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The biotrophic fungus Puccinia striiformis f. sp. tritici is the causal agent of the yellow rust in
wheat. Between the years 2010–2013 a new strain of this pathogen (Warrior/Ambition),
against which the present cultivated wheat varieties have no resistance, appeared and
spread rapidly. It threatens cereal production in most of Europe. The search for sources of
resistance to this strain is proposed as the most efficient and safe solution to ensure high
grain production. This will be helped by the development of high performance and low cost
techniques for field phenotyping. In this study we analyzed vegetation indices in the Red,
Green, Blue (RGB) images of crop canopies under field conditions. We evaluated their
accuracy in predicting grain yield and assessing disease severity in comparison to other
field measurements including the Normalized Difference Vegetation Index (NDVI), leaf
chlorophyll content, stomatal conductance, and canopy temperature. We also discuss yield
components and agronomic parameters in relation to grain yield and disease severity.
RGB-based indices proved to be accurate predictors of grain yield and grain yield losses
associated with yellow rust (R2 = 0.581 and R2 = 0.536, respectively), far surpassing the
predictive ability of NDVI (R2 = 0.118 and R2 = 0.128, respectively). In comparison to
potential yield, we found the presence of disease to be correlated with reductions in the
number of grains per spike, grains per square meter, kernel weight and harvest index. Grain
yield losses in the presence of yellow rust were also greater in later heading varieties. The
combination of RGB-based indices and days to heading together explained 70.9% of the
variability in grain yield and 62.7% of the yield losses.
© 2015 Crop Science Society of China and Institute of Crop Science, CAAS. Production and

hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
Wheat is the second most cultivated cereal in Spain [1] and
the most widely cultivated cereal worldwide, with over
218 Mha in cultivation [2]. Puccinia striiformis is the causal
agent of yellow rust in grasses and has been described as
infecting a wide variety of cultivated cereals, including wheat,
rye, barley and triticale. The forma specialis (f. sp.) tritici
primarily infects wheat. The presence and severity of this
fungal disease in Mediterranean and temperate cultivars has
not been of importance until recently. The use of wheat
varieties resistant to this pathogen had previously ensured
that losses were minimal in the Mediterranean region [3];
however, the presence of a new Pst race called the Warrior/
Ambition race, first described during 2009/2010 in the United
Kingdom, Germany, Denmark, France and Scandinavia, has
severely affected winter wheat production in recent years [4].
One year after it was first discovered in Europe, its presence
was also detected in Spain [4] and the disease spread
extensively during the 2012/2013 winter wheat season.
Several epidemic events resulting in serious crop damage
and widespread yield losses in Spain [3] have since been
recorded. The rapid spread of this strain was favored by the
climatic conditions of the 2012/2013 season: cool tempera-
tures during spring, high humidity and prolonged rainy
conditions [5].

P. striiformis f. sp. tritici has a great capacity for dispersal
and for variation [6]. The new Warrior/Ambition strain is
virulent for most of the currently deployed resistance genes
[3] and can therefore parasitize most of the wheat varieties
presently grown around the world. In addition, this fungus
spreads by wind over hundreds of kilometers, germinates
quickly at low temperatures (7–10 °C) [6,7], and infects wheat
crops at a relatively early growth stage. The most apparent
visible sign of infection is the orange-yellowish mass of
urediniospores being produced by uredinia arranged in long,
narrow stripes along the leaf veins. Development of resistant
varieties is essential for effective control; however, to date no
variety with resistance to the strain has been recommended
in Spain [8]. There is an urgent need to develop improved high
throughput field phenotyping approaches for breeding for
yellow rust resistance in wheat.

The diversity of existing wheat varieties provides a source
of genetic variability from which we can select a high number
of features of interest, such as drought and salinity tolerance,
improvements in nutrient use efficiency or, in our case,
disease resistance. Phenomics arises as a complex and
integrative discipline that tries to characterize plant function-
al traits related to specific conditions from the cell to
community level. However, it is considered amajor bottleneck
with regard to the advancement of crop breeding [9–13]. Thus,
high-performance phenotyping systems are required to un-
derstand the relationships between genotype, phenotype and
environment. Phenotyping requires that the studied trait and
the chosen methodology for its measurement are appropriate
for the purpose of the investigation.

There are currently several criteria for field phenotyping by
monitoring and analyzing different plant traits as a response
to stress conditions. However, most of these techniques are
time-consuming, unrepresentative of the whole plot and/or
require sampling, laboratory processing and costly equip-
ment. Visible and near infrared (VNIR) spectral measurements
have high performance in characterizing physiological and
biochemical processes as well as agronomic traits at both crop
and leaf levels [14–20], whereas, thermal imaging enables rapid
observations of plant water status and their cooling ability [9,10].
Both approaches can be integrated as part of field-monitoring
platforms, but their implementation is expensive. As an alterna-
tive, vegetation indices based on conventional digital Red,
Green, Blue (RGB) digital imaging are high-performance, low-
cost techniques for predicting plant and crop traits, and can
be based on processing pictures of either crop canopies or
single leaves [21]. The use of these technologies is currently
expanding due to their versatility and affordability. Some of
their proven applications are: the development of predictive
models for crop yield under specific growing conditions [22],
crop growth assessment under water stress conditions [23],
fertilization monitoring and nitrogen requirements [24], LAI
(leaf area index) for lodging risk evaluation in winter wheat
[25], and quantification of pollen release [26].

