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Abstract

We present several applications of Lempel-Ziv complexity to the characterization of
neural responses. In particular, Lempel-Ziv complexity allows to estimate the entropy of
binned spike trains in an alternative way to the usual direct method based on the relative
frequencies of words, with the definitive advantage of no requiring very long registers.
We also apply this concept to determine generic values of encoding parameters and to
evaluate the number of states of neuronal sources.

1. Introduction

Information theory has often been applied to the analysis of the information content in
neuronal spike trains. The concept of complexity provides, in most of its many variants, a
quantitative assessment of the structure of symbol sequences and, thus, is also related to
the information content of such sequences. One of them, Lempel-Ziv complexity (1976),
measures the generation rate of new patterns along a digital sequence and, furthermore, is
closely related to such important information-theoretic properties as entropy, compression
ratio and redundancy. In our group we have been studying for some time (J.M. Amigó
et al., 2001) the characterization of spike trains by means of Lempel-Ziv complexity and
other related properties. One of the main interests of this method is that complexity is a
fast convergent estimator of the entropy of digital signals (as can be shown by numerical
simulation), what speaks for its use especially in those cases in which the registers are too
short or the non-stationarity of the source precludes long sequences from being considered.

We will present in this communication three applications of Lempel-Ziv complexity (not to
be mistaken for the complexity measure of the same name used for lossless data compression,
which is posterior in time) to the analysis of spike trains: (i) estimation of the entropy, (ii)
discrimination of neural responses via complexity curves and (iii) discrimination of neural
responses via the number of states of the corresponding neuronal sources. Here we have
applied this method for the analysis of spike trains intracellularly recorded in the in vivo
and in vitro visual cortex as a response to different stimuli: sinusoidal current injection,
visual stimulation and random curent injection. Let us just mention at this point that both
complexity curves and the number of states of the corresponding neuronal sources not only
discriminate neural responses to different stimuli but also allow to conclude, for instance, that
neural discharges in vivo carry more information than in vitro for the same kind of stimuli.

2. Lempel-Ziv complexity and entropy

Let S be a source that generates words xn1 := x1x2...xn of length n whose letters xi (1 ≤ i ≤ n)
belong to a set A = {a1, ..., aα} of size |A| = α < ∞, called the source alphabet. Given the



word xn1 , a block of length l (1 ≤ l ≤ n) is just a segment of xn1 of length l. Intuitively speaking
(rather than giving a rigorous definition), the complexity of the word xn1 , Cα(x

n
1 ), counts the

number of different patterns it contains. The first symbol on the left of the word defines
the first block. From there one moves rightward letter by letter, until the string of symbols
beginning just after the previous block and ending at the current position happens not to
have appeared before. At this point, a new block is defined. The procedure is illustrated by
the following example. The decomposition of the binary word x191 = 01011010001101110010
into minimal blocks of new patterns is

0| 1| 011| 0100| 011011| 1001| 0

where the vertical lines separate the blocks. Therefore, the complexity of x191 is 7.
The generation rate of new patterns along xn1 , a word of length n with letters from an

alphabet of size α, is measured by the normalized complexity cα(x
n
1 ), which is defined by

cα(x
n
1 ) =

Cα(x
n
1 )

n/ logα n
=

Cα(x
n
1 )

n
logα n (1)

Let Hb(S) denote the entropy of the source S,

Hb(S) = − 1
n

X
xn1

p(xn1 ) logb p(x
n
1 )

where p(xn1 ) denotes the probability for the word x
n
1 to happen and the sum is over all words

of length n (αn in total, though some of them could have zero probability). The subscript
b stands for any real constant b > 1 and refers to the base of the logarithm. If b = 2, the
entropy is measured in bits per second (bit/sec). If words can be arbitrarily long, one has to
let n go to infinity:

Hb(S) = − lim
n→∞

1

n

X
xn1

p(xn1 ) logb p(x
n
1 )

provided the limit exists. One can prove that (i) if S is stationary, then

lim sup
n→∞

cα(x
n
1 ) ≤ Hα(S) on average (2)

and, moreover, (ii) if S is ergodic, then

lim sup
n→∞

cα(x
n
1 ) = Hα(S) almost surely (3)

Eqs. (2) and (3) provide ways to bound from below and estimate, respectively, the entropy of
a neuronal source (with the corresponding properties) via the Lempel-Ziv complexity of (i)
a sample of spike trains, (ii) a typical (i.e. randomly chosen) spike train produced by it. It
is worth mentioning that the first application of this concept was suggested in cryptography,
namely, to assess the quality of random sources.

