$$

where $S_{A:B}$ is the von Neumann entropy of the state of the whole compound. In addition, we shall compute the coherence of the system state using the $L_1$ norm [66]

$$C(\rho) = \sum_{i \neq j} |\rho_{i,j}|,$$

where $\rho_{i,j}$ are the density matrix entries in the clock-state basis. Finally, we will use the quantifier of multipartite quantum correlations provided by the so-called global quantum discord [46, 63]

$$G(\rho) = \min_{\Pi} \left\{ S(\rho||\Pi(\rho)) - \sum_{i=1}^M S(\rho_i||\Pi_i(\rho_i)) \right\},$$

where $\rho_i$ denotes the reduced state of the $i$th rotor, $\Pi = \sum_i \rho_i \Pi_i$ is a projector operator acting on the global state, and $\Pi_i(\rho_i)$ is the corresponding projector acting on the single-rotor states. Following Ref. [63], we choose $\Pi_i = |j\rangle \langle j||\rho|$ with $\mathcal{R} = \bigotimes_{j=1}^{M_j} R_j(\theta_j)$ a collection of single-particle rotation operators, while the operator acting on the $i$th rotor reads

$$R_i(\theta_i) = e^{i\theta_i A_i},$$

where $\theta_i = (\theta_{i,1}, \theta_{i,2}, \ldots, \theta_{i,n_i})$ is a vector of $n_i$ angles, and $A_i = (A_1, A_2, \ldots, A_{n_i})$ is a vector of generators of rotations for the single rotor. We have considered the $n_i = 8$ Gell-Mann $3 \times 3$ matrices as generators of rotations. The minimum in Eq. (16) is obtained by varying the set of angles $\{\theta_i\}, i = 1, \ldots, M$, through an annealing algorithm.

These instruments are all very informative of the quantum critical features of the ground-state QPT [44, 45] in the CCM (cf. Appendix A). Here however we are mainly interested in the NESS properties. In such an open quantum system, critical features become blurred or disappear altogether. This might lead one to naively think that no connection could be established. Yet, the interplay between temperature gradient between sub-lattices, currents, and correlations reveal a rich phenomenology. Figure 5 shows the behavior of these quantities for different parameters. Contrary to the CCM ground state, these quantities show a smooth dependence on $f$, which suggests that it is not in partition-dependent quantities that a behavior reminiscent of a critical one should be sought. However, it is interesting to observe that both $S_A$ and $I(A : B)$ have an inflexion point in the region where we expect the critical value of $f$ to occur, which indicates a qualitative change in trend taking place around $f \simeq 0.46$. On the other hand, the global quantum discord shows the nonclassical nature of the state of the NESS away from $f = 0, 1$, which correlates with the amount of coherence $C$. However, while the coherence for the chiral model is maximum at $f \simeq 0.46$, the global discord peaks at a slightly smaller value of $f$, likely as a result of finite-size effects that are manifested differently in $C$ and the global discord, the latter being, in general, a non linear function of the elements of the density matrix. This should be compared with Figs. 2(a) and 2(b) and Figs. 3(a) and 3(b), which show a similar behavior for the tunneling and thermal currents. This suggests that the degree of nonclassicality of the state of the system, as characterized by the coherence and the global discord, may play an important role for the out-of-equilibrium CCM to work as a thermal machine, thus converting heat currents into mechanical currents.

Note however, that although $\rho_{\text{SS}}$ contains coherence for $f \neq 0, 1$, its maximum value is significantly smaller than in the ground-state where $C \propto N_j^M$ for $f > f_c$ [cf. Fig. 8(d)]. Similar behavior is observed for other choices of $\phi$, also for $\phi = q\pi/N_i$, with $q \in \mathbb{Z}$. In addition, all these quantities inherit the periodicity $2\pi/N_i$ in the phase $\phi$. Finally, we stress that $N_A = 0 \forall f, \phi$, in contrast to the ground-state negativity (cf. Appendix A).