The efficacy of RGB digital methods for the evaluation of a
pest or disease at the leaf level has also been reported,
including powdery mildew on cucumber leaves [27], assess-
ment of foliar disease symptom severities in corn, wheat and
soybean [28], determination of the impact of disease severity
of specific grain diseases [29], and of different types of fungal
diseases in wheat [30,31]. In all these cases image analysis
techniques were employed to detect the presence of the pest
or disease and the infected, necrotic and/or dry areas using
scans or photographic images of leaves or other plant parts.
This approach has proven highly accurate in its predictions,
but is cumbersome and time consuming in practice because
it requires manually intensive and destructive harvesting
and photographing the plant organs of interest. Studies on
sensitivity of crops to biotic stress using hyperspectral crop
canopy data have been conducted previously [32–35], but no
previous studies using digital RGB cameras at the canopy level
are known to the authors. Thus, the development of predic-
tion models of grain yield (GY) and crop pathogen sensitivity
using digital RGB photography of crop canopies represents
a novel and practical alternative to other remote sensing
approaches, such as VNIR-derived vegetation indices, for wheat
phenotyping under field conditions.

The objective of this study was to assess the sensitivity
of autumn sown wheat varieties to yellow rust under field
conditions using different methodologies. First, we assessed
the performance and accuracy of RGB indices in comparison
to the Normalized Difference Vegetation Index (NDVI) for
prediction of grain yield losses associated with yellow rust.
Second, we evaluated the performance of other agronomic
metrics commonly used in field phenotyping (leaf chloro-
phyll content, stomatal conductance and canopy tempera-
ture) and their relationships with GY and disease severity.
Third, we investigated the effects of yellow rust on the
relationships between common agronomic parameters, GY
and the grain yield loss index (GYLI). Finally, we combined
the best remotely-sensed vegetation indices and agronomic
metrics in stepwise multivariate predictive models of GY and
GYLI.
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2. Materials and methods

2.1. Experimental field, plant material and growing conditions

Field trials were carried out at the experimental station of
Colmenar de Oreja (40° 04′ N, 3° 31′W) belonging to the Instituto
Nacional de Investigación y Tecnología Agraria y Alimentaria
(INIA) of Spain during the 2012/2013 crop season. The average
annual precipitation corresponding to this region is about
425 mm and the average annual temperature is 13.7 °C. The
region has an altitude of 590 m in the middle of the Tajo River
basin. The ground has a slightly alkaline soil (pH 8.1) and
corresponds to a xerofluvent soil [36]. It is a kind of alluvial
entisolwith a xericmoisture regime [37]. Before planting, the field
was fertilized with 400 kg ha−1 of a 15:15:15 N:P:K (15% N, 15%
P2O5, 15% K2O) fertilizer. A second application of 150 kg ha−1 of
urea 46% dilution was applied before stem elongation.

Sixteen durum wheat varieties (Triticum turgidum L. subsp.
durum (Desf) Husn.) were grown, 13 of Spanish registration
(Vitrón, Regallo, Gallareta, Bolo, Don Pedro, Sula, Bólido,
Dorondón, Murgos, Pelayo, Don Sebastian, Don Ricardo and
Kiko Nick) and three European (Simeto, Claudio and Iride from
Italy). The experimental design was established in random-
ized blocks with three replicates and a total of 48 plots. The
planting took place on December 5, 2012, with a planting
density of 250 seeds per square meter. The plots had an area
of 7 × 1.5 m2 and a distance of 0.2 m between rows. Rainfall
during the 2012/2013 crop season was 278 mm and the average
temperature was 11.4 °C. This amount of precipitation was
considerably higher than the same period in previous years
(200–230 mm). Furthermore, rainfall was focused in the spring
months: March (106 mm), April (44 mm) andMay (53 mm). The
average humidity during the period was 10–15% higher than
normal according to historical records [38]. This trial was not
irrigated.

Field measurements and plot canopy pictures were taken
five times throughout the trial: February 27–28, April 8–10,
April 29–30, May 22–23 and May 30–31, 2013, corresponding
Fig. 1 – Wheat leaves damaged by
with the development stages of tillering, stem elongation or
jointing, heading, anthesis and post-anthesis (first half of
grain filling), respectively. Plant height (PH) was measured
during the last field visit. Field operators measured the
number of days to heading (DH) (when approximately 50% of
stems have showed half-emerged spikes). Harvesting was
carried out on July 10, 2013, and grains were dried in an oven
at 60 °C for 48 h. The measured traits included GY, spikes per
square meter, grains per spike, thousand kernel weight (TKW)
and harvest index (HI).

