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Fisheries-enhanced pressure on Mediterranean
regions and pelagic species already impacted
by climate change

Jazel Ouled-Cheikh1,2,*, Marta Coll1,3, Luis Cardona2, Jeroen Steenbeek3,
and Francisco Ramı́rez1

Marine species are widely threatened by anthropogenic activities, including fishing and human-induced
climate change. However, geographically broad and spatially explicit assessments of the simultaneous
impacts of these major threats at regional scales are mostly lacking due to the practical challenges of
surveying vast geographical areas and obtaining adequately resolved data. Yet, these assessments are key
for identifying highly and cumulatively impacted areas and species that should be prioritized for conservation
through knowledge-based management strategies. Here, we analysed a 26-year (1993–2018) time series of
highly resolved remotely sensed environmental data to evaluate changes in optimal habitat availability (i.e.,
extent of marine areas encompassing optimal environmental conditions) for 15 species representative of
small, medium and large pelagic fish inhabiting the Mediterranean Sea Large Marine Ecosystem. We then
combined spatial and temporal data on fishing pressure and changes in optimal habitats to identify areas
of high risk of cumulative impacts. Overall, results show how most of the studied Mediterranean pelagic
species experienced a reduction in optimal habitat availability over the past decades. The few species that
showed positive trends in optimal habitat availability expanded only to a small degree and hence were unlikely
to compensate for the loss of key functional roles at the group level. Habitat loss concentrated in the western
and central regions. Similarly, fishing pressure was found to be higher in these regions, thus overlapping with
the areas experiencing a higher reduction of optimal habitat. Small and large pelagic fish were the most
impacted groups, having a larger proportion of their distributions in highly, cumulative impacted areas.
Redistributing fishing pressure and reducing it in highly impacted areas may alleviate the overall
cumulative pressure on pelagic stocks, contributing to the necessary shift to sustainable and resilient
fisheries that would ensure food security and a healthy ecosystem in this highly impacted basin.

Keywords: Safe operating space, Mediterranean, Pelagic fish, Cumulative impact analysis, Climate change,
Fisheries

Introduction
Human activities threaten the health of ecosystems world-
wide across a range of ecological scales, from the effects on
organism physiology to changes in the function and struc-
ture of entire ecosystems (Steffen et al., 2011; Birnie-Gauvin
et al., 2017; Nolan et al., 2018). Marine ecosystems have
been largely impacted by the synergistic interactions
between anthropogenic activities across vast distances

(Halpern et al., 2008) and through human-driven climate
change (Halpern et al., 2019). Combined, these main
threats can produce changes in physical and oceanographic
properties of the oceans and marine productivity patterns,
with far-reaching consequences for marine species and food
webs (Steinacher et al., 2010; Lenoir et al., 2020; Pontavice
et al., 2020; Voosen, 2020; Boers, 2021). These threats may
jeopardize important marine ecosystem services such as
seafood provision (McClanahan et al., 2015), which cur-
rently poses a first-order global challenge, particularly in
a world with an ever-growing human population (1.05%
yr�1; United Nations, 2019), an increasing fish demand
(doubled by 2050; Naylor et al., 2021), and the reach of
maximum catches, which is currently covered by the pro-
duction of fish in aquaculture systems according to the
Food and Agriculture Organization (FAO, 2020).

Spatially explicit assessments of fishing and climate
impacts at regional scales are still limited, given the
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Ambientals (BEECA), Facultat de Biologia, Universitat de
Barcelona, Barcelona, Spain

3 Ecopath International Initiative (EII), Barcelona, Spain

* Corresponding author:
Email: jazelouled@gmail.com

Ouled-Cheikh, J, et al. 2022. Fisheries-enhanced pressure on Mediterranean
regions and pelagic species already impacted by climate change. Elem Sci Anth,
10: 1. DOI: https://doi.org/10.1525/elementa.2022.00028

D
ow

nloaded from
 http://online.ucpress.edu/elem

enta/article-pdf/10/1/00028/761493/elem
enta.2022.00028.pdf by guest on 10 February 2023

https://doi.org/10.1525/elementa.2022.00028


scarcity of data with the required spatiotemporal resolu-
tion and the need to integrate information from multiple
jurisdictions. There is an urgent need for regional impact
assessments that consider both fishing and climate
change effects to establish an integrated vision of the
impacts to which marine ecosystems are exposed. In addi-
tion, these impacts are unevenly distributed in time and
space (Halpern et al., 2008), which makes the implemen-
tation of spatially explicit approximations of impact dis-
tribution a priority to identify those areas where
combined impact of fisheries and climate change can
bring ecosystems to states beneath their functional
thresholds (Houk et al., 2018; Ramı́rez et al., 2022).Within
this context arises the concept of Safe Operating Space
(SOS, sensu Rockström et al., 2009), which can be defined
as a multidimensional space with climate and human
impacts as axes or dimensions that set the bounds for
ecosystems to maintain a desirable state of conservation.
The SOS framework applied to the management of highly
impacted marine systems argues that reducing fishing
pressure in those highly impacted areas could be an effi-
cient management strategy to alleviate the pressure upon
these systems in front of the effects of climate change
(Ramı́rez et al., 2018; Ramı́rez et al., 2021; Ramı́rez
et al., 2022).

