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A B S T R A C T   

Carcass and fillet yields are traits of great economic importance in aquaculture species, including rainbow trout. 
Headless gutted carcass percentage (HC) is a convenient selection criterion to improve carcass yield given that it 
is highly genetically correlated with the latter and also with fillet yield. However, HC is a sib trait that cannot be 
recorded on selection candidates. Consequently, the within-family component of the genetic variance cannot be 
exploited with traditional pedigree-based BLUP selection. Two alternatives to exploit this component would be to 
select directly on an indicator trait genetically correlated with HC that can be recorded on live candidates or to 
apply genomic selection. The objective of this simulation study was to predict the phenotypic gains for HC in 
rainbow trout breeding programs when four alternative selection strategies are used: i) sib selection for HC, ii) 
indirect selection for a morphological indicator recorded in vivo; iii) genomic selection for HC; and iv) genomic 
selection for the indicator. Also, the four strategies were compared in a multitrait selection scenario where body 
weight was also included in the breeding objective. The different scenarios were compared at the same selection 
intensity and number of records (2000) for HC (on sibs) and IHC (on candidates). Two different heritabilities for 
HC (0.55 and 0.25) were considered. For the highest heritability, the phenotypic gain for HC was higher with sib 
than with indirect selection for both BLUP (1.03 versus 0.98) and genomic selection (1.22 versus 1.04). However, 
for the lowest heritability, the phenotypic gain for HC was lower with sib than with indirect selection for both 
BLUP (0.60 versus 0.64) and genomic selection (0.70 versus 0.71). In any case, the differences in phenotypic 
gains for HC between sib and indirect selection were not large. Therefore, given that sib selection implies extra 
costs associated with maintaining and genotyping sibs and indirect selection allows higher selection intensity for 
a given number of fish, indirect selection appears to be a more cost-effective option. The patterns found for single 
trait selection were maintained when the yield trait (HC or indicator) was selected simultaneously with body 
weight. We conclude that the optimum approach to improve carcass yield is a combination of genomic and 
indirect selection in both single and multitrait selection scenarios.   

1. Introduction 

One of the main breeding goal traits in aquaculture selection pro-
grams is growth rate, a trait that can be easily recorded and improved 
(Gjedrem et al., 2012). However, other economically important traits 
cannot be recorded on live animals and they are challenging to be 
incorporated in these programs. This is the case of carcass yield (i.e., the 
percentage of carcass weight out of wet body weight) and fillet yield (i. 
e., the percentage of fillet weight out of wet body weight), two 
economically very important traits, especially for species sold processed 
as gutted carcass or fillets (Kankainen et al., 2016; Fraslin et al., 2018; 

Prchal et al., 2018). 
Direct selection for fillet yield is not an easy task as fillet recording is 

laborious and is associated to large measurement errors, which lead to a 
relatively low heritability (Rutten et al., 2005; Powell et al., 2008; 
Haffray et al., 2012). Carcass yield is easier to record and several studies 
in rainbow trout have demonstrated that selection for this trait would 
result in a correlated response in fillet yield (Kause et al., 2007; Haffray 
et al., 2012; Vandeputte et al., 2019). 

A more suitable selection criterion to improve carcass and fillet yield 
is headless gutted carcass percentage (HC). The heritability of HC is 
similar to that of carcass yield and higher than that of fillet yield, and the 
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genetic correlation between HC and fillet yield is higher than the cor-
relation between carcass yield and fillet yield (Haffray et al., 2012, 
2013; Vandeputte et al., 2017, 2019; Prchal et al., 2018). In particular, 
in rainbow trout, Haffray et al. (2012, 2013) showed that selection for 
HC could be more efficient than selection for fillet yield itself. 

However, recording HC also requires sacrificing the fish, and thus, it 
is impossible to do it on selection candidates. For this kind of traits, 
selection is generally based on sibs’ performance and consequently, only 
the between family component of the genetic variance can be exploited 
when applying traditional pedigree-based BLUP selection (Nielsen et al., 
2009; Sonesson and Meuwissen, 2009). An alternative to improve HC 
would be to select for an indicator trait genetically correlated with HC 
that can be recorded on live fish (i.e., on the candidates themselves). In 
fact, HC predictors based on morphological records that permit non- 
lethal trait recording have been recently developed in different aqua-
culture species (Haffray et al., 2013; Vandeputte et al., 2017; Prchal 
et al., 2018, 2021). 

Another alternative that allows exploiting the within-family 
component in the selection decisions would be to apply genomic selec-
tion (Meuwissen et al., 2001). Computer simulations (Nielsen et al., 
2009, 2011; Sonesson and Meuwissen, 2009; Villanueva et al., 2011; 
Lillehammer et al., 2013; Sonesson and Ødegård, 2016) and analyses of 
empirical data of different aquaculture species (see reviews by Zenger 
et al., 2019, Houston et al., 2020 and D’Agaro et al., 2021) have shown 
important benefits of this approach in terms of genetic gain compared to 
traditional BLUP selection. These benefits are expected when selecting 
directly or indirectly for HC. 