The observed behavior of the mutual information correlates with that of the total current $\langle J^\text{th} + J^\text{th} \rangle_T \approx \langle J^\text{th} \rangle_T$ [cf. Figs. 3(b) and 5(b)]. Building on this observation, we investigate the thermal susceptibility of the total current $\langle \Delta J^\text{th} \rangle_T/\Delta T$ with that of the mutual information, $\Delta I(A : B)/\Delta T$ when $\Delta T \rightarrow 0$, where $\langle \Delta J^\text{th} \rangle_T \equiv \langle J^\text{th}(\Delta T) \rangle_T - \langle J^\text{th}(\Delta T = 0) \rangle_T$ denotes the increment in the total current between $0 < |\Delta T| \ll 1$ and $\Delta T = 0$ (equal temperatures for both sub-lattices), and equivalently for the mutual information. Note that since $\langle J^\text{th}(\Delta T = 0) \rangle_T = 0$, it follows...
and similar behavior. For a better representation. Both quantities feature a qualitatively similar behavior.

\[ q = M \]

of the Quantum Technology group, the Centre for Theoretical Physics and the “Nonequilibrium quantum dynamics” group at Universität Stuttgart, where part of this work was carried out. R.P. and M.P. acknowledge the support by the SFI-DfE Investigator Programme (Grant No. 15/IA/2864) the European Union’s Horizon 2020 FET-Open project SuperQuLAN (899354) and TEQ (766900). M.P. acknowledges support by the Leverhulme Trust Research Project Grant UltraQuTe (Grant No. RGP-2018-266), the Royal Society Wolfson Fellowship (R/SW/R3/183013), the UK EPSRC (Grant No. EP/T028424/1) and the Department for the Economy Northern Ireland under the US-Ireland R&D Partnership Programme. A.B. also acknowledges support from H2020 through the MSCA IF pERFEcTO (Grant Agreement No. nr. 795782) and from the DeutscheForschungsgemeinschaft (DFG, German Research Foundation) Project No. BR 5221/4-1.

APPENDIX A: CRITICAL GROUND STATE FEATURES IN THE CHIRAL CLOCK MODEL

As already noted, the CCM exhibits a \( Z_N \) symmetry. In order to exploit this symmetry, it is handy to remap the Hamiltonian as \( \sigma \rightarrow \mu \) and \( \mu \rightarrow \sigma \) (as in Ref. [50]), so that the operator

\[ \mathcal{U} = \prod_{k=1}^{M} \mu_k^\dagger. \]  

allows us to split the Hilbert space in \( N_s \) subspaces. The ground state is contained in the subspace with eigenvalue 1. In the case of \( N_s = 3 \), the operator reads as \( \mathcal{U} = \prod_0 \Pi_0 + \nu \Pi_1 \Pi_1^\dagger + \nu^2 \Pi_2 \Pi_2^\dagger \), where \( \Pi_\mu \) denotes the projector on the corresponding subspace. One can use this symmetry to reduce the dimension of the Hilbert space. In particular,

\[ H_{ccm}^0 = \prod_0 H_{ccm} \Pi_0 \]  

allows us to split the Hilbert space in \( N_s \) subspaces. The ground state is contained in the subspace with eigenvalue 1. In the case of \( N_s = 3 \), the operator reads as \( \mathcal{U} = \prod_0 \Pi_0 + \nu \Pi_1 \Pi_1^\dagger + \nu^2 \Pi_2 \Pi_2^\dagger \), where \( \Pi_\mu \) denotes the projector on the corresponding subspace. One can use this symmetry to reduce the dimension of the Hilbert space. In particular,

\[ H_{ccm}^0 = \prod_0 H_{ccm} \Pi_0 \]  

Appendix A: Critical Ground State Features in the Chiral Clock Model

As already noted, the CCM exhibits a \( Z_N \) symmetry. In order to exploit this symmetry, it is handy to remap the Hamiltonian as \( \sigma \rightarrow \mu \) and \( \mu \rightarrow \sigma \) (as in Ref. [50]), so that the operator

\[ \mathcal{U} = \prod_{k=1}^{M} \mu_k^\dagger. \]  

allows us to split the Hilbert space in \( N_s \) subspaces. The ground state is contained in the subspace with eigenvalue 1. In the case of \( N_s = 3 \), the operator reads as \( \mathcal{U} = \prod_0 \Pi_0 + \nu \Pi_1 \Pi_1^\dagger + \nu^2 \Pi_2 \Pi_2^\dagger \), where \( \Pi_\mu \) denotes the projector on the corresponding subspace. One can use this symmetry to reduce the dimension of the Hilbert space. In particular,

\[ H_{ccm}^0 = \prod_0 H_{ccm} \Pi_0 \]  

allows us to split the Hilbert space in \( N_s \) subspaces. The ground state is contained in the subspace with eigenvalue 1. In the case of \( N_s = 3 \), the operator reads as \( \mathcal{U} = \prod_0 \Pi_0 + \nu \Pi_1 \Pi_1^\dagger + \nu^2 \Pi_2 \Pi_2^\dagger \), where \( \Pi_\mu \) denotes the projector on the corresponding subspace. One can use this symmetry to reduce the dimension of the Hilbert space. In particular,

\[ H_{ccm}^0 = \prod_0 H_{ccm} \Pi_0 \]  

