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Abstract: The accelerated expansion of the universe implies the existence of an energy contribution
known as dark energy. Associated with the cosmological constant in the standard model of cosmology,
the nature of this dark energy is still unknown. We will discuss an alternative gravity model in which
this dark energy contribution emerges naturally, as a result of allowing for a time-dependence on the
gravitational constant, G, in Einstein’s field equations. With this modification, Bianchi’s identities
require an additional tensor field to be introduced so that the usual conservation equation for matter
and radiation is satisfied. The equation of state of this tensor field is obtained using additional
constraints, coming from the assumption that this tensor field represents the space-time response
to the variation of G. We will also present the predictions of this model for the late-universe data,
and show that the energy contribution of this new tensor is able to explain the accelerated expansion
of the universe without the addition of a cosmological constant. Unlike many other alternative
gravities with varying gravitational strength, the predicted G evolution is also consistent with local
observations and therefore this model does not require screening. We will finish by discussing
possible other implications this approach might have for cosmology and some future prospects.

Keywords: dark energy; varying constants; alternative gravity; cosmology

1. Introduction

Modern cosmology has increasingly become a precision science during the last 30 years,
allowing the determination of many properties of the universe to a great degree of accu-
racy [1,2]. As it has happened many times in the history of physics, this new abundance of
data has also created various tensions within the standard framework [3,4].

One of the major puzzles cosmologists are facing today is the so called cosmological
constant problem [5,6]. A helpful way of looking at this problem is as the standard theory’s
inability to satisfactorily explain the nature of the “dark energy” that drives the observed
accelerated expansion of the universe. In standard cosmology, dark energy is represented
by a cosmological constant term, Λ, within Einstein’s equations. A constant added this way
to the equations behaves exactly as the vacuum energy, which was, historically, first noticed
by Lemaître [7]. General relativity has no natural reason to produce this term, so that it has
to be added ad hoc. Fortunately, quantum field theory expects that there should indeed be
a vacuum energy. The problem is that, even only taking into account the energy scales for
which we know quantum field theory works, without referring to anything unknown, the
calculated value of vacuum energy density is many orders of magnitudes higher than what
is measured with the expansion of the universe.
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This large vacuum energy does not create problems in the quantum field theory,
because quantum theory allows one to ignore the zero-point-energy, and only energy
differences become important. For general relativity, on the other hand, all energy, including
the zero-point-energy, should gravitate. The question of how the quantum vacuum should
gravitate in itself highlights a deep incompatibility between quantum theory and general
relativity.

It is possible to imagine that a theory of quantum gravity will have some sort of a
mechanism allowing vacuum energy density to be set to a value that matches the cosmo-
logical observations.1 However, even assuming this would be the case, the question “Why
should the vacuum energy density be this far too small, but otherwise non-remarkable
value instead of zero” still remains. To this, broadly, three types of response are possible:

1. There is nothing necessarily problematic about the value of the cosmological
constant. Just like the gravitational constant, or fine structure constant, energy density of
the vacuum is this value measured by the expansion rate of the universe. Quantum theory
should simply incorporate this constant.

2. Dark energy is not really the vacuum energy, but some other particle field that looks
like a cosmological constant at the first approximation. Cosmologists should then try to
create models for this substance and understand its properties.

3. Gravity does not work exactly as general relativity envisions, and there should be a
modification in such a way to explain away the accelerated expansion. In this view, dark
energy is the artefact of a gravitational mechanism.

In the following, we will discuss the implications of an often overlooked possibility
within the third option. We will investigate a model where the gravitational constant, G,
changes with cosmological time, and we will argue that, in this picture, dark energy that
drives the cosmological expansion emerges necessarily, as a response of the spacetime
geometry. It can be noted that various modified gravity theories (Brans–Dicke being the
prime example [11]) also involve an effective variation of the gravitational constant. In
comparison to these, the G(t) model we will discuss has the advantage of being more
conservative, in the sense that it makes no additional assumptions about the nature of
gravity beyond general relativity. In fact, as there is no fundamental reason that G should
be a constant, this model can be said to lift that assumption. This way, instead of offering
a new theory of gravity, we study a phenomenological extension to general relativity.
Furthermore, we will show that the varying G model is not only consistent with the late-
universe data, but also the expected fluctuation in G is small enough to be consistent
with independent measurements of the gravitational constant such that no screening of
gravitational interactions is needed.

In Section 2 we will begin by demonstrating how an additional term is required by
the geometry of spacetime if G is not a constant. We will follow this up by outlining
the derivation of the cosmological equations including the energy contribution from this
additional term. In Section 3, we will discuss the cosmological data used in this research,
paying particular attention to how supernovae should be affected by a change in the
gravitational strength, and present the results of our analysis. We will then conclude with
a discussion of the results, and what other impacts this model might have for cosmology.
The discussion and results presented in the following are based on Ref. [12] by the present
authors, and we refer the reader to this reference for further details.