The objective of this study was to predict, through computer simu-
lations, the potential of indirect and genomic selection to improve 
carcass yield in selective breeding programs for rainbow trout. Different 
selection strategies were evaluated both in a single trait setting, where 
selection was only for a yield trait and in a multi-trait setting, where 
body weight was also selected. 

2. Material and methods 

The simulated selection program started from a base population with 
a family structure (i.e., composed by full- and half-sib families). Three 
correlated traits were simulated in all scenarios, including body weight 
(BW, in g), percentage of headless carcass (HC), and a morphological 
indicator of HC measured by ultrasound tomography (IHC). Specifically, 
the indicator simulated was the ratio of abdominal wall thickness 
(Echo8) to depth of the peritoneal cavity (Echo23) as described in 
Haffray et al. (2013) and Vandeputte et al. (2019). Genetic parameters 
assumed for the three traits were taken from the literature (Kause et al., 
2007; Haffray et al., 2012, 2013) and are shown in Table 1. These pa-
rameters correspond to traits recorded at ~510 days post fertilization 
(Haffray et al., 2013). The estimate of the heritability for HC (hHC

2) 
found in previous studies was 0.55, but an alternative value (0.25) was 
also simulated to investigate the scenario where HC and IHC have 
similar heritabilities. Phenotypic gains for HC obtained from four 
different selection strategies were compared. These strategies included 
i) sib selection for HC based on sibs’ phenotypes; ii) indirect selection for 
IHC based on candidates’ phenotypes; iii) genomic selection for HC 
based on sibs’ phenotypes; and iv) genomic selection for IHC based on 

candidates’ phenotypes. The four strategies were compared at the same 
selection intensity. A total of 100 males and 200 females were selected 
and mated following a nested design to generate 200 full-sib families, 
and each mating produced 20 offspring (10 males and 10 females). The 
simulations were carried out with our own Fortran 90 codes. 

2.1. Genome structure 

The genome simulated was composed of 30 chromosomes and had a 
total size of 20 Morgans, mimicking the trout genome. A total of 
3,600,000 evenly spaced biallelic loci were simulated throughout the 
genome (120,000 loci per chromosome), of which 600,000 (20,000 per 
chromosome) were considered to be potential SNP (single nucleotide 
polymorphism) markers to be used in genomic selection. SNP markers 
were also evenly spaced within each chromosome. 

2.2. Generation of the base population 

Firstly, a population in mutation-drift equilibrium was simulated by 
randomly generating 100 males and 100 females across 4000 discrete 
generations. At each generation, sires and dams were randomly sampled 
with replacement. Population size was kept constant across generations. 
The mutation rate per locus and generation was 2.5 × 10− 4. Mutations 
were randomly distributed across individuals, chromosomes, and loci, 
switching allele 0 to allele 1 and vice versa. Initial frequencies were 0.5 
for all loci. When generating the gametes, the total number of crossovers 
was drawn from a Poisson distribution with mean equal to the genome 
length. Crossovers were randomly distributed without interference. At 
the end of this process, the expected heterozygosity of the population 
had already reached an asymptote (i.e., mutation-drift equilibrium). At 
this point, the population was expanded over one generation in order to 
have enough individuals to sample replicates. One male and one female 
were randomly sampled with replacement and mated to produce 1 
offspring and this process was repeated until a total of 1000 individuals 
were generated. These 1000 individuals constituted the expanded pop-
ulation from which replicates for the different scenarios were generated. 

In order to create a base population (t = 0) with a family structure, 
100 males and 200 females were randomly sampled from the expanded 
population for each replicate. Each male was randomly mated with two 
females following a nested design and 20 offspring per mating were 
generated. Thus, t = 0 was composed of 4000 fish belonging to 200 full- 
sib families (and 100 half-sib families). At t = 0, loci with a minor allele 
frequency less than 0.1 were discarded as QTLs (loci affecting the traits) 
or SNPs (loci to be used in genomic selection). Across the genome, a total 
of 48,000 loci (an average of 1600 loci per chromosome) were then 
randomly sampled as SNP markers (i.e., a marker density of 2400 SNPs/ 
Morgan). Also, from the total number of loci that remained segregating 
(1,005,000 loci, including the 48,000 SNPs), a total of 1000 loci were 
randomly sampled as QTLs that simultaneously affected the three 
polygenic traits (BW, HC, and IHC). In order to simulate specific pair-
wise genetic correlations between traits, each QTL had different effects 
on the three traits (see the specific approach taken below, in section 2.3). 
At t = 0, the average linkage disequilibrium measured as r2 (the squared 
correlation between pairs of loci; Hill and Robertson, 1968) between 
SNPs separated 50 kb and 100 kb was 0.308 and 0.282, respectively. 
These r2 values are similar to those found in the literature for rainbow 
trout (D’Ambrosio et al., 2019). 