Appendix A: Critical Ground State Features in the Chiral Clock Model

As already noted, the CCM exhibits a \( Z_N \) symmetry. In order to exploit this symmetry, it is handy to remap the Hamiltonian as \( \sigma \rightarrow \mu \) and \( \mu \rightarrow \sigma \) (as in Ref. [50]), so that the operator

\[ \mathcal{U} = \prod_{k=1}^{M} \mu_k^\dagger. \]  

allows us to split the Hilbert space in \( N_s \) subspaces. The ground state is contained in the subspace with eigenvalue 1. In the case of \( N_s = 3 \), the operator reads as \( \mathcal{U} = \prod_0 \Pi_0 + \nu \Pi_1 \Pi_1^\dagger + \nu^2 \Pi_2 \Pi_2^\dagger \), where \( \Pi_\mu \) denotes the projector on the corresponding subspace. One can use this symmetry to reduce the dimension of the Hilbert space. In particular,

\[ H_{ccm}^0 = \prod_0 H_{ccm} \Pi_0 \]  

allows us to split the Hilbert space in \( N_s \) subspaces. The ground state is contained in the subspace with eigenvalue 1. In the case of \( N_s = 3 \), the operator reads as \( \mathcal{U} = \prod_0 \Pi_0 + \nu \Pi_1 \Pi_1^\dagger + \nu^2 \Pi_2 \Pi_2^\dagger \), where \( \Pi_\mu \) denotes the projector on the corresponding subspace. One can use this symmetry to reduce the dimension of the Hilbert space. In particular,

\[ H_{ccm}^0 = \prod_0 H_{ccm} \Pi_0 \]  

allows us to split the Hilbert space in \( N_s \) subspaces. The ground state is contained in the subspace with eigenvalue 1. In the case of \( N_s = 3 \), the operator reads as \( \mathcal{U} = \prod_0 \Pi_0 + \nu \Pi_1 \Pi_1^\dagger + \nu^2 \Pi_2 \Pi_2^\dagger \), where \( \Pi_\mu \) denotes the projector on the corresponding subspace. One can use this symmetry to reduce the dimension of the Hilbert space. In particular,

\[ H_{ccm}^0 = \prod_0 H_{ccm} \Pi_0 \]  

allows us to split the Hilbert space in \( N_s \) subspaces. The ground state is contained in the subspace with eigenvalue 1. In the case of \( N_s = 3 \), the operator reads as \( \mathcal{U} = \prod_0 \Pi_0 + \nu \Pi_1 \Pi_1^\dagger + \nu^2 \Pi_2 \Pi_2^\dagger \), where \( \Pi_\mu \) denotes the projector on the corresponding subspace. One can use this symmetry to reduce the dimension of the Hilbert space. In particular,

\[ H_{ccm}^0 = \prod_0 H_{ccm} \Pi_0 \]  

allows us to split the Hilbert space in \( N_s \) subspaces. The ground state is contained in the subspace with eigenvalue 1. In the case of \( N_s = 3 \), the operator reads as \( \mathcal{U} = \prod_0 \Pi_0 + \nu \Pi_1 \Pi_1^\dagger + \nu^2 \Pi_2 \Pi_2^\dagger \), where \( \Pi_\mu \) denotes the projector on the corresponding subspace. One can use this symmetry to reduce the dimension of the Hilbert space. In particular,
contains the ground state \( \forall f \) with a well defined symmetry. For \( f < f_c \), the ground state becomes \( N_s \)-fold degenerate. In Ref. [50], the ground-state energy critical exponents of the \( H_{ccm} \) were investigated. For completeness, here we just provide a brief summary of the critical features of such a model. In particular, note that the ground-state order parameter \( m = \frac{1}{\beta} \sum_{k=1}^{M} (\mu_k + \mu_k^*) \) within the \( \Omega_0 \) subspace is given by

\[
\langle \varphi(f)m|\varphi(f)\rangle \equiv 0 \quad \forall f, \quad \text{(A3)}
\]

where \( |\varphi(f)\rangle \) denotes the ground state of \( H_{ccm}^0 \). As customary in symmetry-breaking phase transitions, one needs to resort to \( m^2 \) and \( m^4 \), which clearly reveal the symmetry-broken phase for \( f < f_c \), (and thus the QPT). Moreover, the location of the QPT can be witnessed by looking at the energy gap \( \Delta \) or Binder cumulant \( B \) [67]. The energy gap between the ground and first excited states closes at \( f_c \) following the universal scaling law [43]