2.2. Disease identification of fungus

Disease was identified by station staff as yellow rust. Detailed
photographs show its presence (Fig. 1) and characteristic
symptoms. A camera (Pixera 150ES, USA) coupled to a zoom
microscope (Olympus SZ 60, USA) was used to observe and
photograph a selection of flag leaf samples from post-anthesis
stage samples. These pictures show the characteristically linear
lesions on the wheat leaf surface (Fig. 2). The correct identifi-
cation of yellow rustwas confirmed by the numerous outbreaks
reported all around Spain during the same period by the Group
for the Evaluation of New Varieties of Extensive Crops in Spain
(GENVCE) [39] state network.

2.3. Assessment of yield losses attributed to yellow rust

As previously described, environmental conditions especially
favored the development of yellow rust 2012/2013. Further-
more, continuous rainsmade it impossible to apply fungicides
to contain the disease. Damage was evident in late April
(heading stage) and worsened during the following months.
In order to evaluate grain yield losses associated with the
disease, grain yields of the same genotypes were measured in
the following season (2013/2014) and potential yield was used
as a reference. Materials in the second season were planted in
the same experimental station and using a similar design and
agricultural practices; the presence of rust was negligible. The
average temperature during the 2013/2014 growing season
yellow rust during 2012–2013.



Fig. 2 – Zoomed photographs of damaged leaves.

203T H E C R O P J O U R N A L 3 ( 2 0 1 5 ) 2 0 0 – 2 1 0
was 13.6 °C, rainfall was 213 mm and concentrated in the
cooler months: December (32 mm), January (51 mm), February
(47 mm) and March (29 mm). Irrigation was also used to
achieve optimal growth. Sprinkler irrigation was applied
seven times, providing 355 mm of irrigation water and thus
a total of 568 mm for the season. GYLI was calculated as:
GYLY = (GY 2013/2014 − GY 2012/2013) / (GY 2013/2014) × 100,
where GY 2013/2014 represents the potential grain yield
obtained in the 2013/14 season when the yellow rust was not
present, and GY 2012/2013 corresponds to grain yield in the
presence of yellow rust. Finally, in order to confirm the causal
relationship between the presence of the disease and the
grain yield losses — ignoring possible water stress effects —
grain yields from the 2013/2014 growing season (not affected
by wheat rust) in rainfed conditions only, hereafter consid-
ered as sub-optimal yield conditions, were compared to grain
yields of the 2012/2013 season (affected by rust).

2.4. Vegetation indices

NDVI was determined with a portable spectroradiometer
(GreenSeeker handheld crop sensor, Trimble, USA) on three
dates: February 27, April 10 and May 22, 2013, coincident with
the development stages of tillering, jointing and anthesis,
respectively. NDVI was calculated using the equation: NDVI =
(NIR − R) / (NIR + R), where R is the reflectance in the red band
(660 nm) and NIR is the reflectance in the near-infrared band
(760 nm). The distance between the sensor and the plot
canopy was 0.5–0.6 m above and perpendicular to the canopy.

Onedigital RGBpicturewas takenper plot, holding the camera
at 0.8–1.0 m above the plant canopy, in a zenithal plane and
focusing near the center of each plot. Photographs were taken
with a Nikon D40 camera on four dates: February 27, April 8, May
23 and May 30, 2013, coincident with tillering, jointing, anthesis
and post-anthesis, respectively. The D40 had a focal length of
18 mm, shutter speed of 1/125 and horizontal and vertical fields
of view (FOV) of 66° 43′ and 46° 51′, respectively. No flash was
used and the aperture of remained in automatic. Photographs
were saved in JPEG format with a size of 1920 × 1280 pixels.

Pictures were subsequently analyzed with open source
Breedpix 0.2 software designed for digital photograph process-
ing [21]. This software enabled determination of RGB vegetation
indices from the different properties of color. RGB indices were
previously proven to be good indicators of plant growth and
crop senescence [23]. The following five digital indices were
used in this study: a*, u*, hue, green area (GA) and greener area
(GAA). The last two indices analyze the number of green pixels
in the image, but differ in that GAA excludes yellowish-green
tones and therefore more accurately describes the amount of
photosynthetically active biomass and leaf senescence. The a*
and u* indices require the use of Java Advanced Imaging for
calculation, and the use of formulae described by O'Gorman et
al. [40] and Vrhel et al. [41], respectively, in order to analyze
specific features and color components.