2.3. Generation of breeding and phenotypic values 

The true breeding value of individual j for trait k (TBVkj; k = BW, HC, 
IHC) was obtained as the sum of the (additive) genetic values across 
QTLs. For QTL i, these values were aik, 0 and -aik for homozygotes 11, 
heterozygotes 10 and homozygotes 00, respectively. For QTL i affecting 
trait k, aik was obtained in two steps (Fernández et al., 2021; García- 
Ballesteros et al., 2021). Firstly, a random number (aik*) was sampled 

Table 1 
Heritabilities (on diagonal), and genetic (above diagonal) and phenotypic cor-
relations (below diagonal) between the traits considered.  

Trait BW HC IHC 

BW 0.30 0.15 0.30 
HC 0.20 0.55 or 0.25 0.90 
IHC 0.40 0.55 0.25 

BW: body weight; HC: headless carcass percentage; IHC: indicator of headless 
carcass percentage. 
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where ρak, l is the genetic correlation between traits k and l (k = BW, HC, 
IHC; l = BW, HC, IHC; k ∕= l). Secondly, aik was obtained by multiplying 

aik* by the factor 
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, where σak
2 is the assumed 

additive genetic variance for trait k at t = 0, pk is the average frequency 
across QTLs for trait k at t = 0 and nQTL is the number of QTLs (i.e., 
1000). Note that in this way the expected additive variance summed 
over all QTLs equals σak

2, assuming that covariances between loci 
generated by linkage disequilibrium are negligible. The phenotypic 
value of individual j for trait k was obtained by adding an environmental 
effect to TBVkj. This environmental effect was sampled from the 
following multivariate distribution: 

N

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎣
0
0
0

⎤

⎦,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

σ2
eBW

ρeBW,HC

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
eBW

σ2
eHC

√

ρeBW,IHC

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
eBW

σ2
eIHC

√

σ2
eHC

ρeHC,IHC

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
eHC

σ2
eIHC

√

Symm σ2
eIHC

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where σek
2 is the environmental variance for trait k and ρek, l is the 

environmental correlation between traits k and l. The environmental 
variance for trait k was obtained as σpk

2 − σak
2, where σpk

2 is the 
phenotypic variance for trait k that was set to 1 for the three traits). The 
environmental correlation was obtained as ρek, l = (ρPk, l − hkhlρak, l)/ekel, 
where hk, hl are the square roots of the heritabilities for traits k and l, 
respectively, ek is 1 − hk

2, el is 1 − hl
2 and ρPk, l is the phenotypic cor-

relation between both traits (Falconer and Mackay, 1996). 

2.4. Genetic evaluation methods 

The evaluation methods considered for obtaining estimates of 
breeding values were standard BLUP and genomic evaluation. The 
univariate model assumed for BLUP and trait k was. 

yk = 1μk +Zak + ek,

where yk is the vector of phenotypes, μk is the mean, ak is the vector of 
random additive genetic effects, ek is the vector of random residuals, 1 is 
a vector of ones and Z is the incidence matrix for genetic effects. The 
variance-covariance matrices of random effects were assumed to be V 
(ak) = Aσak

2 and V(ek) = Irσek
2, where A is the pedigree-based numerator 

relationship matrix and Ir is an identity matrix of order r (number of 
records). Both σak

2 and σek
2 were assumed to be known. 

The genomic evaluations were performed using the GBLUP method 
(Nejati-Javaremi et al., 1997; Villanueva et al., 2005; Hayes et al., 
2009). The assumed model was the same as in BLUP but here A was 
replaced with the genomic relationship matrix (G) computed following 
VanRaden’s method 1 (VanRaden, 2008). Thus, V(ak) was assumed to be 
Gσak

2. 
The BLUPf90 software (Misztal et al., 2015) was used for carrying 

out both BLUP and GBLUP evaluations. 

2.5. Trait recording and genotyping 

Recording HC implies slaughtering the fish and, thus, it cannot be 
done on selection candidates. Thus, HC is what is known as a ‘sib trait’ 
that was assumed to be recorded only in half of the fish per family (i.e., 
10 fish per family). The other 10 fish per family were considered to be 
the selection candidates. Traits BW and IHC are ‘candidate traits’ that 
can be recorded on the selection candidates. To maintain the same 
number of records available for all traits, IHC and BW were assumed to 

be recorded on the 10 selection candidates per family. Thus, in the 
scenarios where selection was for a single trait (i.e., either for HC, IHC, 
or BW) the total number of fish recorded for all traits was 2000. 

In the scenarios where selection was simultaneous for two traits (BW 
and HC or BW and IHC), the total number of records for BW was 4000 
(2000 candidates and 2000 sibs). This is because when BW and HC are 
jointly selected, it is necessary to record BW to obtain the HC phenotype 
and thus, BW records are available not only for the candidates but also 
for their sibs. This is not the case in the scenarios where BW and IHC are 
jointly selected but in order to make scenarios comparable, the total 
number of records for BW was also 4000. 

In summary, the total number of records was 2000 for HC (sibs) and 
IHC (candidates), but the total number of records for BW was 2000 
(candidates) in scenarios where selection was only for this trait and 
4000 (2000 candidates and 2000 sibs) in scenarios where selection was 
jointly for BW and a yield trait (HC or IHC). 

