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A B S T R A C T   

The bacterium Xylella fastidiosa (Xf) is a plant pathogen that can block the flow of water and nutrients through 
the xylem. Xf symptoms may be confounded with generic water stress responses. Here, we assessed changes in 
biochemical, biophysical and photosynthetic traits, inferred using biophysical models, in Xf-affected almond 
orchards under rainfed and irrigated conditions on the Island of Majorca (Balearic Islands, Spain). Recent 
research has demonstrated the early detection of Xf-infections by monitoring spectral changes associated with 
pigments, canopy structural traits, fluorescence emission and transpiration. Nevertheless, there is still a need to 
make further progress in monitoring physiological processes (e.g., photosynthesis rate) to be able to efficiently 
detect when Xf-infection causes subtle spectral changes in photosynthesis. This paper explores the ability of 
parsimonious machine learning (ML) algorithms to detect Xf-infected trees operationally, when considering a 
proxy of photosynthetic capacity, namely the maximum carboxylation rate (Vcmax), along with carbon-based 
constituents (CBC, including lignin), and leaf biochemical traits and tree-crown temperature (Tc) as an indica
tor of transpiration rates. The ML framework proposed here reduced the uncertainties associated with the 
extraction of reflectance spectra and temperature from individual tree crowns using high-resolution hyper
spectral and thermal images. We showed that the relative importance of Vcmax and leaf biochemical constituents 
(e.g., CBC) in the ML model for the detection of Xf at early stages of development were intrinsically associated 
with the water and nutritional conditions of almond trees. Overall, the functional traits that were most consis
tently altered by Xf-infection were Vcmax, pigments, CBC, and Tc, and, particularly in rainfed-trees, anthocyanins, 
and Tc. The parsimonious ML model for Xf detection yielded accuracies exceeding 90% (kappa = 0.80). This 
study brings progress in the development of an operational ML framework for the detection of Xf outbreaks based 
on plant traits related to photosynthetic capacity, plant biochemistry and structural decay parameters.   

1. Introduction 

Increasing global trade and travel in a changing climate has led 
several plant pests to spread to multiple continents and cause major 
agricultural, environmental, and socio-economic impacts (EFSA (Euro
pean Food Safety Authority), 2019a). Xylella fastidiosa (Xf) is considered 
one of the most dangerous plant pathogenic bacteria worldwide and can 
infect >600 plant species (EFSA, 2021). Up to date, there is currently no 
control measure available to eliminate Xf from diseased plants in open 
field conditions once they became infected (EFSA, 2019b). Xf causes 
significant yield losses in numerous crops in the Americas (where it is 

native), and more recently in Europe and Israel. Xf is known to cause 
severe direct damage to major crops including almonds, citrus, grape
vines, olives, stone fruits and forest trees, landscape, and ornamental 
trees, with high impacts (EFSA, 2021). The economic impact of Xf in 
olives alone has been estimated for Italy, Greece and Spain from 2.38 to 
7.49 billion euros per year, if Xf is not contained (Schneider et al., 2020). 
Xf is listed as a priority pest for the EU based on its probability of 
spreading, establishment, and consequences for the EU (Commission 
Delegated Regulation (EU) 2019/1702). 

Xf is a xylem-invading pathogen that colonizes its host’s vascular 
tissue and eventually blocks water flow through the xylem. Xf infections 
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gradually block the xylem, leading to a reduction of sap flow due to 
bacterial growth and plant physiological responses (Sicard et al., 2018). 
Symptoms in the canopies of infected plants include foliar discoloration, 
wilting of apical shoots, dieback of twigs and branches, and general 
decline (Carlucci et al., 2013) that may be confounded with a generic 
water stress responses due to the xylem-limiting nature of the infection 
processes (Hopkins, 1989). Several studies in different hosts have shown 
that disease progress and severity of disease caused by Xf increase with 
water stress (Purcell and Hopkins, 1996), e.g. liana vines (McElrone 
et al., 2001), and citrus (Machado et al., 2007). In almond trees, almond 
leaf scorch (ALS) symptoms mainly consist of marginal scorching of 
leaves, often with a golden yellow band between the brown or tan 
necrotic tissue and the inner green parts, with necrosis generally starting 
at the leaf margins and progressing to the midrib (Marco-Noales et al., 
2021). 

Xf bacterium grows in the xylem, a plant niche characterized by low 
concentrations of amino acids and other compounds. Sabella et al., 2018 
showed that lignin deposition plays an important role in plant defense, 
suggesting that an increase in lignin amounts in the xylem may reduce Xf 
movement, slowing disease progression. It is known that the availability 
of minerals and trace elements affects host-pathogen interactions, 
especially pathogen survival, the expression of virulence traits, and host 
physiology (Cruz et al., 2012). Thus, there is evidence that Xf-infection 
causes changes in the mineral status of the host plant that may 
contribute to successful infection and symptom development. Indeed, it 
is reported that Xf-infection caused significant increases in concentra
tions of calcium (Ca) prior to the appearance of symptoms and decreases 
in concentrations of phosphorous (P) after symptoms appeared (De La 
Fuente et al., 2013). 

The links between the physiological symptoms and defense mecha
nisms of Xf-infected plants, and the pigments and plant processes that 
can be assessed from remote sensing (RS), open avenues for Earth 
Observation to support the detection of Xf-infection in plants. In this 
regard, significant progress has been made in recent years towards 
discriminating Xf-infected from healthy plants based on hyperspectral 
imaging in the visible and near infrared regions (Poblete et al., 2020; 
Zarco-Tejada et al., 2018, 2021) and the short-wave infrared region 
(Camino et al., 2021) of the electromagnetic spectrum. Zarco-Tejada 
et al. (2018) showed that, in the Xf outbreak in Southern Italy, changes 
in specific plant physiological traits, estimated using hyperspectral and 
thermal RS data, can detect Xf asymptomatic infections before symp
toms are visible in olive trees. Camino et al. (2021) showed, in almond 
orchards in the Xf outbreak area in Alicante province (Spain), that Xf- 
infected trees can also show symptoms resembling water stress and/or 
nutrition deficiency that compromises leaf-physiological processes in 
the plant. Other RS approaches have linked changes in chlorophyll (Cab) 
and chlorophyll-fluorescence emissions to early phases of plant diseases 
(e.g., Calderón et al., 2013; Newman et al., 2003; Ye et al., 2020). 
Poblete et al. (2021) showed that plant traits and spectral indices 
derived from hyperspectral and thermal imagery can be used to 
discriminate visual symptoms caused by two vascular pathogens, Xf 
from Verticillium dahliae in olive trees. In this regard, Zarco-Tejada et al. 
(2021) demonstrated the existence of divergent pathogen- and host- 
specific spectral fingerprints for biotic and abiotic stresses that can 
disentangle pathogen-induced symptoms from those caused by water 
stress. 

The most common RS approach used to estimate physiological traits 
are based on relationships between vegetation indices (VIs) or spectral 
bands and leaf components, such as Cab (Haboudane et al., 2002). Other 
RS studies use regression models to capture relationships between 
spectral features and biophysical traits. Partial least squares (PLS) 
regression has been successfully implemented to retrieve leaf area index 
(LAI), Cab (Kanning et al., 2018), potassium (K) and P contents (Pimstein 
et al., 2011) and to generate predictive models for maximum carbox
ylation rate (Vcmax) of Ribulose-1,5-Bisphosphate carboxylase 
(RuBisCO) enzyme, maximum electron transport rate and percentage 

leaf N (Meacham-Hensold et al., 2019). However, the finding from these 
empirical methods is difficult to transfer to other settings or scales. 
Radiative transfer (RT) models can overcome these limitations by 
providing a physics-based instruments to retrieve plant biophysical 
traits from leaf to canopy scales (Jacquemoud and Baret, 1990; Wang 
et al., 2015). Leaf and canopy parameters in crops can be estimated by 
coupling the PROSPECT-PRO leaf reflectance model (Féret et al., 2021) 
with the fourSAIL turbid medium canopy radiative transfer model 
(Verhoef and Bach, 2007). However, photosynthesis parameters are 
dependent on environmental conditions and therefore require more 
complex modeling strategies. Recent studies have successfully estimated 
Vcmax retrievals from satellite data to quantify the solar-induced chlo
rophyll fluorescence (SIF) (Guan et al., 2016; Koffi et al., 2015). Or even 
by employing hyperspectral imaging (Camino et al., 2019) using the Soil 
Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model 
developed by van der Tol et al. (2009). 