2.5. Leaf chlorophyll content, canopy temperature and leaf
stomatal conductance

A handheld Minolta SPAD-502 sensor (Spectrum Technologies
Inc., Plainfield, IL, USA) was used to measure relative leaf
chlorophyll content (LCC). Five flag leaves per plot were
measured at each sampling date: April 10, April 30, and May
30, 2013, corresponding to jointing, heading and post-anthesis
stages, respectively. A portable thermal infra-red MIDAS 320L
camera (DIAS Infrared Systems, Germany)was used tomeasure
canopy temperatures. Photographs of whole plot were taken at
midday from a distance of approximately one meter in direct
sunlight. These pictures were processed using PYROSOFT
Professional (DIAS Infrared Systems, Germany) for DIAS infra-
red cameras selecting a representative area of each plot from
two dates, May 22 and May 30, 2013, corresponding to the
anthesis and post-anthesis stages. Air temperature and humid-
ity were simultaneously recorded with a thermo-hygrometer
(Testo 177-H1 Logger, Germany) at the same time as each
thermal picture. Air temperature was used to calculate the
canopy temperature depression (CTD), the difference between
plant canopy temperature and air temperature. Finally, stoma-
tal conductance (gs) was measured with a Decagon Leaf
Porometer SC-1 (Decagon Device Inc., Pullman, WA, USA). One
flag leafwasmeasured for eachplot onApril 10, April 29,May 23
and May 30, 2013, corresponding to the development stages of
jointing, heading, anthesis and post-anthesis, respectively.

2.6. Statistical analysis

All data was analyzed with SPSS 21 (IBM SPSS Statistics 21, Inc.,
Chicago, IL, USA). Several simple and multiple variance analyses
were run to investigate genotypic and theexperimental condition



Table 1 –Means and deviations of grain yield (t ha−1) in
disease conditions and potential conditions and grain yield
loss index (GYLI) of sixteen durum varieties.

Genotype GY disease
conditions

GY potential
conditions

GYLI
(%)

Iride 6.66 ± 0.58c 6.98 ± 0.61abcd 4 ± 13.29a
Dorondón 6.65 ± 0.51c 6.82 ± 0.58abcd 1.7 ± 13.7a
Pelayo 6.64 ± 0.59c 7.82 ± 0.3de 15 ± 9.54ab
Don Ricardo 6.56 ± 0.81c 7.03 ± 0.56abcd 6.8 ± 5.29a
Simeto 6.48 ± 0.84c 6.72 ± 0.36abc 2.9 ± 18.55a
Kiko Nick 6.48 ± 0.94c 7.61 ± 0.4cde 14.8 ± 9.88ab
Bolo 6.33 ± 0.26c 7.3 ± 0.04abcde 13.2 ± 3.46ab
Regallo 6.33 ± 0.84c 7.51 ± 0.17bcde 15.9 ± 9.62ab
Claudio 6.26 ± 0.37c 7.16 ± 0.63abcde 12.2 ± 6.45ab
Bólido 6.22 ± 0.19c 6.8 ± 0.8abcd 7.6 ± 13.04a
Gallareta 6.14 ± 0.62c 6.84 ± 0.48abcd 10.4 ± 5.89a
Vitrón 5.97 ± 0.16bc 7.09 ± 0.56abcde 15.5 ± 5.55ab
Burgos 5.57 ± 0.68bc 8.08 ± 0.77e 30.3 14.04b
Don Sebastián 5.03 ± 0.13b 6.34 ± 0.8a 19.8 ± 11.8ab
Sula 3.33 ± 0.11a 7.79 ± 0.16de 57.2 ± 1.63c
Don Pedro 2.81 ± 0.1a 6.51 ± 0.33ab 56.8 ± 0.74c
Mean 5.84 ± 1.23 7.15 ± 0.65 17.8 ± 18.5

ANOVA
Genotype <0.001 0.009 <0.001

Different letters indicate significant differences within columns
according to Duncan's multiple range test (P < 0.05).
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effects. Duncan post-hoc tests were performed to makemultiple
correlation comparisons. Pearson correlation coefficientmatrices
were calculated to look at the multiple bivariate correlations
between parameters. Finally, multiple regression analysis with
stepwise parameter selection was used in order to develop
prediction models for grain yield and grain yield losses.
3. Results

3.1. Grain yield and grain yield loss index

Genotypic differences were found in grain yield in the presence
of yellow rust, in potential yield conditions and also in GYLI
(Table 1). In the season affected by the yellow rust, there was a
difference of 3.85 t ha−1 between themost productive genotype
Table 2 – P-values from multivariate analysis of variance for ge
DifferenceVegetation Index (NDVI) as a spectral index and leaf ch
temperature depression (CTD) as a field measures at five wheat d

Tillering Jointing

RGB-indices
hue <0.001 0.478
a* 0.004 <0.001
u* 0.003 <0.001
GA <0.001 <0.001

GAA <0.001 <0.001
Spectral index
NDVI 0.002 <0.001

Field-measures
LCC – 0.078
gs – 0.802
CTD – –
and the less productive one. However, in potential conditions,
the difference was of 1.74 t ha−1 (Table 1). Mean grain losses of
all genotypes exceeded 1.3 t ha−1, or on average about 18% of
the losses in grain yield. The degree of measured negative
effects as measured by GYLI was varied widely between
genotypes, ranging between 1.7% (Dorondon) and 57.2% (Sula).