When performing genomic evaluations, fish were considered to be 
genotyped for the 48,000 SNPs (on average 1600 SNPs per chromo-
some). Thus, as indicated above, the marker density was 2400 SNPs/ 
Morgan. 

2.6. Selection scenarios 

Selection was performed for a single generation, in which the 100 
males and 200 females with the highest estimated breeding values were 
selected and randomly mated. Nested mating designs, where each male 
was randomly mated with two females, were applied. In all scenarios 
simulated the number of selection candidates per family was 10 (2000 in 
total) which implies proportions selected of 10% and 20% for males and 
females, respectively. Thus, the different scenarios were compared at the 
same selection intensity. 

Different BLUP (scenarios BX) or GBLUP (scenarios GX) selection 
scenarios were considered:  

i) Selection for a single trait including direct selection for BW (BW 
and GW), sib selection for HC (BH and GH), or indirect selection for 
IHC (BI and GI). Scenarios BH and GH (sib selection for HC) were 
also run with an increased number of sibs tested per family (20, 
40, 60, 80, and 100).  

ii) Simultaneous selection for both BW and HC (BW+H and GW+H).  
iii) Simultaneous selection for both BW and IHC (BW+I and GW+I). 

In scenarios ii) and iii), the final estimated breeding value of an in-
dividual i was the sum of the estimated breeding values for each trait 
(BW and HC or IHC) multiplied by the corresponding relative weight 
given to each trait. The relative weight for BW was set at 1, and different 
weights were investigated for the yield trait (HC or IHC) (0.25, 0.50, 
0.75, and 1). 

Scenarios were compared in terms of the accuracy of evaluation 
(measured as the correlation between true and estimated breeding 
values) and phenotypic gain in trait units after one generation of se-
lection. We assumed initial phenotypic means of 1639 g for BW, 76.6% 
for HC, and 72.4 units for IH,C and phenotypic variances of 351 for BW, 
2.25 for HC, and 1.30 for IHC (Kause et al., 2007; Haffray et al., 2012, 
2013). 

Each scenario was replicated 50 times and the results presented are 
averages over replicates. 

3. Results 

3.1. Selection for HC or IHC 

With BLUP selection and hHC
2 = 0.55 (Table 2), the highest response 

in HC was achieved with sib selection for this trait (1.03 with scenario 
BH versus 0.98 with scenario BI). However, for a lower heritability of HC 
(hHC

2 = 0.25, Table 3) and also with BLUP selection, the highest increase 
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in HC was achieved with indirect selection (0.60 with scenario BH versus 
0.64 with scenario BI). 

The highest increase in the phenotypic mean of HC was obtained 
with genomic selection (Tables 2 and 3) both with sib (scenario GH) and 
indirect (scenario GI) selection. As with BLUP, the highest phenotypic 
response in HC was achieved with sib selection for the highest hHC

2 and 
with indirect selection for the lowest hHC

2 with genomic selection. The 
benefit (in terms of phenotypic means for HC) from genomic selection 
(compared with BLUP) in sib selection scenarios (scenarios GH versus 
scenarios BH) was 18% for hHC

2 = 0.55 and 17% for hHC
2 = 0.25. In 

indirect selection scenarios (scenarios GI versus scenarios BI), the benefit 
from genomic selection was lower (6% for hHC

2 = 0.55 and 11% for hHC
2 

= 0.25). Note that this extra gain or benefit (in %) was computed as 
100(ΔPBI − ΔPBH )/ΔPBH , where ΔPBI and ΔPBH are the increases in the 
phenotypic mean of HC in scenarios BI and BH, respectively. 

The accuracy of evaluation for the different traits and scenarios is 
given in Tables S1 and S2 of supplementary material. In general, when 
the accuracy for IHC (scenarios BI and GI) was higher (lower) than the 
accuracy for HC (scenarios BH and GH), indirect selection led to higher 
(lower) phenotypic means for HC. For instance, for hHC

2 = 0.25, with 
both BLUP and GBLUP the accuracy for IHC was higher than the 

accuracy for HC and indirect selection led to a phenotypic mean of HC 
than over sib selection (Table 3). Also, for hHC

2 = 0.55, with GBLUP the 
highest accuracy was for HC and this was reflected in the higher 
phenotypic mean of HC with sib selection (Table 2). However, with 
BLUP the accuracy for IHC (scenario BI) was higher than the accuracy for 
HC (scenario BH) but the increase in the phenotypic mean of HC was 
higher with sib selection than with indirect selection. 