3. Experimental work

We have studied the complexity of real spike trains. The experimental data were obtained
from primary cortex recordings both in vivo and in brain slice preparations (in vitro). Intra-
cellular recordings in vivo were obtained from anesthetized adult cats. For the preparation
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of slices, 2-4 month old ferrets of either sex were used. Action potentials were detected with
a window discriminator and the time of their occurrence was collected with a 10 µsec resol-
ution. For more details, see (Sanchez-Vives et al., 2000a y b) The resulting time series were
used to analyze the neuronal spiking. Concerning the stimuli, they were of three kinds.

a) Intracellular periodic current injection. Intracellular sinusoidal currents were injected
in vivo and in vitro. The frequency of the waveform was 2 Hz and the intensity ranged
between 0.2 and 1.5 nA. The cell recording ensemble comprised of 8 samples in vivo (spike
train lengths between 15.56 sec and 47.64 sec) and 8 samples in vitro (spike train lengths
between 15.87 sec and 23.62 sec).

b) Visual stimulation with sinusoidal drifting gratings. The visual stimulus consisted of
a sinusoidal drifting grating presented in a circular patch of 3-5 degrees diameter, centered
on the receptive field center (in vivo). Only simple cells were included in this study. In this
case, 8 samples were recorded (spike train lengths between 15.87 sec and 23.62 sec).

c) Intracellular random current injection. Random currents with different degrees of
correlations were injected during the intracellular recordings from cortical brain slices (in
vitro). The ensemble consisted of 20 samples (spike train lengths between 16.32 sec and
35.47 sec).

4. Codings

Spike trains can be encoded (or “binned”) in many ways. We will consider henceforth only
two methods.

a) Interspike time coding. Let τmin and τmax be the minimal and maximal interspike
times, respectively, in the signal. Divide the interval [τmin, τmax] into α slots ∆τ i (1 ≤ i ≤ α)
of the same length. If τ j is the interspike time following spike sj and τ j belongs to, say, the
k-th slot ∆τk, then assign to the spike sj the k-symbol ak from a set A = {a1, ..., aα} of α
symbols. In this way, we get an α-nary message whose length equals the number of spikes.

b) Time bin coding. Let the first spike of a train occur at time 0 and the last one T time
units later. The time interval [0, T ] is then split in n bins ∆ti (1 ≤ i ≤ n) of the same length.
If there are Nk spikes in the bin ∆tk, then assign the number Nk to ∆tk. The result is a
message of length n with no more than n different letters. If, instead, each bin ∆ti is coded
by 0 or 1 according to whether it contains no spike (0) or at least one spike (1), the message
will be binary.

5. Applications of Lempel-Ziv complexity

5.1. Estimation of the entropy

The spike trains recorded in the lab are digitalized with binary time bin coding. Let p̃i be
the normalized count of the ith word in the ensemble of words of length l (= L/∆τ , L ≤ T )
in a set of observations. Then, the estimation of the entropy rate per second

H(∆τ) := lim
l→∞

H(l,∆τ) = − lim
l→∞

1

l∆τ

X
p̃i log2 p̃i (4)

and, hence, of the source entropy H(S) := lim∆τ→0H(∆τ), requires words of increasing
length l whereas real spike trains are necessarily finite. Now, increasing l when counting
different words from spike trains of finite length depletes the word statistics and, therefore,
renders the estimations of the relative frequencies p̃i of the words of length l less and less
reliable. Also, as a result of this statistical depletion (or undersampling), H(l,∆τ) gets
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artificially smaller than H(∆τ) for sufficiently big l’s, while H(1,∆τ) ≥ H(2,∆τ) ≥ ... ≥
H(∆τ) should hold.