In recent years, machine learning algorithms have gained impor
tance in RS, including detection of plant pests and diseases and to 
retrieve biophysical traits through inversion approaches coupled with 
so-called hybrid methods (see Verrelst et al. (2019) for a full review). 
These hybrid methods combine physical models with parametric or non- 
parametric models such as support vector machines (SVM), PLS 
regression, gaussian process regression or ensemble learning methods 
like random forest (RF). For example, Berger et al. (2020) used a hybrid 
ML method with Gaussian regression to estimate crop N based on the 
coupled fourSAIL model with the leaf PROSPECT-PRO model. Despite 
these demonstrations, hurdles remain to be tackled before it can be used 
for systematic and widespread, pest detection. These include the algo
rithm choice, the need to balance training and testing datasets, and 
feature selection for ML models (Verrelst et al., 2019). In this regard, we 
need to develop a ML framework that could identify the right ML al
gorithm based on a robust set of performance metrics such as accuracy, 
interpretability, complexity, scalability, and computational cost associ
ated to multicollinearity issues. While there is no universal method that 
can be applied across ML problems, a modeling framework that helps 
tackle the aforementioned challenges can provide a roadmap for 
retrieving biophysical plant traits from hyperspectral data and RT 
models. 

In this work, we develop and assess the robustness of an operational 
ML framework to detect Xf-infected almond trees under two well 
differentiated water regimes. For this, we explore the feasibility of using 
a parsimonious ML model by adding a novel set of plant traits, such as 
Vcmax and carbon-based constituent (CBC; including lignin deposits), in 
addition to leaf biochemical constituent, leaf N, structural traits and 
thermal-based indicator to distinguish Xf-infected trees from heathy 
almond trees across two different water regimes. Previous works (e.g., 
Poblete et al., 2021; Zarco-Tejada et al., 2021) used fluorescence emis
sion and spectral indices as proxy of photosynthesis in the early Xf 
detection, but in this work, we track photosynthetic capacity with a 
single leaf parameter, namely the maximum carboxylation rate of the 
enzyme RuBisCO. 

2. Material and methods 

2.1. Study area and field data collection 

The study site was located in Majorca Island (Balearic Islands, Spain) 
that is one of the most important almond-producing regions in Spain. Its 
climate is typically Mediterranean, with warm average temperatures 
and seasonal rains. We selected 14 almond orchards in different loca
tions of the island within five municipalities covering a wide range of 
ALS incidence and severity (Table 3). The orchards included different 
water regimes (Supplementary Fig. S1), almond cultivars, plant density, 
and crop age or tree crown size. Orchard selection was based on infor
mation provided by the Agricultural Service, Conselleria de Medi 
Ambient, Agricultura I Pesca of the Regional Government of the Balearic 
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Islands. We carried out a field and airborne campaign during the 8th and 
12th of July 2019 that included the visual, molecular diagnosis of Xf- 
infection, leaf physiological measurements and airborne hyperspectral 
and thermal imagery. The meteorological conditions (air temperature, 
vapor pressure deficit, air relative humidity, and daily rainfall) regis
tered by the nearest meteorological stations during the days of the field 
campaign are shown in Supplementary Fig. S4. To account for non- 
disease-induced water stress in the detection of Xf, we used Xf-free or
chards under irrigated conditions as reference (orchards 1, 7–1, 7–2 and 
15 in Table 3). 

The Xf disease severity (DS) assessment consisted of a visual in
spection of each almond tree using a rating scale between 0 and 5, where 
zero refers to no visual symptoms (i.e., asymptomatic), one, two, three 
and four refer to trees with visual Xf symptoms in between 1 and 25%, 
25–50%, 50–75% and 75–95% of the tree-crown, respectively, and five 
corresponds to a practically dead tree or a tree with mostly dead 
branches (Supplementary Fig. S2). To validate the visual evaluation and 
the RS methods we tested Xf-infection in the studied almond orchards 
through recombinase-polymerase-amplification (RPA) using the 
AmplifyRP XRT + test (Agdia®, Inc., Elkhart, IN) (Harper et al., 2010) 
using crude extracts from leaf petioles following manufacturer’s in
structions. Almond sampling from mature branches was performed ac
cording to the latest version of the standard protocol PM 7/24(4) for Xf 
diagnosis of the European and Mediterranean Plant Protection Organi
zation (EPPO, 2019). About 10% of the trees in each orchard were 
sampled (N = 360) and included all disease severity levels found within 
each orchard. Additionally, Xf -infection from a subset of samples was 
determined by DNA extraction from leaf petioles using the CTAB pro
tocol and by the qPCR assay of Harper et al. (2010, erratum 2013) ac
cording to EPPO (2019). 

We conducted leaf physiological measurements using a hand-held 
Dualex 4 device (Force-A, Orsay, France; Supplementary Fig. S3) on 
104 almond trees randomly selected across six rainfed orchards and nine 
irrigated ones (Supplementary Fig. S1). We carried out the field mea
surements in a two-day window around the day of the aerial flights. In 
those almond trees identified as Xf-symptomatic based on visual in
spection, we split the leaf measurements into two groups (asymptomatic 
and Xf-symptomatic leaves). The Cab, Nitrogen Balance index (NBI) and 
the anthocyanin (Anth) content were measured on 1471 asymptomatic 
leaves and 846 Xf-symptomatic ones. On the same trees, leaf samples 

were collected immediately after recording the Dualex readings for 
chemical analysis of macro- and micronutrients. Total N concentration 
(Ntotal) was determined using a LECO TruSpec C/N (St. Joseph, MI, USA) 
elemental analyzer, and P, K Ca, Iron (Fe), Zinc (Zn) and Magnesium 
(Mg) content were determined by inductively coupled plasma with op
tical emission spectroscopy (ICP-OES) using a Thermo iCAP 6500 Series 
Duo instrument (Thermo Scientific, Leicestershire, UK). These analyses 
were carried out at the Ionomic Service at CEBAS-CSIC (Spain). We used 
two-way analysis of variance (ANOVA) to assess the effects of Xf- 
infection on Dualex readings and macro-micronutrients, the effect of the 
water regimes on the measurements and their interaction between Xf- 
infection and the water regime. The statistical analysis of the field data 
was conducted in R software (R Core Team, 2020). 

2.2. Airborne campaign 

The airborne campaign was carried out on 9-10th July 2019 flying 
with the heading of the aircraft on the solar plane and at 250–300 m 
above ground level (AGL) altitude and 140 km/h flight speed. High- 
resolution hyperspectral and thermal images were obtained using two 
micro-hyperspectral imagers and a thermal camera installed in tandem 
on a Cessna aircraft (Fig. 1), all operated by the Laboratory for Research 
Methods in Quantitative Remote Sensing (QuantaLab), IAS-CSIC. 

The two hyperspectral sensors recorded in tandem, from the same 
aircraft, in the visible-near infrared (Headwall Photonics, Fitchburg, 
MA, USA) and in the near infrared and shortwave infrared region 
(Micro-Hyperspec NIR-100, Headwall Photonics). The micro-hyperspec 
VNIR sensor is a linear-array hyperspectral camera configured to record 
320 spectral bands in 12-bit. Measurements covered the visible-near 
infrared between 400 and 800 nm, yielding a 6.4 nm FWHM with a 
25-μm slit. The frame rate was set at 50-fps with an integration time of 
18 ms. We used a lens with an 8 mm focal length, which combined with 
the IFOV of 0.93 mrad and an fFOV angle of 50◦ resulted in a swath of 
540 m at 50 cm spatial resolution from the aircraft. 