For further description of the parameter relationships a
correlation matrix was made between grain yields of in
disease-affected season (2012/2013), potential yield conditions
(2013/2014 well watered), sub-optimal conditions (2013/2014
rainfed) and GYLI. Grain yield in the disease-affected season
did not correlate significantly with potential yield or with
sub-optimal yield conditions (r = 0.065, P = 0.662 and r = 0.241,
P = 0.098, respectively). GYLI was strongly correlated with GY
from the disease-affected season (r = −0.914; P < 0.001) and
moderately correlated with potential yield (r = 0.334; P = 0.020).
Potential and sub-optimal yields were marginally correlated
(r = 0.307; P = 0.034).

3.2. Vegetation indices and their relationships with grain yield

The best correlations were clearly found at anthesis (Table 2),
whereas the coefficients were lower at the jointing and
post-anthesis stages, but GA and GAA were always highly
correlated. Significant genotypic differences in GA, GAA and
u* were identified at tillering, jointing, anthesis and post-
anthesis, whereas significant differences were not detected in
hue and a* at the jointing and post-anthesis stages, respec-
tively. We also found genotypic differences in NDVI at tillering
and jointing, but not at anthesis.

In general terms, all the measured parameters, especially
the RGB indices, fit considerably well to GY and GYLI
(Table 3). The parameters that were most strongly correlated
to GY and GYLI were GA, GAA and u*, whereas hue, a* and
NDVI demonstrated a more variable and less reliable perfor-
mance. GA proved to be the most reliable RGB index as a
predictor of GY and GYLI with the highest coefficients of
correlation at all stages. However, the rest of the RGB indices
were also very good indicators of GY and GYLI, especially at
anthesis, but also at jointing and post-anthesis. NDVI was a
good predictor of GY and GYLI at jointing, when disease had
not spread, but its effectiveness was considerably lower at
anthesis.
notypes depending on five RGB-based indices, Normalized
lorophyll content (LCC), stomatal conductance (gs) and canopy
evelopment stages.

Heading Anthesis Post-anthesis

– <0.001 <0.001
– <0.001 0.478
– <0.001 <0.001
– <0.001 <0.001
– <0.001 <0.001

– 0.157 –

0.002 – 0.116
0.740 0.616 0.068
– 0.885 0.063



Table 3 – Correlations coefficients betweenRGB-based indices,NormalizedDifferenceVegetation Index (NDVI), leaf chlorophyll
content (LCC), stomatal conductance (gs), canopy temperature depression (CTD) and grain yield in disease conditions and grain
yield loss index (GYLI).

GY 2012/13 (disease conditions) GYLI

Tillering Jointing Heading Anthesis Post-anthesis Tillering Jointing Heading Anthesis Post-anthesis

RGB-indices
hue 0.362 ⁎ 0.117 – 0.744 ⁎⁎ 0.585 ⁎⁎ −0.400 ⁎⁎ −0.069 – −0.705 ⁎⁎ −0.613 ⁎⁎

a* −0.345 ⁎ −0.499 ⁎⁎ – −0.620 ⁎⁎ 0.113 0.362 ⁎ 0.487 ⁎⁎ – 0.561 ⁎⁎ −0.177
u* −0.331 ⁎ −0.514 ⁎⁎ – −0.749 ⁎⁎ −0.601 ⁎⁎ 0.356 ⁎ 0.507 ⁎⁎ – 0.687 ⁎⁎ 0.570 ⁎⁎

GA 0.430 ⁎⁎ 0.493 ⁎⁎ – 0.762 ⁎⁎ 0.698 ⁎⁎ −0.471 ⁎⁎ −0.521 ⁎⁎ – −0.732 ⁎⁎ −0.673 ⁎⁎

GAA 0.404 ⁎⁎ 0.511 ⁎⁎ – 0.737 ⁎⁎ 0.628 ⁎⁎ −0.430 ⁎⁎ −0.523 ⁎⁎ – −0.681 ⁎⁎ −0.619 ⁎⁎

Spectral index
NDVI 0.212 0.511 ⁎⁎ – 0.343 ⁎ – −0.171 −0.526 ⁎⁎ – −0.357 ⁎ –

Field-measures
LCC – 0.079 −0.022 – 0.171 – −0.001 −0.018 – −0.200
gs – −0.124 0.095 0.011 0.194 – 0.164 −0.103 −0.109 −0.200
CTD – – – 0.073 0.101 – – – 0.001 −0.127

⁎⁎ P < 0.01.
⁎ P < 0.05.
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3.3. Conventional field-phenotyping parameters and their
relationship with grain yield

Significant genotypic differences in LCC were found only at
the heading stage (Table 2). No significant differences gs were
found at any sampling date. Finally, no genotypic differences
were found in CTD values at any developmental stage.
Despite significant differences in LCC at one growth stage,
no significant correlation was found between LCC, gs, CTD and
GY or GYLI at any developmental stage (Table 3).