Table 4 shows the accuracy and the phenotypic mean of HC scenarios 
BH and GH (sib selection scenarios) when the number of sibs tested per 
family is increased from 10 to up to 100. For hHC

2 = 0.25, the accuracy 
and phenotypic means increased more rapidly with increasing numbers 
of sibs compared to hHC

2 = 0.55. The highest increase in the accuracy 
was obtained when doubling the number of sibs recorded from 10 to 20 
for both hHC

2 and both evaluation method. However, these high in-
creases in accuracy did not translate into high increases in the HC mean. 
For hHC

2 = 0.55, the increase in accuracy was 6% (8%) with BLUP 
(GBLUP) but the increase in the HC mean was only 0.05% (0.1%) with 
BLUP (GBLUP). For hHC

2 = 0.25, the increase in the accuracy was 13% 
with both BLUP and GBLUP and this translated into an increase in the 
HC mean of less than 0.1%. With BLUP, there were no further increases 
in the accuracy and phenotypic mean when increasing the number of 
sibs beyond 20 and 40 for hHC

2 = 0.55 and hHC
2 = 0.25, respectively. 

Table 2 
Increase in the phenotypic means of body weight (BW), headless carcass percentage (HC) and the indicator of headless carcass percentage (IHC) after one generation of 
selection when giving different relative weights to the three traits and when using two different evaluation methods (BLUP, scenarios BX, or GBLUP, scenarios GX), for a 
heritability of HC of 0.55. a, b    

Weights BLUP GBLUP 

Scenariosc Selection for BW HC IHC BW HC IHC BW HC IHC 

BW and GW BW 1 0 0 187.50 0.17 0.17 204.21 0.19 0.18 
BH and GH HC 0 1 0 25.17 1.03 0.48 36.47 1.22 0.57 
BI and GI IHC 0 0 1 54.37 0.98 0.56 61.53 1.04 0.59            

BW+H_1 and GW+H_1 BW and HC 1 0.25 0 189.72 0.46 0.30 207.65 0.56 0.36 
BW+H_2 and GW+H_2 BW and HC 1 0.50 0 173.87 0.66 0.38 189.94 0.78 0.45 
BW+H_3 and GW+H_3 BW and HC 1 0.75 0 154.28 0.78 0.43 166.01 0.93 0.50 
BW+H_4 and GW+H_4 BW and HC 1 1 0 137.73 0.85 0.45 143.70 1.03 0.54            

BW+I_1 and GW+I_1 BW and IHC 1 0 0.25 188.84 0.38 0.28 210.69 0.40 0.30 
BW+I_2 and GW+I_2 BW and IHC 1 0 0.50 180.03 0.50 0.35 199.47 0.54 0.38 
BW+I_3 and GW+I_3 BW and IHC 1 0 0.75 169.74 0.59 0.39 187.71 0.63 0.43 
BW+I_4 and GW+I_4 BW and IHC 1 0 1 158.21 0.70 0.44 176.22 0.74 0.49  

a The initial phenotypic means for BW, HC, and IHC were 1639 g, 76.6%, and 72.4 units, respectively. 
b Standard errors were equal to 0.1 for BW scenarios, 0.03 for HC scenarios, and 0.01 for IHC scenarios. 
c Numbers 1 to 4 simply enumerate the scenarios with different weights for each trait to facilitate referring to them in the text. 

Table 3 
Increase in the phenotypic means of body weight (BW), headless carcass percentage (HC) and the indicator of headless carcass percentage (IHC) after one generation of 
selection when giving different relative weights to the three traits and when using two different evaluation methods (BLUP, scenarios BX, or GBLUP, scenarios GX), for a 
heritability of HC of 0.25.a, b    

Weights BLUP GBLUP 

Scenariosc Selection for BW HC IHC BW HC IHC BW HC IHC 

BW and GW BW 1 0 0 186.80 0.12 0.17 201.12 0.14 0.19 
BH and GH HC 0 1 0 24.89 0.60 0.41 29.52 0.70 0.48 
BI and GI IHC 0 0 1 54.88 0.64 0.54 58.25 0.71 0.59            

BW+H_1 and GW+H_1 BW and HC 1 0.25 0 194.77 0.22 0.24 213.83 0.26 0.28 
BW+H_2 and GW+H_2 BW and HC 1 0.50 0 186.61 0.31 0.30 205.25 0.36 0.34 
BW+H_3 and GW+H_3 BW and HC 1 0.75 0 177.69 0.37 0.33 194.59 0.43 0.39 
BW+H_4 and GW+H_4 BW and HC 1 1 0 165.37 0.43 0.36 182.43 0.49 0.41            

BW+I_1 and GW+I_1 BW and IHC 1 0 0.25 192.93 0.25 0.28 209.04 0.28 0.30 
BW+I_2 and GW+I_2 BW and IHC 1 0 0.50 183.75 0.35 0.35 202.61 0.37 0.37 
BW+I_3 and GW+I_3 BW and IHC 1 0 0.75 174.32 0.41 0.40 189.05 0.44 0.42 
BW+I_4 and GW+I_4 BW and IHC 1 0 1 163.99 0.46 0.43 176.25 0.50 0.47  

a The initial phenotypic means of BW, HC, and IHC were 1639 g, 76.6%, and 72.4 units, respectively. 
b Standard errors were equal to 0.1 for BW scenarios, 0.02 for HC scenarios, and 0.01 for IHC scenarios. 
c Numbers 1 to 4 simply enumerate the scenarios with different weights for each trait to facilitate referring to them in the text. 
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However, with GBLUP, the accuracy continued increasing beyond 40, 
particularly for hHC

2 = 0.25. 
Note that for hHC

2 = 0.25, sib selection requires at least 4000 sib 
records (and a total of 6000 fish to be managed) to achieve a phenotypic 
mean for HC higher than that obtained with indirect selection using 
2000 records (only 2000 fish to be managed) (see also Table 3). 