The micro-hyperspec NIR-100 camera was set up with a configura
tion of 165 spectral bands and 16-bit radiometric resolution in the 
spectral region of 950–1750 nm, yielding 6.05 nm FWHM with a 25-μm 
slit and an optical aperture of f/1.4. After the spectral calibration, a 
Cornerstone 260 1/4 m Monochromator (model 74,100; Oriel In
struments, USA) and the XE-1 Xenon Calibration Light Source (Oceanic 

Fig. 1. Images of an almond orchard taken with a hyperspectral VNIR sensor (a, composite: 800 (R), 679 (G) and 540 (B) nm), hyperspectral NIR-100 sensor (b, 
composite: 985 (R), 1285 (G) and 1550 (B) nm) and thermal camera (c). The spatial resolution of the images is 50 (a), 60 (b), and 40 (c) cm per pixel. Inset panels 
show sections of the images in greater detail with the automatic segmentation of the tree crowns in green. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Optics, USA) were used to derive the FWHM and the center wavelength 
for each spectral band. The images were taken with a frame rate of 50 fps 
at an integration time of 40 ms and an angular FOV of 38.6◦. The 12.5- 
mm focal length lens allowed recording images with a spatial resolution 
of 60 cm. 

Thermal images were captured by a FLIRSC655 camera (FLIR Sys
tems, Wilsonville, OR, USA) that was installed alongside the hyper
spectral cameras. The thermal imagery was obtained in the 7.5–13 μm 
range, with a resolution of 640 × 480 pixels and a 13.1 mm optics focal 
length. The images were taken with an angular FOV of 45◦ and a ground 
resolution of 50 cm. The radiometric and atmospheric corrections were 
made as described in detail in Camino et al. (2021). 

2.3. Operational machine learning framework for Xf-infected trees 
detection 

In this study, we developed an operational machine learning 
framework to detect Xf-infected almond trees growing in orchards with 
two water regimes. The framework combines four ML stages: 1) indi
vidual tree-crown segmentation (Fig. 2A); 2) Vcmax and plant trait re
trievals using biophysical models (Fig. 2B), 3) Ntotal estimation (Fig. 2C); 
and 4) generation of a parsimonious ML to detect Xf-infected trees 
(Fig. 2D). The operational ML framework was implemented in Python 
3.6 and in R software (R Core Team, 2020). The following sections 
describe the individual stages. 

2.3.1. Tree-crown segmentation 
We developed a streamlined framework to detect and outline indi

vidual tree crowns in the hyperspectral and thermal imagery (Fig. 2A). 
As a first step, we co-registered all images using a single orthophoto as 
reference image. We then performed segmentations on each of the im
ages to delineate tree crowns (Supplementary Fig. S5). This step avoids 
errors associated with the different spatial resolution of the imaging 
sensors (50, 60 and 40 cm per pixel for the VNIR, the NIR-100 and the 
thermal sensor, respectively). For each hyperspectral sensor, we used 
two spectral bands to generate a vegetation index (VegI) mapping based 
on the normalized difference vegetation index (NDVI; Rouse et al., 
1973). We built the VegI-Mapping in the VNIR hyperspectral scenes 
taking advantage of the strong absorption of chlorophyll in the 675 nm 
band and the high reflectance at 800 nm produced by pure vegetation 
pixels. In contrast, for the NIR-SWIR hyperspectral scenes we calculated 
the VegI-Mapping based on the strong absorption of the proteins at 
1510 nm and the strong absorption peak found at 1080 nm for the water 
content. First, we performed an unsupervised K-means clustering to 
separate almond tree-crowns from soil background for each VegI- 
Mapping and thermal scene. To avoid misclassified pixels at the edge 
of tree crowns, we then used a second classifier (an SVM algorithm) to 
remove those pixels classified by K-means algorithm as tree pixels that 
might be more related to spectral artifacts or soil effects. In the SVM 
algorithm, to reduce the tree-crowns we used the full reflectance 
bandsets for both hyperspectral sensors, while for the thermal sensor, we 
used the available individual thermal images. For the SVM algorithm, 
we carried out a random spatial sampling procedure where each pixel is 
classified from the value obtained in the K-means classification. We then 
split the random spatial points into two groups: the training points with 
75% of the spatial points and the testing points with the remaining 25%. 
Then, we used the reflectance spectra of each hyperspectral scene as well 
as the thermal information (in kelvin degrees) in the thermal scenes to 
train a SVM model to separate individual tree crowns from other covers 
(i.e., soil). 

The non-linear SVM classification method was applied using the 
radial basis function kernel and a cost function to penalize errors asso
ciated with the misclassification of tree crowns. We evaluated the per
formance of each SVM model based on a confusion matrix, calculated 
from the testing points, and derived statistical metrics (Supplementary 
Table S1). As a final step, a boundary refinement of the predicted tree- 

crown was performed to avoid isolated pixels and to be able to sepa
rate tree crowns that were close together. Therefore, based on the 
centroid and the area of each tree (Supplementary Fig. S5), we 
segmented and isolated each tree crown. We used the spatial centroid of 
the trees to minimise any error in the spectral assignment of each 
almond tree. This step enabled the union between the two hyperspectral 
sensors, field data, and thermal information. The tree-crown segmen
tations kept the vegetation pixels inside tree-crowns in each high- 
resolution image, removing the edges of the almond trees that are usu
ally composed of soil-contaminated pixels, shadows, and other canopy 
background components. 

After the automatic tree crown extraction conducted in the hyper
spectral and thermal scenes, we extracted the average radiance and 
reflectance spectra and the tree crown temperature from the individual 
segmented tree crowns using each high-resolution sensor. 

2.3.2. Multi-tier ML approach for retrieving Vcmax and plant traits 
We designed a Multi-tier ML approach (Fig. 2B) to retrieve plant 

traits at tree-crown scales through different ML models and simulations 
using two RT models: (i) PROSAIL-PRO model which couples the 
PROSPECT-PRO leaf reflectance model with the fourSAIL turbid me
dium canopy radiative transfer model; and (ii) SCOPE v2.0 which in
tegrates various radiative transfer models and one leaf biochemical 
photosynthesis model (Farquhar et al., 1980) with an energy balance 
model. We made 50,000 simulations with the RT models and the plant 
trait ranges described in Tables 1 and 2 (for PROSAIL-PRO and SCOPE, 
respectively), to create a look-up table (LUTs) linking trait combinations 
and reflectance. To avoid potential ill-posed solutions (Combal et al., 
2003) in the simulations, we constrained all inputs based on field 
measurements, information from literature, and preliminary simulations 
to ensure that the resulting LUTs were within the range of the obser
vations made by the hyperspectral sensors over the tree crowns. In 
addition, for the SCOPE LUT, we applied a uniform distribution trans
formation for Vcmax and varied each plant trait within the specified 
range shown in Table 2. For the PROSAIL-PRO LUT, pigments and LAI 
followed a gaussian distribution, except for LIDFa and viewing angles 
where we instead used a uniform distribution. Furthermore, for carot
enoids (Car) and Anth we distributed the data with a multivariate normal 
distribution function that maintained a correlation with Cab. In addition, 
we fixed Cbrown to 0 for both LUTs because Cbrown having a relatively 
low impact on canopy reflectance and does not greatly contribute to the 
spectral differentiation of variations in plant functioning traits (Kat
tenborn et al., 2018). 

To avoid noise in the data affecting the model inversion, we applied 
smoothing of the simulated spectra at 1 nm resolution using a Savitzky- 
Golay derived calculation method (Savitzky and Golay, 1964). We then 
resampled each simulated spectrum to adjust its resolution to the 
bandwidth of the sensors using Gaussian spectral response functions 
defined by the FWHM values of each sensor (FWHM = 6.5 nm for the 
VNIR hyperspectral sensor and FWHM = 6.05 nm for the NIR-100 
hyperspectral sensor). 