Consequently, given an ensemble of finite spike trains and a time resolution ∆τ , rather
than letting l become as large as possible, there must be some optimal word length l∗ for which
the normalized complexity is a good estimator of the entropy. Such an l∗ results from a trade-
off between the goodness of the approximationH(l∗,∆τ) ≈ H(∆τ) and the representativeness
of the word statistics for that window length. We propose next a complexity-based method
to choose a window length l∗ which qualifies for optimality in the sense just explained.

Consider an ensemble of (sufficiently short) spike trains (as to be viewed as) generated
by a stationary neuronal source. The ensembles we are thinking of are defined below and
consist of neuronal responses to similar stimuli. We calculate then the average normalized
complexity c(∆τ) of the corresponding binned spike trains as a function of the bin width
∆τ and then determined the value of ∆τ (call it ∆τ∗) for which the relative standard devi-
ation of the normalized complexity is minimal. The rationale for this approach is that the
neuron responses to similar stimuli are also similar and, therefore, the same must happen to
the average information transfer (and, a fortiori, to the normalized complexity and to the
entropy). Under the proviso that the neuronal source can be considered ergodic, we evaluate
now the entropy rate estimate (4) for ∆τ∗ and fix l = l∗ so that H(l∗,∆τ∗) coincides with
c(∆τ∗)/∆τ∗. In doing so, we are replacing lim supl→∞ c(xl1)/∆τ

∗ by c(xl∗1 )/∆τ
∗ in (3).

5.2. Complexity curves

Let xn1 be the result of encoding a spike train recorded in any of the four experimental settings
considered above. In order to gain more insight into the complexity of neuronal responses, we
have graphically represented cα(x

n
1 ) as a function of the number of letters α (for interspike

time coding) and also as a function of the word length n (for time bin coding). Remember
that n is fixed (and equal to the number of spikes) for the interspike time coding and α = 2 for
the binary interval coding while, for the general interval coding, there is a weak dependence
of α on n which shows up in the graphs as instabilities. For this reason we limit the discussion
of the complexity curves to the interspike time coding and the binary time bin coding. This
graphical analysis was repeated with spike trains covering all cases.

5.3. Neuronal sources and number of states

Once a spike train has been codified into a message, this can be viewed as emitted by an
information source, the source comprising everything preceding the message, namely, the
stimulus (S), the neuron or neuronal network (N) and, last but not least, the encoding
technique (E). Consider now an ergodic source with transition probability p(xi|xi−1−∞), where
xn−∞ := ... xn−1xn. We say that the source is Markovian of finite order if

p(xi|xi−1−∞) = p(xi|xi−1i−k), i = 1, 2, ..., n (5)

for some integer k ≥ 1 called the order of the source. Eq. (5) means that the probability for
the letter xi at instant i depends directly only on the previous k outcomes: xi−1, ..., xi−k.
For this reason, k is also called the lag of the source.

Next let H(qkx) be the k-th order empirical entropy of an ergodic Markov process (J.M.
Amigó et al., 2003) as measured at the word x = xn1 . Following Ziv, an order estimator is
given by

k∗ = min
n
k : H(qkx)− cα(x) log2 α ≤ λ

o
(6)
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where cα(x) is the normalized complexity of x (1). In the calculations we set λ = 0.02.
Although these numbers are the order estimators of the corresponding sources assumed

to be ergodic and finite-order Markovian, we refer to them with the more neutral term
of “number of states” because our primary purpose is to use them to distinguish neuronal
sources from each other, independently of the concrete meaning of k and the source properties.
Important for us is that k∗ is a numerical invariant for neuronal sources. In particular, for
a given neuron preparation and coding, k∗ depends only on the kind of stimulus (i.e. on the
experimental subcase considered out of the four experimental cases given in Section 3), but
not on individual stimuli. This comes as no surprise since the same is true for the normalized
complexity.