\[
\Delta \sim |f - f_c|^{z_\nu}, \quad \text{(A4)}
\]

where \( z_\nu \) are critical exponents of the QPT. The Binder cumulant is defined as [67]

\[
B = \frac{1}{2} \left( 3 - \frac{(m^4)}{(m^2)^2} \right) \quad \text{(A5)}
\]

where \( (m^4) \) and \( (m^2) \) are evaluated over the ground state, i.e., \( \langle \varphi(f)|m^2|\varphi(f)\rangle \) and \( \langle \varphi(f)|m^4|\varphi(f)\rangle \). This quantity has been proven very useful to locate the critical point \( f_c \) (see for example Refs. [68,69]). Applying finite-size scaling arguments, \( B \) is expected to become size independent at \( f_c \). Hence, the QPT takes place at the value of \( f \) at which the Binder cumulant \( B \) for different system sizes \( M \) interpose, although finite-size corrections still yield small deviations to the size-independent intersections. In Fig. 7 we show the resulting Binder cumulant \( B \) for the ground state of the CCM for \( N_s = 3 \) for the case of a staggered and homogeneous chiral phase \( \varphi_k = (-1)^y \pi/8 \) and \( \varphi_k = \pi/8 \), respectively. The location of the QPT, i.e. \( f_c \), for the homogeneous chiral phase is consistent with the reported value in Ref. [50], \( f_c = 0.46267 \) which is indicated by a dotted vertical line, while \( f_c \) appears to be shifted to a slightly larger value for a staggered chiral phase. The signatures of the QPT are already evident even for the considered system sizes \( M \leq 10 \).

In addition, in Fig. 8 we show the quantum information measures on the CCM ground-state as a function of the control parameter \( f \), namely, von Neumann entropy \( S_A \), negativity \( N_A \), coherence \( C \), mutual information \( I(A:B) \) and global quantum discord \( G \). The system is split in half, so that the partition \( A \) includes the first \( M/2 \) rotors, namely, rotors 1 and 2 for \( M = 4 \) and 1, 2, 3 for \( M = 6 \).

**APPENDIX B: TUNNELING CURRENT IN A ROTATED CCM MODEL**

As commented in the main text, while the ground-state properties of the CCM model remain unaltered upon the rotation \( \sigma \rightarrow \mu \) and \( \mu \rightarrow \sigma \), the tunneling current becomes remarkably different. Note that the definition of the tunneling current \( J_{tun}(j \rightarrow j') \) given in Eq. (10) is independent of the specific choice of the Hamiltonian. In particular, for

\[
\tilde{H}_{ccm} = -f \sum_{k=1}^{M} (\mu_k + \mu_k^*) - (1 - f) \sum_{k=1}^{M} (a_k a_{k+1}^\dagger e^{i\phi_k} + H.c.), \quad \text{(B1)}
\]

with staggered chiral phases \( \varphi_k = (-1)^k \psi \), the tunneling current in its ground state is non zero. Moreover, the behavior of \( J_{tun} \) resembles that of a critical quantity across a phase transition. The resulting tunneling current for a parity-preserving ground state is plotted in Fig. 9 for \( M \) from 4 to 12 rotors, which indicate a sharp transition around the QPT.

**FIG. 8.** Quantum information measures of the ground state of the CCM with periodic boundary conditions and staggered chiral phase \( \varphi_k = (-1)^y \pi/2 \) for \( M = 4 \) and 6 rotors, which unveil the QPT taking place in the system. From left to right, von Neumann entropy \( S_A \), negativity \( N_A \), mutual information \( I(A:B) \), coherence \( C \) (rescaled over the total Hilbert space dimension \( N^{462} \)), and global discord \( G \), respectively. The system is split in half, so the partition \( A \) includes the first \( M/2 \) rotors, namely, rotors 1 and 2 for \( M = 4 \) and 1, 2, 3 for \( M = 6 \).

**FIG. 9.** (a) Tunneling current for the odd rotors \( J_{tun} \) in the ground state of the CCM \( \tilde{H}_{ccm} \) given in Eq. (B1), with \( \varphi_k = (-1)^y \pi/2 \) and as a function of \( f \). The tunneling current for even rotors is reversed in sign, i.e., \( -J_{tun} \). (b) shows a zoom closer to the transition point to signal the sharper behavior of \( J_{tun} \) as \( M \) increases.