To make the estimates, the resampled spectra simulated via 
PROSAIL-PRO and SCOPE models were first randomly partitioned into 
two groups, the training sample with 80% of the simulations and the 
testing sample with the 20%. We then trained various ML models using 
three regression algorithms namely, Random Forest (Leo, 2001), SVM 
(Boser et al., 1992), and a 3-layer Neural Network (NNe). We used these 
three ML algorithms to retrieve each plant trait using the LUTs config
uration described in Tables 1 and 2. We estimated Vcmax, standardized to 
a reference temperature for 25 ◦C by exclusively using SCOPE inversions 
based on simulated reflectance and radiance spectra. In particular, we 
cropped the radiance spectra to 740–790 nm, while two spectral ranges 
were used for reflectance spectra: (i) 500–800 nm and (ii) 640–800 nm. 
As shown in Camino et al. (2019), the spectral region located at 
740–790 nm is suitable for retrieving Vcmax based on radiance spectra 
due to its close link with the chlorophyll fluorescence emission. The 
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Fig. 2. Overview of the automated machine learning framework for Xylella fastidiosa detection using SCOPE and PROSAIL-PRO models, leaf measurement and hyperspectral imagery. For details on the individual panels 
in the figure, please see section 2.3 in Material and methods. 
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selected reflectance windows cover the spectral region most sensitive to 
changes in Vcmax (Suarez et al., 2021), which are the green region 
(505–560 nm) and the chlorophyll fluorescence emission peaks gener
ated by the photosystems I-II (650–800 nm). To retrieve the remaining 
plant traits, we used the simulated reflectance from both biophysical 
models using exclusively spectral regions where they have the greatest 
contribution: In the case of pigments (Cab, Car and Anth), we used the 
VNIR placed between 400 and 800 nm. However, for structural pa
rameters (LAI and LIDFa), and CBC, we selected the coupled VNIR and 
SWIR (400–1700 nn). For the Cw we use the spectral region >900 nm. 

As a pre-processing step prior to training, we built, for each ML re
gressor (SVM, RF, and NNe), different parametrizations using four 
criteria: i) spectral scaling; ii) feature scaling on the dependent variable; 
iii) wavelet transform; and iv) gaussian noise. Each combination pro
duced a ML model that we then used to predict each plant trait. As first 
step, the feature scaling was carried out using different transformations: 
(i) standardization scaling, (ii) min-max scaling, and (iii) a robust 
scaling based on the Interquartile Range (IQR). Such data trans
formations were applied for the non-rule-based algorithms (i.e., SVM 
and NNe) to enable a more stable and faster convergence during the 
learning process. Second, a feature scaling was applied on the dependent 
variable by normalizing the values to the 0–1 range, which ensures that 
the predictions have a range similar to that of the measurement’s values. 
Third, spectral gaussian noise was added to ensure that the model was 
sufficiently robust and would generalize well to new data. Finally, we 
applied discrete wavelet transforms (i.e., the Daubechies wavelets 
(db38) and the Haar wavelet transformation), which is a signal- 
processing technique that extracts both spectral and temporal informa
tion and is suitable for dynamic signals that are inherent to the spectral 
reflectance signatures. Several studies based on hyperspectral data 
demonstrated the benefits of wavelet analysis for spectral smoothing 
and noise removal (Banskota et al., 2013; Cheng et al., 2011; Kattenborn 
et al., 2017). 

In the RF and SVM, to select the optimum combination of 

parameters, we applied a randomized search in the parameters space of 
the training data by sampling 10 random combinations and evaluating 
them by means of a 3-fold cross-validation (CV). Due to the high 
computational effort required by the larger parameters space of the NNe 
algorithm, this randomized search was not performed. 

For each ML model (RF, SVM, and NNe), we retrained the ML models 
and evaluated their performance by calculating the root-mean square 
error (RMSE), and the mean square error (MSE) against the test set. For 
each plant trait, the best ML models were selected based on these per
formance metrics in the validation step (Supplementary Tables S3-S7). 
We also eliminated those ML models with predictions outside of the 
training conditions used in the LUTs. A third ML selection was then 
applied based on relationships found between the predictions for each 
plant trait and the leaf measurements (e.g., Cab, Ntotal) and the most 
relevant spectral indices derived from hyperspectral and thermal sensors 
(Supplementary Fig. S12-S18). This step was used to discard those pre- 

Table 1 
Input variables used in PROSAIL-PRO and the statistical distributions used to 
generate the Look-up tables for model inversions.  

Parameters Description Range Unit Distribution 

PROSPECT-PRO 
N Leaf structure 

parameter 
1.3–3.2 [− ] Gaussian Avg.=2.2; 

std=0.2 

Cab Chlorophyll a + b 
content 

7–52 μg/ 
cm2 

Gaussian Avg.=30; 

std=5 

Car Carotenoid 
content 

0–11 μg/ 
cm2 

Multivariate 
normal distr. 

Anth Anthocyanin 
content 

0–7 μg/ 
cm2 

[− ] 

Multivariate 
normal distr. 

Cbrown Brown pigment 0 … 
Cw Equivalent water 

thickness 
0.009–0.017 cm Gaussian Avg.=0.009; 

std=0.002 

Proteins Protein content 0.001–1.85 mg/ 
cm2 

Gaussian Avg.=0.001; 

std=0.00025 

CBC Carbon-based 
constituents 

0.001–2.55 mg/ 
cm2 

Gaussian Avg.=0.001; 

std=0.002  

SAILH-5B 
LAI Leaf area index 0.3–3.8 [− ] Gaussian Avg.=3 

std=0.5 

LIDFa Leaf angle 
distribution (a) 

30–90 deg Uniform 

LIDFb Leaf angle 
distribution (b) 

0 [− ] … 

Hspot Hotspot 
parameter 

0.01–0.50 deg Uniform 

tts Solar zenith angle 0–45 deg Uniform 
tto Observer zenith 

angle 
0 deg … 

psi Relative azimuth 
angle 

0 deg …  

Table 2 
Input variables used in SCOPE model and statistical distributions used for 
generating the LUT.  

Parameters Description Range Unit Distribution 

Leaf biophysical and biochemical parameters 
N Leaf structure parameter 1.5–2.5 [− ] Uniform 
Cab Chlorophyll a + b 

content 
10–60 μg/cm2 Uniform 

Car Carotenoid content 0–15 μg/cm2 Uniform 
Anth Anthocyanin content 0–7.5 μg/cm2 

[− ] 
Uniform 

Cs Senescence factor 0 …. 
Cw Equivalent water 

thickness 
0.004–0.015 cm Uniform 

Cm Dry matter content 5–25 mg/cm2 Uniform  

Lead biochemistry 
Vcmax Maximum carboxylation 

rate 
0–150 μmol/ 

m2⋅s 
Uniform 

m Ball-berry conductance 8 [− ] …. 
Rdparam Dar respiration 0.015 [− ] …. 
Kv Extinction coef. For v- 

profile Vcmax 

0.64 [− ] …. 

Kc Cowan’s water use 
efficiency 

500 [− ] …. 

Рs Stress multiplier for 
Vcmax 

0.05 [− ] …. 

Stressfact Stress impact on Vcmax 1 [− ] …. 
kNPQs Rate thermal dissipation 0 [− ] …. 
qLs Fraction active 

photosystems 
1 [− ] …. 

Fqe Fraction of photons 
partitioned to PSII 

0.02 [− ] ….  

Canopy parameters 
Hc Canopy height 30.05 m …. 
Lw Leaf width 0.07  …. 
LAI Leaf area index 0.5–4 m2/m2 Uniform 
LIDFa Leaf angle distribution 

(a) 
− 0.5 − 0.5 [− ] Uniform 

LIDFb Leaf angle distribution 
(b) 

− 0.5–0.5 [− ] Uniform  

Micrometeorological 
p Air pressure 999 hPa …. 
U Wind speed 3 m− 1 …. 
Oa O2 concentration in the 

air 
209 per 

mille 
…. 