3.2. Simultaneous selection for BW and a yield trait (HC or IHC) 

As expected, the increase in the phenotypic mean of HC was lower 
when BW was also selected, particularly when the weight given to the 
latter was relatively high (Tables 2 and 3). 

The patterns described in the previous section when BLUP single trait 
selection was applied (scenarios BH and BI) were also observed when BW 
was also selected (scenarios BW+H and BW+I). Thus, the highest gain in 
HC was obtained from sib selection (BW+H) for hHC

2 = 0.55 (Table 2) and 
from indirect selection (BW+I) for hHC

2 = 0.25 (Table 3), for the whole 
range of relative weights considered. For hHC

2 = 0.55, the difference 
between sib and indirect selection in terms of gain in HC was higher 
when BW was also selected (see gains in scenarios BW+H and BW+I for the 
whole range of relative weights in Table 2). 

The benefit of genomic selection, in terms of extra gains in HC, 
described above for single trait selection scenarios was also observed 
when BW was also selected. Genomic selection led to increased gains in 
HC with both sib (scenarios GW+H) and indirect (scenarios GW+I) se-
lection for any combination of relative weights. The highest response in 
HC was achieved again with genomic sib selection (GW+H) for hHC

2 =

0.55 and with indirect genomic selection (GW+I) for hHC
2 = 0.25. The 

benefit from genomic selection (compared with BLUP) was higher in sib 
selection scenarios (up to 22% for hHC

2 = 0.55 and 18% for hHC
2 = 0.25) 

than in indirect selection scenarios (up to 8% for hHC
2 = 0.55 and 9% for 

hHC
2 = 0.25). 
As expected, when selecting simultaneously for BW and a yield trait, 

genomic selection led not only to benefits in HC but also in BW. The 
extra gains in BW from genomic selection were up to 9% (10%) for hHC

2 

= 0.55 (hHC
2 = 0.25) with sib selection and up to 12% (10%) for hHC

2 =

0.55 (hHC
2 = 0.25) with indirect selection when compared to the 

equivalent BLUP scenarios. The scenarios leading to higher increases in 
the phenotypic mean of BW were those leading to lower increases in the 
phenotypic mean of HC. Thus, a higher increase in BW was obtained 
from indirect genomic selection (scenario GW+I) for hHC

2 = 0.55 and 
from genomic sib selection (scenario GW+H) for hHC

2 = 0.25. 

4. Discussion 

This study has investigated the potential of indirect and genomic 

selection to increase carcass yield in rainbow trout. This is a very 
important trait due to its relationship with production efficiency as more 
edible meat (increased profitability) and less waste (decreased envi-
ronmental impact) for a given amount of resources (such as facilities, 
feed, labor, and energy) are produced. However, it is difficult to 
improve. A wide range of selection strategies differing in the traits 
selected (the carcass yield itself or an indicator trait) and the evaluation 
method (BLUP or GBLUP) have been compared at the same selection 
intensity. Similar patterns in the efficiency of the different strategies 
were found when selection was applied for the yield trait (HC or IHC) 
and when this trait was simultaneously selected with growth (BW). 

In general, when the accuracy of evaluation for the indicator trait 
was higher (lower) than the accuracy for HC, indirect selection led to 
higher (lower) phenotypic means for HC than sib selection. However, for 
hHC

2 = 0.55 higher gains in HC were obtained in the scenarios applying 
BLUP sib selection than in those applying indirect selection despite the 
fact that the accuracy of the evaluation for IHC was higher than that for 
HC. This is because, although the accuracy of the evaluation was lower 
with sib selection (records on sibs rather than on candidates), the genetic 
variance for HC was much higher than that for IHC. Previous studies that 
focused on mass selection where fish are selected solely in accordance to 
phenotypic values of sibs or candidates also found higher gains in HC 
with sib selection (Haffray et al., 2013; Vandeputte et al., 2017; Prchal 
et al., 2018). 

Even with a hHC
2 more than twice the heritability of IHC, the dif-

ferences in phenotypic gains for HC between sib and indirect selection 
scenarios were not large (77.63% for BH versus 77.58% for BI and 
77.82% for GH versus 77.64% for GI). These differences increased in 
favor of sib selection as we increased the number of sibs tested (up to 20 
in the case of BLUP and up to 60 in the case of GBLUP). However, sib 
selection implies costly lethal recording and extra costs associated with 
maintaining and genotyping a higher number of fish (sibs). Also, for a 
given number of fish kept in the program, indirect selection permits a 
higher intensity of selection as more candidates can be raised, leading to 
higher responses. Extra simulations were run for indirect selection (and 
hHC

2 = 0.55) with an increased selection intensity (4000 candidates 
instead of 2000 candidates and 2000 sibs which implies proportions 
selected of 5% for males and 10% for females instead of 10% and 20%), 
and the results (not shown) indicated that indirect selection led to a 
higher gain in HC than sib selection for both BLUP and GBLUP. In these 
extra scenarios, gains from BLUP indirect selection and from genomic sib 
selection were very similar. Taking into account these considerations, it 
is very likely that indirect selection would be a more profitable option 
than sib selection with either BLUP or GBLUP. 