The Mediterranean Sea (30�N–46�N, 6�W–36�E;
Figure 1) is considered a biodiversity hotspot because it
comprises less than 1% of the global ocean yet contains
up to 18% of the world’s macroscopic marine species, of
which around 30% are endemic (Bianchi and Morri, 2000;
Coll et al., 2010; Coll et al., 2012). Due to its semi-enclosed
nature (i.e., water renovation occurs mainly in the Strait of
Gibraltar; Coll et al., 2010), the Mediterranean Sea shows
a northwest–southeast gradient in temperature, salinity
and primary productivity and is heavily impacted by
global warming, showing a steeper warming rate than the
global average (Lionello and Scarascia, 2018; Salat et al.,
2019). Furthermore, the Eurasian landmass prevents

species from escaping the warming basin (Ben Rais Lasram
et al., 2010; Poloczanska et al., 2013). Most fish stocks in
the Mediterranean Sea are exploited at unsustainable
rates (FAO, 2020), which, in combination with climate
change, have turned the Mediterranean into one of the
most impacted seas in the world (Giorgi, 2006; Kim et al.,
2019). The Mediterranean Sea is usually regarded as
a “giant mesocosm,” as it holds processes, features and
gradients that occur at a global scale, too, such as species
redistributions, biomass fluctuations or the heteroge-
neous distribution of fishing pressure (Garcı́a Molinos
et al., 2016; Free et al., 2020; Ojea et al., 2020; Pinsky et
al., 2020). Therefore, the development of an SOS frame-
work in the Mediterranean Sea considering both fishing
pressure and climate change is very valuable, as it can
provide high quality information for the search of solutions
to global issues such as food security (Pinsky et al., 2018).

Pelagic fish species are under high fishing pressure in
the Mediterranean Sea due to their high commercial
values, and the fact that their catches account for >50%
of the total fish catches in the basin (FAO, 2020). Although
most pelagic species share life-history traits such as rapid
life cycles, high adult motility, planktonic larval stages,
and low levels of dependence on benthic habitat (Alheit
and Peck, 2019), biomass and distribution responses to
climate and fishing pressure vary between species. For
example, the distribution range of Round sardinella Sar-
dinella aurita has expanded in response to warming con-
ditions (Sabatés et al., 2006), while stocks of some
commercial species, such as European anchovy Engraulis
encrasicolus, Atlantic bonito Sarda sarda and European
sardine Sardina pilchardus are showing signs of depletion
(Coll and Bellido, 2020; FAO, 2020; General Fisheries
Commission for the Mediterranean, 2021). Due to their
roles in providing food security and the structuring and
functioning of marine food webs (Cury et al., 2000; Pikitch
et al., 2013; Piroddi et al., 2015), holistic and integrative
assessments of these species that combine climate and

Figure 1. Mediterranean Sea basin, our study zone, divided into marine ecoregions. In addition to these
ecoregions (from Spalding et al., 2007), we refer to wider geographic sections of the Mediterranean using the
following terminology: western Mediterranean (Alboran Sea and Western Mediterranean Sea marine ecoregions),
central Mediterranean (Adriatic Sea, Ionian Sea and Tunisian plateau/Gulf of Sidra marine ecoregions) and eastern
Mediterranean (Aegean Sea and Levantine Sea marine ecoregions).

Art. 10(1) page 2 of 18 Ouled-Cheikh et al: Climate and fishing impacts on pelagic fish
D

ow
nloaded from

 http://online.ucpress.edu/elem
enta/article-pdf/10/1/00028/761493/elem

enta.2022.00028.pdf by guest on 10 February 2023



fishing impacts can help to develop comprehensive man-
agement plans of impacted marine ecosystems.

Previous research has shown how the simultaneous
impact of climate forcing and fishing pressure may affect
the dynamics of small pelagic fish species in the

northwestern Mediterranean and Adriatic Sea (e.g.,
Ramı́rez et al., 2018; Ramı́rez et al., 2021). However, inte-
grative assessments of fishing and climate change impact
on multiple pelagic fish species across the entire Mediter-
ranean basin are lacking. This study aims to fill this gap by

Figure 2. Visualization of the methodology used.
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analysing 15 commercial and non-commercial representa-
tive of small, medium and large pelagic fish species inha-
biting the whole Mediterranean Sea and their
requirements for depth, sea surface temperature (SST), sea
surface salinity (SSS), and net primary productivity (NPP)
(Figure 2). By combining long-term (1993–2018) spatially
explicit trends, we first performed a climate-risk assess-
ment by evaluating changes in their optimal habitat avail-
ability; i.e., the extent of marine areas encompassing
optimal environmental conditions. We then overlaid these
areas with available, high-resolution fisheries data (Global
Fishing Watch, http://globalfishingwatch.org/; Kroodsma
et al., 2018) to identify areas at high risk of cumulative
impacts. We hypothesized that highly and “doubly”
impacted areas would have patchy distributions across
the Mediterranean Sea, as climate and fishing impacts
are not evenly distributed throughout the basin, and
their overall cumulative footprint may have different
effects on pelagic species and functional groups. Man-
agement and conservation actions within the SOS frame-
work in these “doubly” and highly impacted areas could
potentially contribute to the conservation of marine eco-
systems and the sustainable exploitation of the pelagic
fish community in this “sea under siege” (Coll et al.,
2012; Micheli et al., 2013).