Ea Atmospheric vapor 
pressure 

15 hPa …. 

Ca CO2 concentration air 380 Ppm …. 
Ta Air temperature 31 ◦C …. 
Rin Incoming shortwave 

radiation 
800 W⋅m− 2 …. 

Ril Incoming longwave 
radiation 

300 W⋅m− 2 ….  
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selected ML models with unrealistic predictions. Finally, the best 5–10 
ML algorithms with their most suitable parametrizations for each plant 
trait were selected, after which their corresponding predictions were 
averaged to obtain an ensemble prediction. The latter was then used in 
the succeeding steps as described in Section 2.3.4. In the third ML se
lection, given the relationship between Vcmax and SIF (Camino et al., 
2019), we used SIF signal retrieved by the Fraunhofer Line Discrimi
nation (FLD) method (Plascyk and Gabriel, 1975), to select the best ML 
model for Vcmax and the remaining plant traits. However, for LAI we 
relied on the NDVI, which has been widely used in the literature to es
timate LAI indirectly. We decided to use NDVI, despite its saturation 
problems in tree crowns with high vegetation density, for two reasons: i) 
we ruled out measuring LAI during the field campaign, as it is a time- 
consuming measurement; and ii) we found that the NDVI retrievals at 
tree-crown had a range between 0.18 and 0.70 (Fig. 5C); which is 
minimally affected by saturation phenomena typically of dense vege
tation canopies. 

The ensemble predictions were assessed to evaluate whether each 
plant trait showed significant differences between asymptomatic tree 
crowns (DS = 0) and tree crowns showing Xf symptoms (DS ≥ 1). For 
this assessment, Kruskal-Wallis test or the Wilcoxon post-hoc test with 
Bonferroni correction were performed for each plant trait to evaluate the 
differences among the severity classes under two water regimes. The 
Multi-tier ML approach was implemented in Python and the statistical 
analysis in R software. 

2.3.3. Total nitrogen concentration 
We estimated the Ntotal of individual tree-crowns using a competitive 

adaptive reweighted sampling (CARS) method with a non-parametric 
SVM regression algorithm (Fig. 2C). It ingested the reflectance be
tween 400 and 1750 nm. Prior to the feature selection, we performed a 
first derivative transformation of the reflectance spectra in the spectral 
signal. We then applied the CARS method to reduce the number of 
spectral bands and to identify those that contributed most significantly 
to the prediction of Ntotal in almond trees in the study. The CARS 
approach is a robust algorithm for screening vital variables by coupling 
PLS regression with CV techniques (Li et al., 2009). It comprises three 
steps: first, an optimal combination of reflectance bands from full 
spectra was selected using PLS with CV. Depending on the importance of 
each wavelength, n subsets of wavelengths were sequentially chosen 
from N-Monte Carlo sampling runs in an iterative and competitive 
manner. Finally, the wavelength subset with the lowest root-mean- 
square error of CV (RMSE-CV) was selected for the ML model. This 
band set was used in a non-linear SVM regression to estimate leaf total 
nitrogen concentration. The best radial function and c parameter were 
found using a grid search method for CV. The r2, the RMSE, and the 
mean absolute error (MAE) between the measured leaf nitrogen con
centration and predicted Ntotal values were used as skill scores to vali
date the performance of each model (Supplementary Table S8). The 
statistical analysis was conducted in R software. To avoid overfitting on 
the training sample, 10-fold CV with 5 repeats was used in the SVM 
models predicting each plant-trait. 

2.3.4. Parsimonious machine learning for the early detection of Xylella 
fastidiosa 

We assessed the performance of the different ML classifiers used for 
Xf detection and determined the most parsimonious ML (pML) model in 
three water scenarios in which the presence of Xf is confirmed by a 
molecular diagnostic test: (i) almond trees growing under irrigated 
conditions; (ii) almond trees growing under rainfed conditions; and (iii) 
almond trees growing in both watering conditions. We assessed the 
multicollinearity based on variance inflation factor (VIF) analysis to find 
the optimal set of plant traits related to physiological processes and 
plant traits that can be embedded in a ML model to detect Xf-infected 
trees in irrigated and rainfed almond orchards (Fig. 2d). We then 
assessed the ability of the selected remote sensing-based physiological 

parameters to detect the presence of Xf-infected trees either asymp
tomatic or symptomatic (DS = 0, vs DS > 0) using an RF classifier, a 
gradient boosting (GB) machine (Friedman, 2001), and the advanced X 
gradient boosting (X-GB) model (Chen and Guestrin, 2016). We con
ducted the Xf detection based on three decision tree-based classifiers as 
previous works have largely demonstrated the effectiveness of such al
gorithms in plant pest detection (e.g., Wójtowicz et al., 2021; Zarco- 
Tejada et al., 2021; Xu et al., 2022). 

First, the set of plant trait predictor variables were reduced through 
multicollinearity analysis using VIF with a threshold ≤10 and Wilks’ 
lambda method with an F-test decision ≤0.05. VIF-Wilks’ lambda 
allowed us to obtain the most pML model with a minimal number of 
plant traits. After VIF analysis, pML was built exclusively on pigment- 
related plant functional traits (Cab and Anth), structure-based func
tional traits (LAI, LIDFa), Cw, CBC, Ntotal, Vcmax and tree crown tem
perature (Tc) extracted from thermal imagery. From the set of 
independent variables comprised by the aforementioned plant traits, we 
generated a training and a validation set containing 80% and 20% of the 
data, respectively, by means of a stratified random split based on the 
number of asymptomatic/symptomatic trees to ensure equal proportion 
of both disease categories in both sets. To deal with the fact that there 
were fewer symptomatic than asymptomatic trees in our data set (i.e., 
class imbalance), we first removed from the dataset those orchards with 
no Xf-infection and then, we leveraged the class weight parameter to 
strongly penalize the misclassification of the minority class. In addition, 
we also applied the synthetic minority oversampling technique (SMOTE, 
Chawla et al. (2002)) on the training set, which augments the minority 
class samples by synthesizing new instances from the existing ones. 

The RF algorithm is an ensemble technique that fits decision tree 
classifiers on sub-samples of the dataset and is one of the most widely 
used ML methods across domains. Like RF, the GB classifier is also an 
ensemble of decision trees, but it fits the trees differently. As opposed to 
RF which builds the decision trees independently and combines the 
outcome at the end of the learning process, GB builds trees sequentially 
and aggregates the results along the sequence. X-GB, which is another 
ensemble tree-based classifier that we used in our empirical experi
ments, is an improved implementation of GB which implements regu
larization parameters (L1 and L2) to reduce overfitting. The best 
parameters for each of these classification models were found using a 
randomized search method like the parameter tuning process described 
in Section 2.3.3, but instead using a 10-fold CV. 

We conducted a feature evaluation using a permutation importance 
method (Leo, 2001) based on 100 iterations for each ML algorithm (RF, 
GB, and X-GB) to analyze the contribution of each plant trait in the pML 
model. Finally, we assembled the ML predictions with a stacking GB 
machine model to benchmark the classification accuracy of the ML 
disease detection models using the visual assessment and the subset of 
trees analyzed by the RPA molecular diagnostic test to determine their 
Xf-infection status. The classification accuracies of the ML algorithm for 
the pML model were evaluated by calculating the overall accuracy (OA, 
in %), the kappa value κ (Cohen, 1960), the F1-scores and the Area- 
Under-the-Curve (AUC) scores. 