The benefit of indirect selection (when compared with sib selection) 
was higher in a more hypothetical scenario with a lower heritability for 
HC (hHC

2 = 0.25). In this scenario, a higher gain in HC was obtained 
from indirect selection in both BLUP and GBLUP scenarios. Decreasing 
hHC

2 to be at the same level as the heritability of the indicator trait 
increased the efficiency of indirect selection, especially for BLUP se-
lection. In this case, for sib selection to give the same gain as indirect 
selection, we would need to increase the number of tested sibs to 20 per 
family. 

With indirect selection, the benefit of genomic selection (i.e, GBLUP 
versus BLUP indirect selection) assuming 2000 candidates, was 6% and 
11% for hHC

2 = 0.55 and hHC
2 = 0.25, respectively. Although GBLUP 

implies extra (genotyping) costs, the benefits for the on-growing farmers 
are expected to be high due to the high biomass of farmed fish. Small 
improvements in carcass and fillet yields can result in large profits when 
farming millions of kilos of fish (Kankainen et al., 2016). Currently, 
genomic selection is normal practice in the salmon breeding industry, 
and it can be expected that the same will occur in the near future in other 
aquaculture species. Industry leaders typically apply the most effective 
tools and, in the long-term, companies that use the best tools prevail. In 
recent years, the number of medium- and high-density SNP arrays 
available for aquaculture species has increased. This together with the 

Table 4 
Accuracy of evaluation and phenotypic mean of headless carcass percentage 
(HC) from sib selection for this trait for different number of sibs tested per family 
(nsibs), evaluation methods (BLUP and GBLUP), and heritabilities for HC (hHC

2).a    

Accuracy Phenotypic mean  

nsibs BLUP GBLUP BLUP GBLUP 

hHC
2 = 0.55 10 0.63 0.76 77.63 77.82  

20 0.67 0.82 77.68 77.92  
40 0.68 0.87 77.69 78.01  
60 0.69 0.90 77.70 78.06  
80 0.70 0.91 77.73 78.08  
100 0.70 0.92 77.73 78.08 

hHC
2 = 0.25 10 0.55 0.63 77.20 77.30  

20 0.62 0.71 77.27 77.39  
40 0.65 0.78 77.33 77.46  
60 0.67 0.82 77.36 77.50  
80 0.68 0.84 77.36 77.52  
100 0.68 0.86 77.36 77.54  

a Standard errors were equal to 0.02 for accuracies and 0.03 for phenotypic 
gains. 
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reduction of genotyping costs associated with the new advances in next- 
generation sequencing, make genomic evaluations more affordable 
(Joshi et al., 2018; Robledo et al., 2018). Recent research has demon-
strated the potential of applying genomic selection in rainbow trout as 
the prediction accuracies from genomic evaluations are substantially 
higher than those from pedigree-based BLUP evaluations for reproduc-
tive traits (D’Ambrosio et al., 2020) and disease resistance (Vallejo et al., 
2017; Silva et al., 2019; Vallejo et al., 2019; Yoshida et al., 2019a; 
Vallejo et al., 2020; Vallejo et al., 2021). The accuracy of genomic se-
lection could be increased further by including information on allele 
effects of SNPs affecting the selected traits into the genetic evaluations 
(e.g., Zhang et al., 2016; Griot et al., 2021). In fact, this application has 
been investigated to improve yield traits in rainbow trout (Gonzalez- 
Pena et al., 2016; Salem et al., 2018) and Nile tilapia (Yoshida et al., 
2019b). 

Interestingly, the accuracy with GBLUP sib selection continued to 
increase when the number of tested fish per family increased above 60 
while the accuracy with BLUP did not increase further when increasing 
the number above 40. This is because GBLUP captures the genetic 
variation existing within families, and the benefits from this evaluation 
method are greater when family sizes are large. These results are in 
concordance with those found by Dagnachew and Meuwissen (2019) 
that showed that the accuracy of evaluation was still increasing when 90 
sibs per family were tested for a trait with a very low heritability (h2 =

0.05). This means that the structure of traditional pedigree-based 
breeding programs may need to be changed when genomic selection is 
implemented. 