Material and methods
Optimal habitat availability

In order to define optimal habitat areas for our study
species, we obtained the species environmental prefer-
ences and occurrences from AquaMaps (https://www.
aquamaps.org; Kaschner et al., 2019). For thousands of
marine species, AquaMaps provides environmental

preferences for depth, SST, SSS and NPP, and the probabil-
ity of occurrence at particular locations (latitudes and
longitudes) throughout species distribution ranges. Here,
we first subset AquaMaps occurrences within the Mediter-
ranean Sea with probabilities higher than 90%, and with
a number of observations larger than 5. We then defined
the species-specific optimal environmental thresholds for
the Mediterranean region as the minimum and maximum
values of the environmental variables (i.e., depth, SST, SSS
and NPP) for selected occurrences (Figures S1–S15).

To produce spatially explicit assessments of the distri-
bution of optimal habitat for our study species, we down-
loaded depth information from the ETOPO1 Global Relief
Model (NOAA, https://www.ngdc.noaa.gov/mgg/global/).
Spatiotemporal trends in SST (�C), SSS (practical salinity)
and NPP (mol m–3) were sourced from the Global Ocean
Physics and Biogeochemistry Reanalyses (GLOBAL_REA-
NALYSIS_PHY_001_030 for SST and SSS, and GLOBAL_
REANALYSIS_BIO_001_029 for NPP) of the EU Copernicus
Marine Environment Monitoring Service (https://marine.
copernicus.eu/). Environmental time series were restricted
to the 1993–2018 period, the time period for which SST,
SSS and NPP data are available.

Because of the high environmental heterogeneity of
the Mediterranean Sea, many divisions have been sug-
gested to split the basin into ecological sub-regions (FAO,
1990–2021; Spalding et al., 2007; Notarbartolo di Sciara
and Agardy, 2010). Here we used the Mediterranean
marine ecoregions (Spalding et al., 2007), as they are con-
sidered to capture much of the oceanographic variability
in the Mediterranean Sea (Figure 1). All of the species
considered in the study are part of the pelagic fish com-
munity of the Mediterranean Sea, including small,

Table 1. Pelagic fish study species, split by size category, with habitat information extracted from Froese
and Pauly (2000)

Size Category Latin Name Common Name Habitat

Small Engraulis encrasicolus European anchovy Pelagic-neritic

Sardina pilchardus European sardine Pelagic-neritic

Sardinella aurita Round sardinella Pelagic-neritic

Medium Lepidopus caudatus Common scabbardfish Benthopelagic

Scomber colias Atlantic chub mackerel Pelagic-neritic

Sphyraena sphyraena European barracuda Pelagic-neritic

Trachurus mediterraneus Mediterranean horse mackerel Pelagic-oceanic

Trachurus trachurus Atlantic horse mackerel Pelagic-neritic

Large Euthynnus alletteratus Little tunny Pelagic-oceanic

Katsuwonus pelamis Skipjack tuna Pelagic-oceanic

Mobula mobular Giant devil ray Pelagic-neritic

Prionace glauca Blue shark Pelagic-oceanic

Sarda sarda Atlantic bonito Pelagic-neritic

Thunnus thynnus Atlantic bluefin tuna Pelagic-oceanic

Xiphias gladius Swordfish Pelagic-oceanic
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medium and large-sized species with commercial and non-
commercial interest. Distributions range from neritic to
oceanic habitats (Table 1).

Based on species-specific optimal environmental
thresholds, as calculated from the AquaMaps occurrence
data from the Mediterranean Sea in combination with
depth profiles and time series of SST, SSS and NPP, we
evaluated how the surface of optimal environmental hab-
itat (i.e., the spatial intersect of areas encompassing opti-
mal environmental conditions) varied both temporally
(yearly; 1993–2018) and spatially within the Mediterra-
nean Sea. First, we estimated the surface area (in km2 and
% relative to the maximum surface area recorded in the
1993–2018 period) of species-specific optimal habitats on
a yearly basis, for the whole study period, in each marine
ecoregion. The relativization to the maximum surface area
was done in order to have comparable outputs among
species. These estimates were used as a surrogate for opti-
mal habitat availability and to evaluate the temporal
trends (1993–2018) in optimal habitat availability
through linear regressions with a Gaussian distribution
following previous analyses (Ramı́rez et al., 2021; Ramı́rez
et al., 2022). We used the slopes (and significances; P-
value) of these linear regressions as estimates for the mag-
nitudes of observed changes.

To evaluate the climate-driven environmental effects
on the availability and distribution of optimal habitats,
we quantified habitat persistency on a per-pixel basis by
counting how many years (for the 1993–2018 period)
each pixel was identified as optimal in terms of SST, SSS
and NPP, individually. Spatial outputs for each feature

ranged from 0 (all years categorized as suboptimal; i.e.,
permanently suboptimal conditions) to 26 (all years cat-
egorized as optimal; permanently optimal conditions
across all climate drivers). As a proxy for the overall per-
sistency of optimal environmental conditions, we used
multiplicative equally weighted combination of feature-
specific outputs (i.e., SST, SSS and NPP outputs).
Although we assumed here that optimal ranges of SST,
SSS and NPP equally contribute to the distribution of
species, our approach can be revisited and refined by
incorporating the relative weights that these multiple
drivers may have in shaping species-specific distribu-
tions. Depth was considered a posteriori to define the
plausible areas where species live, which were calculated
by cropping the optimal habitat persistency areas to pre-
ferred depth range of each species. This procedure was
applied at the species level and by species size groups
(i.e., small, medium and large pelagic species or
“pelagics”; Table 1) to provide a more general and inter-
pretable output.