3. Results 

3.1. Disease incidence and severity 

Four of the orchards (i.e., 1, 7–1, 7–2 and 15) under irrigation 
showed no visual Xf symptoms. In the other three irrigated orchard, 90.3 
± 4.4%, 8.9 ± 4.0% and 0.8 ± 0.4% of the trees were asymptomatic (DS 
= 0), showing early Xf-symptoms (DS = 1) or moderate to severe Xf- 
symptoms (DS > 1). In the nine rainfed orchards, 39.8 ± 15.7%, 29.8 ±
9.1% and 30.4 ± 11.3% of the trees were asymptomatic (DS = 0), 
showing early Xf-symptoms (DS = 1) or moderate to severe Xf-symptoms 
(DS > 1), respectively (Table 3). Results of molecular diagnosis using the 
RPA test are presented in Table 3. In total, 71% (n = 148) and 31% (n =
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214) of trees analyzed in the rainfed orchards and irrigated orchards, 
respectively, tested positive for Xf-infection. 

3.2. Leaf field measurements 

Overall, Xf-asymptomatic leaves displayed a better physiological and 
nutritional status than that of Xf-symptomatic leaves in both irrigated 
and rainfed trees (Table 4). For both water regimes, Xf-symptoms were 

associated with lower (P < 0.05) Cab, NBI, Ntotal, and Ctotal values but 
higher (P < 0.05) Anth, Fe and Zn. However, Ca, P, K and Mg content 
depended on the water regime and occurrence of Xf-symptoms. On 
rainfed conditions with high occurrence of Xf-symptoms Ca was higher 
on Xf-asymptomatic trees, while P, K, and Mg content was lower on Xf- 
symptomatic trees than asymptomatic trees. No significant differences 
(P ≥ 0.05) existed for the remaining macro-nutrients either between the 
two symptomatic classes or water regimes (Table 4). 

To further investigate the effects of Xf-infection in Cab, Anth and 
Ntotal, leaf measurements were performed in almond trees (n = 104) 
where the presence or absence of Xf-infection was confirmed by an RPA 
Xf-specific molecular diagnostic test (Fig. 3). Results showed that Xf- 
infection reduced Cab and Ntotal significantly (P < 0.05) in both irrigated 
and rainfed trees. Conversely, Anth increased in Xf-leaves. We highlight 
that the relationship found between leaf Ntotal, and Cab (Fig. 3C) showed 
a significant and positive trend (r2 = 0.28 and P < 0.05), with a drop in 
values for both leaf measurements as the severity of Xf symptoms 
increased. 

3.3. Capacity of plant trait retrievals to distinguish Xf-infected trees in two 
water regimes 

Cab, CBC (including cellulose, lignin, hemicellulose, starch, and 
sugars), Anth, and Car contents were significantly higher (P < 0.05) in 
asymptomatic almond trees, compared to those showing initial Xf- 
symptoms. Among Xf-symptomatic trees (DS > 0), for rainfed trees, the 
content on these plant traits tended to decrease (Cab and Car) or increase 
(CBC and Anth) with the increase in symptom severity, being higher (Cab 
and Car) or lower (CBC and Anth) in trees showing initial Xf-symptoms 
compared to those with moderate or severe Xf-symptoms, respectively 
(Fig. 4). We should note that the Cab Car and Anth predictions were also 
able to distinguish between trees showing moderate from those showing 
severe Xf-symptoms when growing under rainfed conditions. In 
contrast, under irrigated conditions, only Car and CBC could differen
tiate (P ≥ 0.05) between asymptomatic trees and trees with Xf symp
toms. On the other hand, the Cw, the LIDFa and the tree-crown 
temperature were able to distinguish (P < 0.05) asymptomatic trees 
from Xf-symptomatic trees grown when growing in both water condi
tions (Supplementary Fig. S7). 

Leaf area index and NDVI were higher (P < 0.05) in asymptomatic 
trees and decreased significantly (P < 0.05) as Xf-symptom got more 
severe (Fig. 5A, B). Moreover, the Multi-tier ML approach predict LAI 
reliably. In fact, the relationships found between NDVI (Fig. 5C) for each 
DS class, which is a spectral indicator widely used to validate LAI 

Table 3 
Percentage of almond trees with different Xylella fastidiosa (Xf) disease status identified during the field campaign in 14 almond orchards under irrigated (n = 2815 
trees) and rainfed conditions (n = 1593 trees). The disease severity (DS) classification ranged between 0 and 4, where DS = 0 refers to asymptomatic trees and DS = 1, 
DS = 2, DS = 3 and DS = 4 refer to trees with visual Xf symptoms between 1 and 25%, 25–50%, 50–75% and > 75% of the tree-crown. The number of almond trees 
tested by Recombinase-polymerase amplification (RPA) molecular diagnostic test is also shown.  

Irrigation regimen DS0 DS1 DS2 DS3 DS4 DS1–4 RPA 

Rainfed negative positive 
Orchard 4 92.8% 6.7% 0% % 0.5% 0% 7.2% 7 8 
Orchard 8 24.1% 46.6% 23.5% 5.6% 0.3% 75.9% 9 20 
Orchard 9 3.3% 20.7% 41.5% 34.3% 0.2% 96.7% 2 23 
Orchard 10 41% 27% 20.2% 11.2% 0.6% 59% 11 22 
Orchard 16 9.2% 61.4% 24.5% 3.8% 1.1% 90.8% 8 18 
Orchard 17 68.3% 16.4% 3.3% 7.1% 4.9% 31.7% 9 11 
Irrigated 
Orchard 1 100% 0% 0% 0% 0% 0% 10 0 
Orchard 7–1 100% 0% 0% 0% 0% 0% 52 2 
Orchard 7–2 100% 0% 0% 0% 0% 0% 25 0 
Orchard 11 96% 4% 0% 0% 0% 4% 26 17 
Orchard 12 68.8% 28.3% 2.9% 0% 0% 31.2% 12 23 
Orchard 13 84.2% 14.9% 0.4% 0.2% 0.2% 22.2% 10 9 
Orchard 14 77.8% 19.8% 2% 0.4 0% 22.2% 8 12 
Orchard 15 100% 0% 0% 0% 0% 0% 8 0  

Table 4 
Average and standard deviation of leaf measurements performed with a Dualex, 
and the macro-micronutrients quantified on leaves from almond trees showing 
no visual symptoms of Xylella fastidosa (Xf) infection and Xf- symptomatic leaves 
(n = 104 and 100 trees Dualex measurements and macro-micronutrients, 
respectively) grown in orchards under rainfed and irrigated conditions. The 
number of measurements (n) for each leaf group and method is also shown. 
Symbols indicate a statistically significant difference (P < 0.05) of the studied 
grouped (asymptomatic vs symptomatic leaves (*), water regimes (+) and their 
interaction between Xf-infection and the water regime (x)).   

Irrigated conditions Rainfed conditions p-value  

Xf-Asympt. Xf-Sympt. Xf-Asympt. Xf-Sympt.  

Dualex measurements  
Cab 31.50 ±

6.68 
23.25 ±
9.23 

30.56 ±
6.91 

21.84 ±
7.79 

*/+/… 

NBI 16.21 ±
4.26 

12.46 ±
5.90 

15.71 ±
4.41 

11.27 ±
4.65 

*/+/… 

Anth 0.03 ± 0.04 0.078 ±
0.069 

0.03 ± 0.03 0.073 ±
0.06 

*/…/… 

n-Dualex 653 175 818 671   

macro- micronutrients  
Ntotal 2.09 ± 0.23 1.94 ±

0.32 
1.80 ± 0.27 1.67 ±

0.32 
*/+/… 

Ctotal 41.10 ±
0.87 

40.08 ±
1.06 

40.94 ±
1.01 

40.3 ±
0.89 

*/…/… 

Ca 2.97 ± 0.60 2.88 ±
0.51 

3.22 ± 0.68 3.42 ±
0.79 

…/+/… 

P 0.098 ±
0.017 

0.092 ±
0.027 

0.082 ±
0.014 

0.079 ±
0.02 

…/…/… 

K 1.35 ± 0.58 1.12 ±
0.41 

1.34 ± 0.55 1.25 ±
0.57 

…/…/… 

Mg 0.50 ± 0.18 0.63 ±
0.12 

0.53 ± 0.13 0.49 ±
0.13 

…/…/x 

Fe 130.5 ±
44.6 

135.7 ±
34.6 

109.4 ±
27.45 

147.4 ±
40.65 

*/+/… 

Zn 20.1 ± 10.5 21.95 ±
14.2 

17.12 ± 5.4 20.8 ±
7.97 

*/…/x 

n-samples 51 13 54 44   
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retrievals, obtained a remarkably strong linear agreements (r2 > 0.79), 
showing the highest LAI values in those trees growing under irrigated 
conditions and without initial Xf-symptoms. 