3.4. Agronomic parameters and their effect on yield

Except for the number of spikes per square meter and PH
all measured agronomic parameters differed significantly be-
tween potential and disease-affected conditions (P ≤ 0.01)
(Table 4). The numbers of grains per square meter, grains per
spike, TKWand HI were significantly reduced in disease-affected
compared to potent yield conditions. Finally, DHwas significant-
ly higher under disease-affected than potential yield conditions.

A Pearson correlation matrix was calculated in order to
compare the agronomic parameters with the GY value under
biotic-stress (2012/2013 cultivars) and non-biotic-stress con-
ditions (2013/2014 cultivars), and with grain yield losses
associated to the presence of rust (Table 5). The GY of
disease-affected crops was highly correlated with the number
Table 4 –Mean grains per square meter, grains per spike, s
harvest index (HI), plant height (PH) and the number of days to
yield conditions. P-values are from multivariate analysis of va

Disease-affected conditions

Grain number (m−2) 11,909.40
Grain number (spike−1) 33.35
Spike number (m−2) 372.79
TKW (g) 44.34
HI (%) 36.04
PH (cm) 101.25
DH 154.27
of grains per square meter, spikes per square meter and with
HI, moderately correlated with DH and TKW, but not
significantly related with number of grains per spike or PH.
GYLI showed a strong negative relationship with the number
of grains per square meter, spikes per square meter, and with
HI, and positively correlated with DH. GYLI showed a trend
towards negative relationships with number of grains per
spike, TKW and PH, but these are not significant. Regarding
potential yield conditions, GY was highly positively related
to the number of grains per square meter and moderately
correlatedwith the number of spikes per squaremeter. However,
potential GY was not significantly correlated with the number of
grains per spike, TKW, HI, DH or PH.

Finally, the interrelationships between the agronomic pa-
rameters themselves in both growing conditions were studied
in order to ascribe alteration in these relationships with the
presence of disease. Results are shown in Table S1. Relation-
ships between the number of spikes per square meter, grains
per spike and HI were maintained in both conditions. DH was
negatively related to HI only in disease conditions whereas in
potential conditions phenologywas only relatedwith PH. For its
part, PH was closely correlated in potential conditions with DH,
spikes per square meter, grains per spike and with HI; whereas
in disease conditions PHwas unrelated to the other parameters.
Another difference was for TKW which was unrelated to the
rest of parameters under disease conditions, but in potential
pikes per square meter, thousand kernel weight (TKW),
heading (DH) under the presence of disease and potential
riance for each agronomic parameter.

Potential-yielding conditions Difference P-value

13,498.90 0.001
39.93 <0.001

348.46 0.204
48.07 <0.001
47.37 <0.001

103.23 0.091
147.10 <0.001



Table 5 – Correlations coefficients between grain yields for
potential yielding conditions, disease-affected conditions
and grain yield loss index (GYLI) with the number of grains
per squaremeter, grains per spike, spikes per squaremeter,
thousand kernel weight (TKW), harvest index (HI), plant
height (PH) and number of days to heading (DH).

GY
disease-affected

conditions

GYLI GY
potential-yielding

conditions

Spike number
(m−2)

0.495 ⁎⁎ −0.441 ⁎⁎ 0.302 ⁎

Grain number
(spike−1)

0.203 −0.229 0.082

Grain number
(m−2)

0.899 ⁎⁎ −0.852 ⁎⁎ 0.653 ⁎⁎

TKW 0.298 ⁎ −0.213 0.122
HI 0.513 ⁎⁎ −0.446 ⁎⁎ 0.076
DH −0.345 ⁎ 0.333 ⁎ 0.086
PH 0.101 −0.156 −0.100

⁎⁎ P < 0.01.
⁎ P < 0.05.
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conditions TKW was highly negatively associated with the
number of grains per square meter and the grains per spike.

3.5. Predictive models

With the aim of obtaining a predictive model for grain yield
and grain yield losses, we performed amultivariate regression
analysis using RGB indices, gs, NDVI, LCC, CTD, DH and PH as
independent variables (Table 6). The best correlated measur-
ing dates with GY and GYLI were chosen for this purpose. For
the prediction of GY, the first model selected the RGB-indices
GA, GAA, hue and/or u*, always together with DH andwas able
to explain 69–71% of yield variability in disease conditions
(P < 0.001). Moreover, the second model explained 60–63% of
the variability of grain yield losses by using the RGB-indices
GA or hue with DH (P < 0.001).
4. Discussion

4.1. Effect of disease on grain yield

The genotypic differences in GY in disease conditions may be
largely attributed to the crop sensitivity to yellow rust, as
confirmed by the lack of correlations between the GY of the
Table 6 –Multivariate regression models explaining grain yield
index (GYLI) from vegetation indices at anthesis and agronomi