In order to validate our approach with an independent
dataset, we evaluated if our estimates of species-specific
trends in optimal habitat availability corresponded to
trends in fish biomass of the Sea Around Us project (SAUP;
Palomares et al., 2020; Pauly et al., 2020). The Pearson’s
correlation test was used to obtain the relationships
between the yearly surface of optimal habitat and the
yearly biomass estimates per marine ecoregion to correlate
our estimates with the changes in fish abundance. This
analysis was limited to those species and marine ecoregions
for which estimates were available in SAUP (Table 2).

Table 2. Results of Pearson correlation tests between estimates of yearly optimal habitat surface and biomass
data extracted from the Sea Around Us Project (Palomares et al., 2020; Pauly et al., 2020)a

Speciesb Marine Ecoregionb Correlation Coefficient P-value

Engraulis encrasicolus Alboran Sea –0.699 <0.01

Sardina pilchardus Alboran Sea 0.137 0.54

Engraulis encrasicolus Western Mediterranean 0.278 0.21

Sardina pilchardus Western Mediterranean 0.549 <0.01

Lepidopus caudatus Western Mediterranean 0.502 <0.05

Sarda sarda Western Mediterranean 0.312 0.16

Engraulis encrasicolus Adriatic Sea –0.086 0.70

Sardina pilchardus Adriatic Sea –0.490 <0.05

Lepidopus caudatus Adriatic Sea –0.273 0.22

Sarda sarda Adriatic Sea –0.292 0.19

Engraulis encrasicolus Ionian Sea 0.336 0.13

Sardina pilchardus Ionian Sea 0.485 <0.05

Engraulis encrasicolus Aegean Sea –0.023 0.92

Sardina pilchardus Aegean Sea 0.046 0.84

Sarda sarda Aegean Sea 0.440 <0.05

aBoldface values indicate significant correlations.
bBiomass data were not available for all of our study species and marine ecoregions.
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The overlapping impact of fishing

Spatially explicit estimates of fishing effort were obtained
from Global Fishing Watch (GFW; Kroodsma et al., 2018;
accessed on July 2021 from the Google Earth Engine:
https://developers.google.com/earth-engine/datasets).
We summed daily fishing records to obtain spatially
explicit totals for the 2012–2016 period. Our analyses
focused on main fishing gears targeting small, medium
and large pelagic fish species: we considered purse seiners
and trawlers for small pelagics, purse seiners for medium
pelagics, and drifting long liners, purse seiners, fixed gear
and jiggers for large pelagics.

Before overlapping fishing pressure information with
our proxy for climate impacts on species optimal habitat
distributions, we normalized both information layers from
0 to 1. We then estimated the cumulative impact of our
proxies for climate effects and fishing pressure by multi-
plying the two layers. By multiplying both layers, we exclu-
sively considered those marine areas where both impacts
co-occur spatially (i.e., excluding those areas that were
exclusively impacted either by climate forcing or fishing
pressure).

The spatial output ranged from 0 (i.e., no fishing and/
or climate impacts) to 1 (i.e., maximum fishing/climate
impacts) for areas that were most impacted by both stres-
sors. Non-zero values were subsequently categorized into
quartiles that express the magnitude of the cumulative
impacts (Q1 to Q4). Areas within the Q4 quartile can be
interpreted as most impacted by climate change and fish-
ing pressure simultaneously.

Datasets used, temporal and spatial cover

and methodological comment

Some inherent limitations in our work arise from the used
datasets. First of all, temporal correspondence is lacking
between spatially explicit estimates of fishing effort from
Global Fishing Watch, which covers the period between
2012 and 2016, and the environmental data from EU
Copernicus Marine Environment Monitoring Service,
which extend from 1993 to 2018. This lack of correspon-
dence leads to the assumption that spatial patterns of
fishing activity did not vary extensively during our study
period, which has already been indicated by Kroodsma
et al. (2018), who showed that fisheries have low sensitiv-
ity to environmental and economic variation. However,
this mismatch could be masking some spatiotemporal
variability that we could not capture in our approach,
which means that our results on doubly impacted areas
should be understood as conservative. Also, at local scales
(and particularly in the southern part of the basin) we are
lacking most of the fishing effort data due to low usage of
automatic identification system (AIS) transmitters
(Kroodsma et al., 2018; Merino et al., 2019; see https://
globalfishingwatch.org/data/radar-illuminated-ocean/).
As our approach can be revisited and applied at many
different locations, future assessments at sub-regional
scales, including information on artisanal or small-scale
fisheries, would be important to complete the current lack
of information in some parts of the Mediterranean. This
lack could be overcome by using recent advances in vessel-

detection technology such as the usage of synthetic aper-
ture radar, although current data availability is restricted
to 2021, which would reduce the temporal window cov-
ered by fishing effort information.

Results
We found contrasting trends in the availability of optimal
habitat across species and ecoregions. Generally, our
results highlighted a reduction in optimal habitat avail-
ability for most of the studied species (Figure 3). We iden-
tified a few exceptions, which are mainly found in the
Western Mediterranean and Alboran Sea marine ecore-
gions (i.e., for round sardinella Sardinella aurita, Mediter-
ranean horse mackerel Trachurus mediterraneus, European
barracuda Sphyraena sphyraena and Giant devil ray
Mobula mobular), and a significantly increasing trend for
Mediterranean horse mackerel.