The SNP density used in GBLUP scenarios in this study was similar to 
that found in the SNP arrays already developed for rainbow trout (Palti 
et al., 2015; Salem et al., 2018), and increasing the marker density 
further is not expected to improve the accuracy of genomic selection. 
Solberg et al. (2008) showed that the accuracy remained responsive to 
increasing marker density at least up to 8Ne/Morgan, where Ne is the 
effective population size. Our Ne (estimated as 4 Nm Nf /(Nm + Nf), where 
Nm and Nf are the number of breeding males and females, respectively; 
Falconer and Mackay, 1996) was 267 and thus the accuracy would in-
crease up to a density of about 2136 SNPs/Morgan, a value lower than 
the density used here (2400 SNPs/Morgan). Recently, Kriaridou et al. 
(2020) have investigated the value of low- and medium-density SNP 
arrays to accurately predict breeding values in populations of a variety 
of aquaculture species (Atlantic salmon, common carp, gilthead sea 
bream, and Pacific oyster). Despite the differences in genome size, 
family number, population size, and target trait across the datasets, they 
found that in general 1000 - 2000 SNPs would be enough to achieve 
accuracies close to the maximum and explained the consistency across 
species by their large family sizes (long haplotypes are shared between 
many individuals in the reference and test population). In particular, 
recent studies in rainbow trout have shown the benefit of genomic se-
lection when compared to BLUP selection even when using low-density 
SNP panels and a small training population which facilitates the 
implementation of genomic selection by reducing the cost of genotyping 
(Vallejo et al., 2017; Vallejo et al., 2018; Vallejo et al., 2021). This is due 
to the high LD found in breeding populations of this species (Vallejo 
et al., 2017; Vallejo et al., 2018). 

The growing interest in aquaculture breeding programs to improve 
traits related to production efficiency that are difficult to quantify and 
measure (e.g., fillet and carcass yield, fillet and visceral lipid deposition, 
feed intake or feed conversion ratio), has led to a large amount of 
research to find appropriate indicator traits (Rutten et al., 2004; Van 
Sang et al., 2009; Haffray et al., 2012, 2013; Janhunen et al., 2017; 
Vandeputte et al., 2017, 2019; Knap and Kause, 2018; Prchal et al., 
2018, 2020, 2021). These indicators need to be easy to measure and non- 
lethal so that they can be recorded on candidates thus allowing to exploit 
the within-family variability. Most indicators for fillet yield developed 
so far are based on one or a combination of several morphological 
measurements (Rutten et al., 2004; Van Sang et al., 2009; Haffray et al., 

2012, 2013; Vandeputte et al., 2017, 2019; Prchal et al., 2020, 2021). 
Here, we have simulated one of these indicators (the ratio of abdominal 
wall thickness to depth of the peritoneal cavity or E8/E23) that was 
developed for HC (Haffray et al., 2013; Prchal et al., 2018; Vandeputte 
et al., 2019) and showed that indirect selection based on it would be a 
very valuable approach to improve carcass yield, particularly when 
combined with genomic selection. Although the best scenario would be 
to record the indicators close to market size (i.e., at harvest), Prchal et al. 
(2021) have shown recently in common carp that the genetic correlation 
between the E8/E23 recorded on two-year old fish and at market size is 
high. Thus, another advantage of applying indirect selection through the 
indicator could be the possibility of obtaining phenotypes at an earlier 
age which would facilitate fish manipulation (Prchal et al., 2021). 

All selective breeding programs in aquaculture include growth traits 
in their breeding objectives (Gjedrem et al., 2012). These traits (e.g., 
body weight and daily gain) are relevant to increase production and 
reduce the duration of the rearing cycle but have generally a modest 
direct impact on production efficiency. This is because growth traits 
have a lower impact on the ratio input/output than yield traits or feed 
efficiency (Rutten et al., 2004; Kause et al., 2007; Vandeputte et al., 
2017; Knap and Kause, 2018; Prchal et al., 2018). Thus, breeding goals 
should also include other traits such as HC to increase the profitability of 
the aquaculture industry. Our results show that when the yield trait is 
simultaneously selected with BW, the selection approach leading to the 
highest response in HC is the same as when single trait selection (for the 
yield trait or even only for BW) is performed. 

Given the values of the genetic correlations (higher between BW and 
IHC than between BW and HC), the reduction in the response in BW 
when selecting also the yield trait was lower when this trait was IHC 
(scenarios BW+I and GW+I) than when it was HC (scenarios BW+H and 
GW+H) which reinforces the value of indirect selection. When combining 
indirect with genomic selection there was an extra response in BW 
(about 10% extra gain when compared to BLUP indirect selection, for 
hHC

2 = 0.55). It should be noted that, if GBLUP is going to be used for 
evaluating the yield trait, once the fish are genotyped, other traits 
including BW can be evaluated using GBLUP at the same genotyping 
expense. This will increase the benefit-cost ratio of indirect genomic 
selection. 

5. Conclusions 

This study has shown that the most profitable option to improve 
yield traits is a combination of genomic and indirect selection. In other 
words, indirect genomic selection for the indicator of HC is an inter-
esting cost-benefit option to increase carcass yield. This was the case not 
only when selection was for a single yield trait but also when a growth 
trait was simultaneously selected with the yield trait, for a wide range of 
relative weights given to both traits. 
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