In two selected orchards with high and low incidence of Xf-infection 
under rainfed conditions., the spatial mapping estimation of pigments 
based on the proposed ML framework coupled with inverse distance 
weighting (IDW) techniques tracked well the spatial variability of pig
ments (e.g., Anth, see Supplementary Fig. S8) or even CBC (Supple
mentary Fig. S9). 

3.4. Total nitrogen, Vcmax, and carbon-based constituent 

The Ntotal quantified based on the CARS-SVM model showed robust 
predictive performance when compared to the Ntotal measured at leaf 
level during the testing phase (RMSE = 0.11% and MAE = 0.09%). 
Overall, the fitted model (Fig. 6A; r2 = 0.83) also showed that almond 
trees growing under irrigated conditions displayed better nutritional N 

status compared to that under rainfed conditions. We validated Vcmax 
retrievals based on their relationships against Ntotal and chlorophyll 
content, as leaf assimilation rate measurements could not be performed. 
This lack of assimilation measurements in the field is due to the 
complexity of net assimilation measurements on almond leaves, as well 
as the fact that these measurements on leaves are time consuming and 
therefore very restricted for operational purposes. A linear relationship 
was also found between predicted Ntotal and Vcmax retrieved by the 
Multi-tier ML approach using the SCOPE model at tree-crown level (r2 =

0.61; P < 0.05; Fig. 6B) as well as for the relationship between Ntotal and 
the CBC (Fig. 6C; r2 = 0.62), indicating that the carbon-based constit
uent derived using the PROSAIL-PRO model yielded good match with 
the total nitrogen concentration. Similar agreement was found between 
the predictions of Vcmax and chlorophyl content (r2 = 0.65; P < 0.05; 
Fig. 6D). In relation to Xf incidence, Ntotal predictions and Vcmax showed 
negative trends as Xf severity increased in both irrigated and rainfed 
plants (Fig. 7). In fact, Vcmax was significantly higher (P < 0.05) in 

Fig. 3. Chlorophyll content (Cab in μgcm− 2; a) and anthocyanin index (b; Anth), in almond trees (n = 104 trees) under two water regimes for asymptomatic (DS =
0 and RPA negative) or sowing almond leaf symptoms (DS > 0) caused by Xylella fastidiosa (Xf) on which infection by Xf was confirmed by an RPA molecular 
diagnostic test. C) Scatter plot between total nitrogen concentration (Ntotal) and chlorophyll content measured in the leaves of almond trees located in orchards 
managed under rainfed (in grey) and irrigated (in blue) regimes (where n = 104 trees; DS0 = 46, DS1 = 28, DS2 = 14, DS3 = 16). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. A) Chlorophyll content (Cab in μg/cm2), B) 
carbon-based constituent (CBC in mg/cm2), C) an
thocyanins content (Anth in μg/cm2), and D) carot
enoids content (Car in μg/cm2) predicted for almond 
tree crowns assessed as asymptomatic (DS = 0), to 
trees with different Xylella fastidiosa symptoms 
severity (DS ≥ 1) under irrigated (DS0 = 2524, DS1 =

268, DS2 = 20 and DS3 = 2) and rainfed (DS0 = 506, 
DS1 = 483, DS2 = 370 and DS3 = 220) conditions. 
Disease severity levels with the same letter are not 
significantly different (Wilcoxon post-hoc tests, P <
0.05). Asterisks denote that this class is not used in 
the Wilcoxon post-hoc due to the low number of 
cases).   
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Fig. 5. A) Predicted leaf area index (LAI in m2/m2) and B) NDVI at tree-crown assessed as asymptomatic (DS = 0), to trees with different Xylella fastidiosa symptoms 
severity (DS ≥ 1) under irrigated (DS0 = 2524, DS1 = 268; DS2 = 20 and DS3 = 2) and rainfed (DS0 = 506, DS1 = 483, DS2 = 370 and DS3 = 220) conditions. Disease 
severity levels with the same letter are not significantly different (Wilcoxon post-hoc tests, P < 0.05). C) Predicted LAI vs. airborne NDVI retrieved for tree-crowns (b; 
where n = 4408 trees; DS0 = 3030, DS1 = 751, DS2 = 390, DS3 = 222). Asterisks denote that this class is not used in the Wilcoxon post-hoc due to the low number 
of cases). 

Fig. 6. Relationship between predicted total nitrogen concentration (A, Ntotal in %) and measured Ntotal at tree-crown level (A; in %, n = 98), maximum carbox
ylation rate (B; Vcmax in μmol⋅ m− 2⋅s − 1) and carbon-based constituent (C; CBC in mg/cm2) predicted at tree-crown level. For the same trees, the relationship 
between chlorophyll content (Cab in μgcm− 2) and Vcmax is also shown (D). In (B), (C) and (D), tree values were averaged by orchard, water regimen and incidence of 
Xylella fastidiosa on almond trees. 

C. Camino et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 282 (2022) 113281

11

asymptomatic trees than that on Xf-symptomatic with the only excep
tion of Ntotal predicted for trees under rainfed conditions. On Xf-symp
tomatic trees, both variables tended to decrease with the increase in Xf 
severity with lower values (P < 0.05) estimated in trees showing mod
erate or severe Xf-symptoms that reached similar values (P ≥ 0.05). 

The spatial mapping of Vcmax (Fig. 8) and Ntotal patterns (Supple
mentary Fig. S6) showed that overall almond trees in rainfed orchards 
with a higher Xf incidence and severity had also lower photosynthetic 
capacity and Ntotal than those with lower Xf incidence and severity 
levels. 

3.5. Parsimonious model to detect Xf-infections under different water 
conditions 

The most pML model showed a good performance for the three ML 
classifiers when fitted to almond orchards affected by Xf under either 

irrigated or rainfed conditions (Table 5). In fact, for pooled data, the OA 
and AUC reached 83%, and the Cohen’s Kappa coefficient exceeded 0.66 
for the three ML algorithms (RF, GB, and X-GB). However, the perfor
mance of the pML model decreased when fitted to data from each water 
regime separately, in particular for orchards under irrigated conditions 
(Table 5). Similar accuracies in OA, F1-score, and AUC were also found 
when the pML model was fitted for almond trees growing under rainfed 
conditions, but a decrease in the performance of the model occurred 
when fitted to trees growing only under irrigated conditions that 
reduced the Cohen’s kappa coefficient up 0.24 and 0.26 values. Differ
ences in the relative proportion of Xf-symptomatic trees between both 
irrigation regimes could account for these differences in model perfor
mance. In fact, on pooled data the proportion of asymptomatic and Xf- 
symptomatic trees has a good balance (58% for asymptomatic trees vs. 
42% for Xf-symptomatic trees), but, not on rainfed orchards in which Xf- 
incidence is much higher (32% for asymptomatic vs 68% of Xf-symp
tomatic trees). 