Predicted parameter Multivariate model

GY disease conditions GY = 27.79 + 0.148 × hue − 0.22 × DH
GY = 26.203 + 3.755 × GAA − 0.179 × DH +
GY = 32.021 − 0.291 × u* + 3.355 × GAA −

GYLI GYLI = − 302.077 − 2.106 × hue + 3.178 × D
GYLI = − 173.154 − 154.226 × GA + 2.169 ×

R2: determination coefficient; SEP: standard error of prediction. RGB-bas
heading.
disease-affected field season and the GY of the disease-free
field season under both potential and sub-optimal yield
conditions. Moreover, as a decrease in PH is usually related
to increased water stress [42], the lack of differences in PH
between potential and disease conditions suggests that water
stress effects under disease conditions were negligible. Poten-
tial GY can be considered to scarcely affect the GYLI, since the
genotypic variability of potential yield was not related to the
observed varietal sensitivity to the disease.

4.2. Performance of vegetation indices

RGB-indices were demonstrated to be the best predictors of
grain yield in the presence of yellow rust. The wide range of
genotypic differences in most of the RGB-indices at all the
growth stages was strongly related with yield variability. NDVI
has been used with satisfactory results in many prediction
models of yield inwheat at the field level [43], even at regional or
state levels [44] using satellite imagery. According to those
reports, grain yield could effectively be predicted using NDVI at
an early growth stage (jointing), but its accuracy decreased
considerably at anthesis (afterwards no data were available).
These results were possibly due to a saturation of NDVI in
conditions of high biomass [45], as suggested by the narrower
confidence interval of NDVI at anthesis (CI = [0.6837, 0.7625]) in
comparison to the RGB-index GA (CI = [0.8476, 1.0162]). More-
over, this loss of accuracy may also be attributed to a rapid
deterioration of the relationship betweenNDVI andGYaswheat
ripens [46]. In fact, both vegetation index approaches were
previously reported to lose accuracy at the late developmental
stages [23], but this deterioration in prediction appears to be less
pronounced for the RGB indices (from BreedPix software).
Therefore, when the ground is totally covered, the information
that NDVI provides is more limited, whereas RGB-indices have
proved to be even better predictors with dense canopies.

NDVI was previously employed to successfully distinguish
between infected, non-infected and N-deficient wheat plots
[47]. However, it was mostly used in combined multi-spectral
methods with other spectral indices where NDVI acted as a
first level biomass sensor in order to discard non-plant
spectra [31,32,48] and subsequently the analysis proceeded
with the use of other indices. Moreover, these studies based
on multi-spectral methods [31,32,48] and previous studies
based on digital image analysis [27,29,30] focused on disease
detection, leaf classification with regard to infection status
and disease level, but its association with yield loss was not
described. In this study, the effectiveness of NDVI with regard
to GY prediction decreased with disease spread, suggesting
(GY) variation in disease conditions and the grain yield loss
c traits.

R2 SEP F P-value

0.694 0.696 51.13 <0.001
5.113 × GA 0.698 0.700 33.94 <0.001

0.198 × DH 0.709 0.687 35.66 <0.001
H 0.627 11.555 37.78 <0.001
DH 0.596 12.018 33.22 <0.001

ed indices used in these models: GA, GGA, hue and u*. DH: days to
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that color changes at the canopy level associated disease
spread were missed or omitted by NDVI. Therefore, NDVI may
be useful for GY prediction in disease-free conditions and as
part of combined methods for disease-detection, but is not
an appropriate index of GY assessment in disease-affected
conditions. In agreement with previous reports that used
digital indices from BreedPix software [23,49] and other image
processors [50,51], GY was accurately predicted by RGB
indices. As a further contribution, our study demonstrated
that RGB indices are also able to predict GY and yield losses in
yellow rust infected cultivars at the canopy level. Canopy
color characteristics are indicative of the degree of yellow rust
infection, thus it was possible to quantify disease severity
empirically, and therefore to accurately evaluate grain yield
losses in field conditions. Although traditional observational
techniques for evaluating crop disease under field conditions
have proven to be powerful tools for wheat genotypic selection
[52,53], these methodologies are often tedious and difficult to
quantify objectively. In this sense, the proposed alternative in
this study is particularly interesting for the use in field conditions
due to its low cost, precision, rapidity and repeatability.

4.3. Performance of LCC, gs and CTD

LCC is usually related to nitrogen content, photosynthetic
capacity and production [54,55]. Previous studies reported a
reduction in chlorophyll content in wheat associated with the
presence of wheat yellow rust [56]. In our study we note a
widespread decrease in LCC of flag leaves at the post-anthesis
stage, but this decrease was not correlated with GYLI or GY.
Unlike some of the RGB indices, LCC could not describe
(according to our methodology) the entire greenness of the
plot canopy. In contrast, the water status parameters (gs and
CTD) were insensitive to variation in grain yield. Smith et al.
[57] reported the following progression during yellow rust
infection: increased transpiration, causing a reduction in
temperature due to rupture of the epidermis, followed by
overheating of tissues associated with leaf necrosis. On the
other hand, recent studies detected leaf temperature changes
induced by powdery mildew in wheat under greenhouse
conditions by using thermal imaging [58]. Instead, our results
suggest that tissue temperature at the canopy level and stomatal
conductance were not affected by the amount of disease.
Moreover, gs measurements were time-consuming and surely
unrepresentative of the whole plot as only one replicate was
measured and weather conditions could oscillate. Thus, these
may not be reliable parameters for the selection of varieties
resistant to yellow rust under field conditions.