2. Varying G in Einstein’s Equations

Our starting point is Einstein’s equations with G being a time-dependent variable,
namely:

Gµν = 8πG(t,~x)Tµν , (1)

with Gµν and Tµν being the Einstein and stress-energy tensors, respectively. According to
the cosmological principle in the following, we take G(t,~x) = G(t).
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However, with equations in this form, Bianchi’s identities imply that the energy
density of the normal constituents, such as matter or radiation, become dependent on the
gravitational constant:

DµGµν = 0 ⇒ DµTµν = −
Tµν∂µG(t)

G(t)
6= 0 ⇒ ρmatter ∝ G−1a−3 , (2)

where ρ stands for the energy density and a represents the scale factor.
One simple way that preserves both the conservation of energy and Bianchi’s identities

is if there is an additional dynamical term in the equations. In general, this will be a rank-2
tensor which satisfies

DµSµν = −Tµν∂µG . (3)

We see, then, if G is a time-dependent variable in Einstein’s equations, DµGµν = 0 and
DµTµν = 0 together necessitate a modification of the form

Gµν = 8πG(t)Tµν + 8πSµν , (4)

where the factor 8π is added for convenience.
With the usual cosmological assumptions, isotropy and homogeneity, this tensor Sµν

can be written in terms of only two scalar functions, Φ(t) and Ψ(t),

Sµν = (Φ(t) + Ψ(t))uµuν + Ψ(t)gµν , (5)

where gµν represents the metric. The 4-velocity, uµ, is taken as the Hubble flow, as we take
Sµν to have no bulk motion with respect to space.

Note that the Φ(t) component works exactly as an energy contribution, which we
need to determine in order to compare this model with cosmological observations. In fact,
Equation (3) is a general expression that should also apply to a variety of dark energy
fluid models, which would come with a specific Φ. In our case, we determine this from
the argument that the tensor Sµν does not represent a fluid, but instead represents the
spacetime response to the varying G.

We can use Equation (3) above to find an expression between Φ(t) and Ψ(t), but this is
not easy to solve for Φ, even if Ψ(t) is known. However, we can put the equations in a more
useful form by defining an auxiliary function ξ(t) such that, ξ̇/ξ = 3H(1 + Φ/Ψ), with H
being the Hubble rate. Then, in terms of this function we can integrate Equation (3) as

Φ(t)ξ(t) = lim
ε→0

(
Φ(ε)ξ(ε)−

∫ t

ε
Ġρξdt

)
, (6)

ξ(t) = lim
ε→0

[
ξ(ε)

a(t)3
(

1+ Φ(t)
Ψ(t)

)
a(ε)3

(
1+ Φ(ε)

Ψ(ε)

) exp
(
− 3

∫ t

ε

d(Φ/Ψ)

dt
ln(a)dt

)]
. (7)

These do not look much more promising, but they allow us further simplifications.
First, notice that the scale factor, a, dependence appears exclusively through the function ξ.
Second, the first equation above includes two constant terms coming from the lower limit
of the integral. We want to argue that the energy contribution of Sµν, the term we added to
preserve the geometrical consistency, is exclusively caused by varying G. Therefore, we
should insist that Φ (and, by the virtue of Equation (3), Ψ) is zero if G is a constant. This
implies that all the constants in Equation (6) should be zero. Furthermore, ξ should be a
constant, otherwise Φ would have an additional scale factor dependence, beyond what is
induced by G and ρ.

With these simplifications, we can obtain an expression for Φ in terms only of G and
other cosmological parameters. For G, we use an ansatz in the form of a power series
centred around the scale factor a = 1, of which we use only first few terms in the analysis,
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G(a) = G0

(
1 +

∞

∑
n=1

bn(1− a)n

)
. (8)

Using the flat Friedmann–Lemaître–Robertson–Walker (FLRW) metric, we obtain the
cosmological equations in the usual manner:

H2 =
8πGρ

3
+

8πΦ
3

,
ä
a
= −4πG

3
(ρ + 3p)− 4π

3
(Φ + 3Ψ) , (9)

with p representing the pressure of the fluid.

3. Analysis and Results

As our model is concerned with dark energy, we use late-universe probes, namely
type-Ia supernovae (SNIa) and baryon acoustic oscillations (BAO). For BAO, we use
measurements from 6dFGS [13], SDSS-MGS [14], BOSS DR12 [15], and eBOSS DR14 [16],
Ly-α autocorrelation function [17], and Ly-α-quasar cross-correlation [18] at z = 2.4. For
SNIa, we use the JLA dataset [19].