Despite the general trend of reductions, magnitudes
were unequal among regions (Figure 3). In the Western
Mediterranean marine ecoregion species lost the largest
amount of optimal habitat surface, mainly affecting two
small pelagic fish species (i.e., European sardine and Euro-
pean anchovy), with European sardine experiencing the
largest loss in optimal habitat surface within this region
and in the whole Mediterranean Sea. In contrast, in the
adjacent marine ecoregion of the Alboran Sea small pela-
gics were not impacted, but large species such as swordfish
and Atlantic Bluefin tuna lost the most optimal habitat
surface. Medium pelagics (Mediterranean horse mackerel
and European barracuda in particular) were most impacted
in the central Mediterranean Sea (including Adriatic, Ionian
and Tunisian Plateau/Gulf of Sidra), followed mainly by the
three species of small pelagic fish. Regarding large pelagics,
giant devil ray lost most optimal habitat surface across the
central Mediterranean (Figure 3). The eastern Mediterra-
nean Sea (including Aegean and Levantine Sea regions) was
found to be permanently suboptimal for most of the spe-
cies (Figures 4A, 5A, 6A), thus leaving little room for
decreases in optimal habitat availability. The Aegean Sea
did not show particularly large decreases in optimal habitat
surface for the study species (Figure 3). The Giant devil ray
was the only species with a significant loss of optimal hab-
itat surface in the Levantine Sea.

Regarding spatial persistency of optimal habitat avail-
ability, we found that most of the Mediterranean Sea basin
had a large area of persistent suboptimal conditions for
small, medium and large pelagic species (Figures 4A, 5A,
6A). Small pelagics had the largest proportion of persis-
tently suboptimal habitat surface, followed by large and
medium pelagics (Figures 4A, 5A, 6A). The latter two
groups had a larger proportion of intermediate levels of
optimal habitat persistency, meaning that the optimality
of those areas varied over time. Conditions were generally
better at the beginning of our study period than at the
end. We also identified some exceptions of persistent
optimal habitat conditions in the Alboran Sea, parts of
the northernmost section of the Adriatic Sea, and the
innermost part of the Aegean Sea (Figures 4A, 5A, 6A).

As in the case of optimal habitat reductions, fishing
pressure was not evenly distributed spatially, with highest
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pressures in the western and central Mediterranean
(mostly Spain, southern Sicily, eastern and western Italy
and Croatia) by predominantly trawl, purse seine and
long-line vessels (Figures 4B, 5B, 6B). The easternmost
marine ecoregions of the Mediterranean Sea did not show
particularly large fishing pressures compared to the west-
ern ecoregions, with limited fishing pressure along the
coasts of the Aegean Sea, southern Turkey and Cyprus.

Overlap of climate and fishing impacts highlighted
areas where the largest fishing pressure and large persis-
tency of suboptimal conditions overlapped extensively
(Figures 4C, 5C, 6C). Overall, highly cumulatively
impacted areas (Q4 zones) were quite similar spatially for
small, medium and large pelagics, although with lesser
impacts for the latter two groups. The Alboran Sea marine
ecoregion had the lowest proportion of high-impact areas
except for large pelagics. In contrast, the Adriatic Sea
marine ecoregion consistently had the largest proportion
of its area (30–45%) within high impact zones, followed
by the Western Mediterranean marine ecoregion (particu-
larly Eastern Spain and Western Italy; approximately 25%).
The remaining marine ecoregions also showed large pro-
portions of high-impact zones (around 15–25% of their
total surface), with particularly intense spots such as the
Strait of Sicily in the Ionian Sea or Southern Turkey in the
Levantine Sea (Figure 7).

The validation of our results through biomass data
from SAUP showed that, in some cases, the correlations

were as expected (i.e., being positive; r > 0, P-value <
0.05), meaning that larger optimal habitat surface esti-
mates coincided with larger biomasses (Table 2). This
relationship was particularly the case for European sardine
and silver scabbardfish in the Western Mediterranean
marine ecoregion, European sardine in the Ionian Sea, and
Atlantic bonito in the Aegean Sea. However, we encoun-
tered a few cases with negative correlations, such as Euro-
pean anchovy in the Alboran Sea and European sardine in
the Adriatic Sea.

Discussion
By combining long-term, spatially explicit trends in envi-
ronmental conditions with available distributions of fish-
ing pressure, we identified marine areas and pelagic
species within the Mediterranean Sea that are most
impacted by both climate change and fishing pressure.
Our results highlight optimal habitat loss for the vast
majority of the species studied over the 1993–2018 time
period. This finding is in agreement with previous studies
in the area, and underscores that the Mediterranean Sea is
highly impacted by climate change (Claudet and
Fraschetti, 2010; Coll et al., 2012; Ramı́rez et al., 2018).
Marine species distributions have been shown to closely
track shifting environmental conditions (Pinsky et al.,
2013; Pinsky et al., 2019; Lenoir et al., 2020). Accordingly,
we argue that the environmental changes that we
detected can affect species biomass and spatial

Figure 3. Linear regression slopes (yearly optimal habitat availability) by marine ecoregion and pelagic fish
size category. Barplots colour-coded for pelagic fish size category and ordered from large to small slopes. Asterisks
denote statistically significant linear regressions (*, P-value < 0.05; **, P < 0.01).
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distribution, which can ultimately have ecosystem-level
consequences and impacts on fishing catches and seafood
provision (Ramı́rez et al., 2022).