6. Results

6.1. Estimation of the entropy

Within each of the experimental cases, we have determined the time resolution ∆τ∗ for which
(according to its definition) the relative standard deviation of the normalized complexity
c = c(∆τ) was minimal. The numerical results are shown in Table below, where c∗ =
c(∆τ∗). Notice that we have further split the responses to random stimuli into two subsets,
according to whether the autocorrelation function of the stimuli decays slowly or fast. Only
those records with random stimuli for which this distinction was clear, were considered for
evaluation.

In vivo In vitro
Periodic current ∆τ∗ = 0.025 sec, c∗ = 0.57 ∆τ∗ = 0.025 sec, c∗ = 0.20

⇒ c∗/∆τ∗ = 22.8 sec−1 ⇒ c∗/∆τ∗ = 8.0 sec−1

Visual stimulus ∆τ∗ = 0.100 sec, c∗ = 0.90
⇒ c∗/∆τ∗ = 9.0 sec−1

Random current ∆τ∗ = 0.100 sec, c∗ = 0.78
slow decay ⇒ c∗/∆τ∗ = 7.8 sec−1

Random current ∆τ∗ = 0.100 sec, c∗ = 0.87
fast decay ⇒ c∗/∆τ∗ = 8.7 sec−1

6.2. Complexity curves

The results obtained can be summarized as follows.
a) For interspike time coding, the curves cα(xn1 ) vs. α are convex ∩, converging sharply

with increasing α to flat horizontal profiles. We call these stationary values saturation levels
and they are about the same for periodic stimuli (in vivo and in vitro). The saturation levels
corresponding to random inputs are more scattered due to their manifold autocorrelation
functions but, as one expects, they do not overlap with the non-random ones. The satura-
tion levels were the following. (i) Periodic current injection in vivo: The complexity curve
increases sharply to its horizontal saturation level with small fluctuations. Saturation levels
range from 0.50 to 0.03. (ii) Periodic visual stimulation in vivo: Saturation occurs typically
at the level 0.50 ± 0.03. (iii) Periodic current injection in vitro: Saturation sets in around
α = 600 at a level cα ≈ 0.40± 0.03. (iv) Random current injection in vitro: The saturation
level changes with the input signal, which hints to a relation between the asymptotic complex-
ity values and the rate of decay of the autocorrelation function of the corresponding stimulus.
Typical saturation levels for long correlations are 0.22 ± 0.03 and for short correlations are
0.12± 0.03.
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b) For binary interval coding, the curves c2(xn1 ) vs. n are not as smooth as with the
previous coding. This means that the transfer of information is very sensitive to the changes
in the number of intervals used in the encoding process. In this case, the complexity curves
do not display plateaus. Rather, from n ≈ 2500-3500 time bins on, they decay in a convex ∪
way.

6.3. Number of states

The following Table (J.M. Amigó et al., 2003) shows the (rounded-off) values of k∗ within
the samples in form of intevals, both for the multisymbol and binary time bin coding (with
5000 and 4048 bins, respectively).

Multisymbol coding Binary coding
k∗ In vivo In vitro In vivo In vitro

Periodic current injection 2− 4 9− 11 4− 6 9− 11
Visual stimulation 2− 4 − 3− 4 −

Random current injection − 1− 3 − 2− 3

7. Conclusions

1. Lempel Ziv complexity is a fast convergent estimator of the entropy and, therefore,
it can be used to calculate the information content in spike trains even in situations where
undersampling renders the standard approach dubious. We conclude that Lempel-Ziv com-
plexity provides a valuable tool for the analysis of spike trains.

2. Apart from the estimation of the entropy, this measure of complexity allows to calculate
complexity curves (with several encodings) for a given spike train as well as the number of
states of the neuronal source which has produced that spike train.

3. These analytical tools have proved useful to separate time series of spike times that
were obtained under different conditions. Thus, we have found significant differences between
the spike trains obtained in the cortical neurons in vivo versus in vitro, such that those in
vivo had higher information content than those in vitro, even when the stimulus was the same
(sinusoidal current injection).

4. Finally, we think that the use Lempel Ziv complexity presents some advantages over
other commonly used measurements of entropy and, therefore, we consider that it deserves
to be better known and more used for spike train analysis.
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