4.4. Effect of disease on agronomic traits

Anthesis has widely been reported to be a critical period in
determining the number of kernels per spike and the number of
kernels per squaremeter [59], whereas the grain filling period is
critical in determining TKW and HI [60]. In our study, disease
was detected approximately one month before anthesis, so our
results are consistent with previous reports since grain yield
lossesweremainly associatedwith reductions in the number of
grains per spike, TKW, HI and grains per squaremeter (Table 4).
Contrary to previous reports [61] wherein infection began at a
very early growth stage, the number of spikes per square meter
was not significantly decreased in our study. The favorable
growing conditions during tillering and before disease spread
enabled good establishment of tillers, which could explain the
high number of spikes per square meter [62–64] as it is
comparable to potential yielding conditions. In summary, our
results suggest that the reduction in grain yield in disease
conditions was probably due to: (i) increased grain abortion (or
reduction in fertility) shown by a reduction of grains per spike
and grains per squaremeter and (ii) a reduction in the amount of
photoassimilates [65] intended for grain filling, explaining the
reductions in TKW and HI.

The contribution of each agronomic parameter to variation in
grain yield showed clear differences depending on the experi-
mental conditions (Table 5). The main difference lies in the
correlation of DH, TKW and HI with GY, which occurred only in
the disease presence. Moreover, in the disease-affected trial we
noted a significant negative relationship between HI and DH
(Table S1), which suggested that early heading enabled a degree
of disease escape, andmade it possible for the plants to achieve a
greater HI and thereby achieve higher yields in these conditions.
This highlights the importance of wheat phenology for avoiding
stress conditions [57], whereas in good agronomic conditions,
the phenological characteristics were not good determinants of
yield. In contrast, the rest of the agronomic parameters showed
similar trends in relation to grain yield in all conditions. The yield
component compensation principle [66] explains that the strong
cross-correlation between spikes per square meter, grains per
spike and HI remained robust even in the presence of disease.

4.5. Predictive model assessment

Finally, the multivariate regression models revealed the most
appropriate parameters for field phenotyping in the presence
of yellow rust. Yield was ignored in this model because the
main interest was to assess GY and GYLI using independent
traits measured before maturity. The development of yellow
rust involves gradual changes in the color characteristics of
crop canopies as epidemics' progress, and this information
is obtained by the RGB-indices. According to the results
of multivariate models, information contained in the
RGB-indices, together with phenology, are closely related to
GY and GYLI as the predictions are robust (R2 = 0.6 and R2 =0.7;
respectively) and reliable (P < 0.001). Both models demon-
strated the potential of digital vegetation indices to charac-
terize biotic stress produced by yellow rust, its utility for grain
yield losses assessment and, therefore, selection of resistant
varieties. Although the correlations of DH with GY and GYLI
were mild, all regression models chose DH as a predictive
parameter; so, our study suggests that this phenological trait
provides a: (i) different information compared to the rest of
the included parameters, (ii) useful data and (iii) information
related to grain yield in biotic stress conditions.
5. Conclusions

TheWarrior/Ambition strain of P. striiformis f. sp. tritici seriously
affected most of the genotypes of our collection. For some
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genotypes it resulted in losses greater than 50% of the potential
yield. This highlights the need to find genotypically resistant
varieties by using high throughput phenotyping tools such as
those used in the present study. For the first time, RGB-indices
demonstrated the potential of using digital images of crop
canopies instead of pictures and scans of isolated leaves or
conventional observational evaluations for GY assessment in
infected disease nurseries. This represents amarked advantage
as this procedure has also been shown to be: (i) considerably
faster, (ii) more representative of the whole plot, and (iii) more
objective than those mentioned above. Unlike NDVI, which is
much less efficient by itself, digital indices provide accurate
and useful information for wheat breeding with dense
canopy coverage. Moreover, LCC, gs and CTD proved to be
inappropriate for grain yield loss assessments in the pres-
ence of yellow rust. We also demonstrated the association of
the presence of the wheat yellow rust disease to changes in
the interrelationships between agronomic traits themselves
and their contribution to grain yield compared to potential
conditions. To the best of our knowledge this is the first
report showing that phenology can play a significant role
with regard to biotic stress conditions in wheat. Finally, the
optimal yield predictive models include DH always together
with RGB indices and they set robust and reliable predictions.
The versatility, low cost, and high throughput of digital RGB
techniques show promise as potentially useful tools in many
agronomic areas, and should be considered in future pheno-
typing strategies.
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