Complementing previous studies, our work identifies
key areas and pelagic species that are likely the most
affected by the simultaneous impacts of shifting environ-
mental conditions and fishing pressure over time. The
magnitudes and directions of these trends contrast among
species and marine ecoregions, with the steepest
decreases occurring in the western and central regions.
We detected very few cases with an increase of optimal
habitat availability. Moreover, the magnitude of increase
in those cases was small (e.g., for round sardinella in the
Western Mediterranean marine ecoregion), which indi-
cates that losses of functional roles from some species
(e.g., European sardine) may not be compensated by

a biomass increase of other similar species that could be
favoured by shifting environmental conditions such as
round sardinella (Sabatés et al., 2006). This likely lack of
compensation could imply changes in the overall func-
tioning of the Mediterranean food web, as small pelagic
fish species play important functional roles such as the
transfer of energy from lower to higher trophic level
organisms (Palomera et al., 2007; Coll et al., 2008;
Albo-Puigserver et al., 2016). Worryingly, we also found
a high spatial congruence between fishing pressure and
suboptimal environmental conditions for pelagic species,
thus suggesting that fisheries and climate-driven environ-
mental impacts could push the pelagic fish communities
beyond safe limits (i.e., outside of their SOS).

At the basin scale, small pelagic fish suffered the larg-
est loss of optimal habitat and showed the largest highly

Figure 4. Risk assessment components for small pelagic fish in the Mediterranean Sea split by marine
ecoregions. Combined assessments for European anchovy, European sardine and round sardinella: (A) optimal
habitat persistency along the 1993–2018 period; (B) fishing effort based on Global Fishing Watch data (2012–
2016); and (C) combined impact of (A) and (B) with categorization by quartiles (Q1–Q4).
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impacted areas. Small pelagic fish are known to suffer
rapidly from both environmental changes and overfishing,
which may result into stock depletions or collapses with
broader ecological impacts (Palomera et al., 2007; Roux
et al., 2013; Essington et al., 2015; Fernandes et al., 2017).
In particular, European sardine from the Western Mediter-
ranean marine ecoregion was the most impacted species
(followed by European anchovy) in the Mediterranean
basin in terms of optimal habitat surface loss for the study
period. This result is in line with the sensitivity of the
species towards warming conditions of the basin
(Palomera et al., 2007; Pennino et al., 2020; Albo-
Puigserver et al., 2021), and it coincides with a worrying
situation for the sustainable exploitation of the fish stocks
targeted by Spanish and French Mediterranean fisheries

(General Fisheries Commission for the Mediterranean,
2021). Interestingly, habitat suitability has also decreased
for round sardinella, a thermophilic species whose distri-
bution range in the western Mediterranean expanded
northward in the past decades due to warmer conditions
(Sabatés et al., 2006). However, successful reproduction
of the round sardinella also requires high chlorophyll
levels in summer (Ben-Tuvia, 1973; Schismenou et al.,
2008; Sabatés et al., 2009), which are currently low in
most of the Mediterranean Sea and have been predicted
to decrease even more in a warmer world (Macias et al.,
2015). Hence, according to our results, round sardinella
is unlikely to expand further and may not be an ecolog-
ical substitute for European sardine in the future, which
may be substituted by other, currently less abundant

Figure 5. Risk assessment components for medium pelagic fish in the Mediterranean Sea split by marine
ecoregions. Combined assessments for common scabbardfish, Atlantic chub mackerel, European barracuda,
Mediterranean horse mackerel and Atlantic horse mackerel: (A) optimal habitat persistency along the 1993–2018
period; (B) fishing effort based on Global Fishing Watch data (2012–2016); and (C) combined impact of (A) and (B)
with categorization by quartiles (Q1–Q4).
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species such as the picarel Spicara smaris, which is the
dominant zooplanktivore over the continental shelf of
the Balearic Islands, Crete and Cyprus (i.e., warm, oligo-
trophic areas), but which is not important in terms of
fishing catches (SAUP; Palomares et al., 2020; Pauly et al.,
2020). Other species that may be shifting their distribu-
tions into the Mediterranean through the Suez Canal are
Lessepsian migrants from the Red Sea (Ben Rais Lasram
et al., 2008). Although our approach would allow the
consideration of these and other invasive species, only
two of them (rainbow sardine Dussumieria acuta and
yellowstripe barracuda Sphyraena chrysotaenia) support
local fisheries and have not been included due to the
scarcity of data.

Those areas showing permanent suboptimal conditions
for small pelagic fish, as the Ligurian Sea (northern West-
ern Mediterranean marine ecoregion), Ionian Sea, Tunisian
Plateau/Gulf of Sidra and Levantine Sea, were generally
not identified as doubly impacted areas because of the
low fishing pressure, which may reflect that these areas
were not ever suitable as fishing grounds during our study
period. These areas contrast with those that have interme-
diate values of optimal habitat persistency, such as the
northeastern coast of Spain and western coast of Italy,
where most of the Western Mediterranean marine

ecoregion zones of cumulative climate and fisheries
impacts occur. Environmental conditions were likely good
enough to support a strong fishing pressure at the begin-
ning of the study period (1993), but deterioration of envi-
ronmental conditions may not have been accompanied by
the necessary reduction of fishing pressure, resulting in
a high cumulative impact. Indeed, fishing effort in these
areas is strong compared to other Mediterranean areas
(e.g., the Levantine Sea marine ecoregion), as they host
the largest trawling and purse-seining fleet of the Medi-
terranean Sea (Sbrana et al., 2010; Ramı́rez et al., 2018).