As we do not assume screening, supernova luminosities should be modified as they
would be affected by the variation in gravitational strength. A straightforward argument,
popular in the cosmology literature, is to include a G dependence of luminosity through
Chandrasekhar’s mass. By assuming that a higher mass of explosion will lead to a higher
nickel content and, therefore, higher luminosity, one has L ∝ MCh ∝ G−1.5 [20]. On the
other hand, the recent literature [21,22] on supernovae physics indicates a relationship on
the opposite direction, L ∝ G1.46. In our study, we use both approaches, but as the predicted
G variation is quite small we do not obtain a notable difference between the two. Therefore
we only report the results from the first approach.

Using a χ2 minimization analysis, we determine the cosmological parameters: matter
density, Ωm, radiation density, Ωr, and the product of the Hubble constant times the
standard ruler, H0rd; as well as the parameters of G: b1, b2, and b3. Of the latter, only two
are independent due to flatness (we take the dependent parameter to be b1). Higher order
terms for G do not improve the fit, as they are less relevant for a close to one. The χ2 values
and best-fit values obtained for all parameters can be found in Equations (10)–(12). As
Equation (10) shows, the present varying G model is consistent with cosmological data in a
similar way to ΛCDM:

χ2
Varying G/d.o.f. = 697.73/747, χ2

ΛCDM/d.o.f. = 698.05/749 . (10)

b1 = 0.07± 0.15, b2 = −0.51± 0.33, b3 = 0.679± 0.094 . (11)

Ωm = 0.284± 0.017, Ωr = (0.0± 7.0)× 10−3, H0rd = (101.7± 1.3)× 102[km s−1] . (12)

When we look at the G evolution in Figure 1, we see that the expected variation of
G is below 5% of the standard value in the epochs of interest. It appears that the change
of G increases as we go to earlier times, but this is largely due to the function used as an
ansatz for G. As we include no data from the early-universe, our present results have no
predictive value from these times.

An interesting parameter to note is b1, which is equal to − 1̇
H0

Ġ
G at a = 1. As indepen-

dent observations of G measure Ġ
G (for instance Lunar Laser Ranging [23]), this parameter

can be used to estimate if the present measurements of G are consistent with our model
(alternatively, it is possible to constrain b1 using Ġ

G measurements). We see that b1 is consis-
tent with zero, meaning that, under the present model, no small-scale modifications are
required to the gravitational interactions for consistency with local observations.
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Figure 1. Evolution of G vs redshift. The line is drawn using the best fit values for b1, b2, and b3 while
the blue lines are some sample error lines with one χ2 difference (∆χ2 = 1) from the black line.

4. Conclusions and Outlook

In the preceding discussion we have considered the possibility that the observed “dark
energy” is emergent as a result of a variation of G, due to the geometry of spacetime in
Einstein’s equations. This allows the interpretation that dark energy can be formulated as
the response of the spacetime to the varying G. Comparing our model with cosmological
observations from the late universe, we have found that the considered model is consistent
with the data in a similar way to the standard cosmology. This indicates that this model
can adequately explain the accelerated expansion of the universe without a cosmological
constant, avoiding one part of the cosmological constant problem.

Furthermore, we have found that the necessary variation of G is relatively small, which
means that the small-scale interactions do not need to be ignored (or screened), in contrast
to many other modified gravity approaches. As this model is also very conservative in
terms of assumptions, it can be a good basis for studying possible changes of gravitational
strength on astrophysical scales.

Of course, we do not claim that this model can compete the standard model in terms
of its completeness, and this investigation can be extended in various ways. From a
cosmological perspective, an immediately interesting question is whether a varying G
model is compatible with the early-universe data. For this, the most important indicator
is cosmic microwave background (CMB) constraints on the variation of G. However, this
analysis is not straightforward and requires a treatment of the perturbations. Along with
CMB, constraints from structure growth and big bang nucleosynthesis can also be included
in the analysis to have a fuller understanding of the constraints on G beyond the late-
universe we have focused on. Such an analysis may also have the effect of decreasing other
tensions within modern cosmology, an example being the H0 value. A cursory look at the
cosmological equations suggests that, at the background level, a smaller G at CMB epoch
can accommodate a larger H0 value without changing the expansion history. While it is
possible that such a change in G will not be compatible with the observations, a further
analysis of the present model may bring insights into the H0 problem as well.
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Note
1 It is possible that this may be achieved through a more careful treatment of quantum vacuum within the current semi-classical

paradigm as proposed by [8,9]. This approach, however, is subject to ongoing debate [10].
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