In contrast, the adjacent Alboran Sea marine ecoregion
had a mild fishing pressure and was consistently identified
as a spot with persistent optimal conditions for all of the
examined small pelagic fish. This assessment may be a con-
sequence of the lower temperatures of surface waters
flowing in from the Atlantic Ocean, which makes this
ecoregion more resilient to warming. Other regions that
were generally identified as persistently optimal for small
pelagic fish were the northernmost part of the Aegean Sea
and a small section of the Northern Adriatic Sea. Never-
theless, the Adriatic Sea is one of the most heavily human-
impacted zones of the Mediterranean (Lotze et al., 2011),
where intense fishing pressure coincides with already
“poor” environmental conditions for small pelagics due

Figure 6. Risk assessment components for large pelagic fish in the Mediterranean Sea split by marine
ecoregions. Left: Giant devil ray. Right: Combined assessments for little tunny, skipjack tuna, blue shark, Atlantic
bonito, Atlantic bluefin tuna, and swordfish. (A) Optimal habitat persistency along the 1993–2018 period; (B) fishing
effort based on Global Fishing Watch data (2012–2016); and (C) combined impact of (A) and (B) with categorization
by quartiles (Q1–Q4).
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to riverine runoff induced eutrophication (Vighi et al.,
1991; Sfriso, 2021). We thus identified most of the
Adriatic Sea as a permanently suboptimal area for small
pelagics (with little room for further decreases) and,
hence, a highly and cumulatively impacted zone. Even if
environmental conditions have been permanently subop-
timal in most of the Adriatic Sea, fishing pressure remains
very high. This situation constitutes another example of
how fishing pressure has not been reduced to adapt to
environmental conditions, in line with the current overf-
ished state of several fish stocks within this marine ecor-
egion (UNEP-MAP-RAC/SPA et al., 2015). Small pelagic fish
also showed a strong reduction of their optimal habitat
surface in the Ionian Sea marine ecoregion, with a high-
impact zone centered in the Strait of Sicily, mainly due to
local trawling fisheries supported by an upwelling system
(Russo et al., 2014; Di Lorenzo et al., 2018).

In contrast to small pelagic fish, medium pelagic spe-
cies showed intermediate optimal habitat persistency in
the Western Mediterranean and Adriatic Sea marine ecor-
egions, including the Strait of Sicily. This pattern, however,
results from the contrasting responses of two groups of
species, because optimal habitat availability declines for
common scabbardfish, Atlantic horse mackerel and Atlan-
tic chub mackerel but remains largely unchanged for Med-
iterranean horse mackerel and European barracuda (see
species-specific results in Supplementary Material). The
contrast between Atlantic and Mediterranean horse mack-
erels is particularly illustrative, as the former is a cold-

water species whose abundance is highly dependent on
bottom temperature, whereas the Mediterranean horse
mackerel is more thermophilic (Milisenda et al., 2018).
Hence, species replacement is expected in the foreseeable
future within the group of medium pelagics, which is also
probably the case for the European barracuda and the
yellowmouth barracuda (Sphyraena viridensis). Both spe-
cies occur in the Mediterranean and have been misidenti-
fied for a long time (Relini and Orsi-Relini, 1997), which
leads us to question the accuracy of the information
extracted from AquaMaps. If the yellowmouth barracuda
is actually more thermophilic than European barracuda,
the results reported here may be indicative of species
replacement, as for horse mackerels.

Regarding large pelagic fish species, we observed mas-
sive losses of optimal habitat surface for most of the inves-
tigated species, except for the giant devil ray. Swordfish
and the four species of tuna considered are targeted by
specific fisheries (Coulter et al., 2020), while blue sharks
are frequently bycaught by bottom trawlers and purse
seiners in the western Mediterranean (Nuez et al., 2021).
Conversely, aerial surveys have revealed a previously unex-
pected abundance of giant devil ray in the Adriatic Sea
(Fortuna et al., 2014) and the western Mediterranean
(Nortarbartolo di Sciara et al., 2015), but rays are not
a widespread bycaught species. Furthermore, swordfish,
the four tuna species and blue sharks occupy high trophic
levels in the Mediterranean (i.e., they are top predators;
Cardona et al., 2015), whereas mobulid rays rely primarily

Figure 7. Percentage (%) of surface for each marine ecoregion in the Mediterranean Sea. Percentages split by
fish size category (small, medium, and large) and colour-coded by impact magnitude (quartiles Q1–Q4).
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on pelagic crustaceans (Couturier et al., 2012; but see
Barrı́a et al., 2015). The overall evidence supports that
fishing and loss of optimal habitat may combine to reduce
the populations of large pelagic fishes with a high trophic
position in the Mediterranean, whereas giant devil ray
may thrive in most of the central and western Mediterra-
nean unless their fishing pressure increases. This shift may
result in major changes in the structure of marine pelagic
food webs, considering the major ecological differences
between giant devil rays and the other species of large
pelagics.

The marine ecoregion where the optimal environmen-
tal conditions for large pelagic fishes appeared to be the
most degraded was the Alboran Sea, where, contrastingly,
we did not find optimal habitat surface loss for small or
medium pelagic species. The highly migratory nature of
some of the large pelagic species, such as Atlantic bluefin
tuna, may reduce the impact of decreases in optimal hab-
itat, as these species only traverse the Alboran Sea from
the Atlantic Ocean to the spawning zones in predomi-
nantly the Western Mediterranean marine ecoregion (i.e.,
Balearic Islands, Northern Sicily, Malta; Medina et al.,
2002; Corriero et al., 2005) and other zones further East
(Karakulak et al., 2004).

We may expect that those species that increased their
overall optimal habitat surface could have larger bio-
masses and thus be more available for fisheries, increasing
catches and vice versa. However, the correlation between
our annual optimal habitat surface estimates and bio-
masses extracted from SAUP was only positive and signif-
icant for three species (European sardine, silver
scabbardfish and Atlantic bonito) in three marine ecore-
gions (Western Mediterranean, Ionian Sea and Aegean
Sea). In the case of European sardine, this result supports
the existence of an actual biomass decline linked to the
deterioration of environmental conditions (Coll and Bel-
lido, 2020; Pennino et al., 2020). Inconsistencies between
our results (i.e., trends in optimal habitat availability) and
biomass estimates for other species could be due to
a range of factors, including the effect of fisheries harvest-
ing or inaccuracy in biomass estimates. They could also be
a consequence of inherent limitations of our methodolog-
ical approach. For instance, we considered that SST, SSS
and NPP contributed equally to species distributions,
which may actually vary among species and geographic
areas. Also, a decoupling may exist between the metrics
used here to define environmental shifts and the fine-
scale temporal and spatial aspects of the environment
driving species biomass and distribution (e.g., duration
of the summer season, local minimum temperature in
winters; Poloczanska et al., 2013; Sunday et al., 2015).
Moreover, our analyses may be sensitive to potential
auto-correlation among environmental divers. Also, our
assessments do not consider evolutionary processes, accli-
mation, and potential changes in species interactions that
may lead species to persist in suboptimal environmental
conditions, occupy new niches, or even leave previously
preferred environmental ranges (Pinsky et al., 2020). Also,
our approach may fail at local scales, as we do not have
species-specific fine scale movement data (e.g., tracking

data), and we rely on their static environmental envelopes,
without considering their much more complicated life
cycles, which include in some cases migrations (e.g., blue-
fin tuna), local scale movements in search of prey, or dif-
ferent life-history stages (e.g., larvae may have different
environmental requirements than adults). To overcome
these methodological constraints, our approach could be
revisited in search of local, fine-scale patterns, using much
more detailed data on local fisheries and species.

Accordingly, our spatially explicit assessments of opti-
mal habitats should be interpreted with caution and used
only as a proxy for the climate-driven environmental
impacts that are likely to affect species distributions and
biomass. Despite these limitations, our results provide
a first comprehensive evaluation of the uneven distribu-
tion of environmental shifts likely affecting a good repre-
sentation of species from the pelagic community of the
Mediterranean Sea. Moreover, we identified potentially
highly impacted species and marine areas that are more
prone to fall outside of their SOS and thus deserve con-
servation priority in order to prevent collapses and foster
potential catch reductions. However, our basin-scale
assessment is limited by the availability of AIS data for
North African countries, related to the minimal use of
on-board transmitters and lack of terrestrial receptors
(Kroodsma et al., 2018; Merino et al., 2019). For this rea-
son, our results on doubly impacted areas should be
understood as conservative. The lack of AIS data ultimately
imposes severe limitations on performing SOS analysis in
the southern Mediterranean Sea, which may mask highly
and simultaneously impacted areas that need urgent con-
sideration (Coll et al., 2010). This problem is particularly
important with the ever-advancing climate crisis, in which
local administrations cannot make immediate, tangible
policy changes to counter climate impacts. A recent sug-
gestion is that fisheries could be reallocated to low-
impacted, “resilient” areas where “oceanographic pro-
cesses drive range expansion opportunities that may sup-
port sustainable growth in the medium term” (i.e., climate
change “bright spots”; Queirós et al., 2021). This realloca-
tion could only be implemented through sustainably man-
aged fisheries supported by rigorous spatial-temporal
analysis, as climate change bright spots may act as climate
refuges for many species (e.g., Pennino et al., 2020). We
acknowledge that the SOS framework offers a medium-
term solution; in the long term, sustainable ecosystems
can only be ensured through a global reduction in green-
house gas emissions in combination with an ecosystem-
based approach to manage exploitation. This view is in
line with the fact that a significant number of stocks are
projected to either shift their distributions or collapse
under future climate change (Le Bris et al., 2018; Oremus
et al., 2020). As the global human population is still grow-
ing (United Nations, 2019), satisfying seafood demand
may be harder, in particular in countries where terrestrial
food production is scarce (Naylor et al., 2021). Therefore,
the results shown here reinforce the urgent need to
address the multi-faceted crisis of biodiversity loss and
climate change impacts that we are currently facing. Spe-
cies redistribution will likely reshape the spatial patterns
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of catches across regions and fishing sectors (Cheung
et al., 2010; Ramirez et al., 2022), which may lead to
further increasing impacts on marine resources with
increased risk for substantial geopolitical conflict at the
global scale (Pecl et al., 2017; Pinsky et al., 2018; Boyce et
al., 2020; Mendenhall et al., 2020). Our approach, based
on risk assessment methods within a SOS framework, can
be applied globally to contribute to the assessment on
how to reach a balance between the conservation and
sustainable exploitation of marine ecosystems. It could
provide key insights to adapt current and future fisheries
to climate change, in a way that keeps socio-ecological
impacts at a minimum.
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