Upon our analysis of the ROC curves for the three ML classifiers and 
the Xf detection parsimonious ML model, the ROC showed that the 
sensitivity/specificity ratio was highest when data for both water re
gimes were used for ML classifiers (Fig. 9A). Under rainfed conditions 
we observed an increase in specificity (85%), but sensitivity decreased 
to 80% (Fig. 9C). On the contrary, under irrigated conditions, the 
specificity dropped to values lower than 40%, while the specificity 
yielded similar values (Fig. 9C), compared to the pooled data. These 
changes in sensitivity and specificity are probably also associated with 
differences in the relative proportion of asymptomatic and Xf- 

Fig. 7. Predicted total nitrogen (N) concentration (A; 
%) and maximum carboxylation rate (B; Vcmax; in 
μmol⋅m− 2⋅s − 1) predicted for almond tree crowns 
assessed as asymptomatic (DS = 0), to trees with 
increasing Xylella fastidiosa symptoms severity (DS ≥
1) under irrigated (DS0 = 2524, DS1 = 268, DS2 = 20 
and DS3 = 2) and rainfed (DS0 = 506, DS1 = 483, DS2 
= 370 and DS3 = 220) conditions. Severity levels with 
the same letter are not significantly different (Wil
coxon post-hoc tests, P < 0.05). Asterisks denote that 
this class is not used in the Wilcoxon post-hoc due to 
the low number of cases).   

Fig. 8. Map showing the spatial distribution of predicted maximum carboxyl
ation rate (Vcmax in μmol⋅ m− 2⋅s − 1) in almond orchards under rainfed con
ditions. The selected almond orchards were two orchards with high and low 
incidence of Xylella fastidiosa. Inverse distance weighted (IDW) was applied 
from tree-crowns to generate the spatial map. 

Table 5 
Overall accuracy, F1-score, Cohen’s kappa coefficient and AUC yielded by ML 
algorithms (RF, GB, and X-GB) for the most parsimonious model (pML) on 
almond orchards affected by leaf scorch caused by Xylella fastidiosa under irri
gated and rainfed conditions.   

OA F1-score kappa AUC 

Irrigated and rainfed conditions     
Random forest (RF) 84% 0.84 0.67 0.83 
Gradient boost (GB) 84% 0.84 0.67 0.84 
X Gradient boost (X-GB) 83% 0.83 0.66 0.83 
Irrigated conditions     
Random forest (RF) 80% 0.79 0.24 0.61 
Gradient boost (GB) 80% 0.79 0.26 0.62 
X Gradient boost (X-GB) 79% 0.79 0.25 0.62 
Rainfed conditions     
Random forest (RF) 83% 0.83 0.61 0.81 
Gradient boost (GB) 82% 0.82 0.59 0.79 
X Gradient boost (X-GB) 81% 0.81 0.57 0.79  
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symptomatic tress. Thus, although ML performed well overall to detect 
Xf-symptomatic trees for different disease incidence levels, a more ac
curate Xf detection is reached when Xf-incidence is higher than 50%. 

3.6. Plant trait contributions in the parsimonious model for Xylella 
fastidiosa detection 

To evaluate the significance of each of the plant traits to detect Xf- 
symptomatic trees, for each ML classifier, we estimated the predictor 
importance in the best-fitting pML model (Fig. 10). Overall, both Xf- 
incidence and water regime determined the set of plant traits and their 

contribution in the pML model. Thus, in orchards under irrigated con
ditions (Fig. 10A) the Vcmax, Cab, CBC, LIDFa, and Anth were the plant 
traits that contributed most to the ML classifiers, with an average 
contribution of 20%, 17%, 14%, 12%, and 11% respectively (Supple
mentary Table S2). However, in orchards under rainfed conditions 
(Fig. 10B; Supplementary Table S2), Anth, and Tc increased their average 
contribution to 28% and 15% respectively, CBC and LIDFa kept the same 
averaged contribution, while the averaged contribution of the Vcmax and 
Cab, decreased to 9% and 8%, respectively. This fact suggested that 
under water-limited conditions where the proportions of Xf-symptom
atic trees (75%; where 45% are trees rated with a DS ≥ 2 and the 

Fig. 9. Receiver operating characteristic (ROC) analysis for detecting Xylella fastidiosa symptoms in almond trees for the three studied ML classifiers (RF, GB, and X- 
GB) and the most parsimonious ML model using the testing samples under irrigated and rainfed conditions (A), irrigated (B) and rainfed conditions (C). 

Fig. 10. Plant trait contribution for detecting Xylella fastidiosa (Xf) symptoms for the three ML classifiers (RF, GB, and XGB) for the most parsimonious ML model 
under irrigated (A) rainfed conditions (B) and both water regimes (C). 
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remaining as DS = 1) is higher than asymptomatic trees (26%), the 
plants traits related to water stress (Tc), LIDFa, and plant defense, such as 
anthocyanins or lignin deposition (including in CBC) played a significant 
role when high Xf pressure is already present. Finally, when the analysis 
was performed using almonds under both water conditions (Fig. 10C; 
Supplementary Table S2), Vcmax, Cab and Cw yielded similar averaged 
importance than Anth, Tc, and CBC, being lower for Ntotal and LAI. 

3.7. Assessment of parsimonious model through the RPA molecular 
diagnostic tests 

We evaluated the accuracy of the ML model for Xf detection 
compared to that reached by the visual inspection in the field for the 
subset of almond trees (n = 360) where the presence/absence of the 
bacterium was confirmed by molecular diagnosis (Table 6). Addition
ally, an ensemble GB model was built based on the predictions of the 
three ML classifiers for Xf detection. Overall, individually, the three ML 
classifier (RF, GB, and X-GB) yielded an overall accuracy >88% with F1- 
score and UAC > 0.88 and Cohen’s kappa coefficient > 0.76 (Table 6). 
Interestingly, the use of the ensemble GB classifier, increased the per
formance of the model reaching an overall accuracy of 90% and Cohen’s 
kappa values of 0.80, that are similar to the performance of visual in
spections in the field that reached an overall accuracy of 91% and a 
Cohen’s kappa of 0.82 (Table 6). 

4. Discussion 

In this study, we showed that disease incidence and disease severity 
were higher in rainfed orchards, compared to orhcards under irrigation. 
Disease severity in rainfed orchards ranged from 0.08 to 2.07 (on a 0–4 
scale), while that in irrigated orchards was 0 in four of the eight orchards 
and ranged 0.04 to 0.34 in those that showed Xf symptoms. As previ
ously stated, Xf infection caused a block water flow through the vascular 
system reduces transpiration and induces water stress, thus causing 
analogous symptoms that can be confounded with abiotic stress. Irri
gated orchards are characterized by water availability but also by cur
rent best management that respond better to Xf infection. 

4.1. Leaf physiological measurements and plant traits retrieval at tree- 
crown scales 

This study showed that pigments (Cab and Anth), plant traits related 
to photosynthetic capacity (Vcmax) and carbon-based constituents are 
valuable plant traits for the detection of almond trees affected by ALS 
caused by Xf in orchards under two irrigation regimes located in 
different municipalities in Majorca Island (Balearic Islands). 

Our results indicated that Xf-infection causes a reduction in Cab and 
an increase in Anth at both leaf (Table 4) and tree-crown scales (Fig. 4A 
and C), particularly noticeable in trees managed under rainfed condi
tions. This is consistent with the results of Zarco-Tejada et al. (2018, 
2021) and Poblete et al. (2021) in olive trees affected by the Quick 
decline syndrome in southern Italy and that of Camino et al. (2021) in 
almond trees affected in the Xf-outbreak in Alicante province of Spain. 

In this context, Pereira et al. (2019) also reported an accumulation of 
anthocyanin in leaves of Arabidopsis ecotype Col-0 inoculated with Xf 
subsp. Pauca. Interestingly, it is known that A. thaliana grown in low P 
conditions increases anthocyanin content (Sanchez-Calderón et al., 
2006) and how Xf-infection causes P deficiency in many crops (e.g., De 
La Fuente et al., 2013) as was the case in our study, in which Xf-symp
tomatic leaves had lower P content (Table 4). In our study, Cab and Car 
content showed a similar trend, with a reduction as Xf symptoms 
severity increased (Fig. 4D), likely due to the strong correlation between 
both plant traits (Garrity et al., 2011). The reduction in Ntotal found in 
Xf-infected leaves (Table 4) and Xf-infected trees (Fig. 3A and Fig. 6B) 
agrees with the findings of Purcino et al. (2007), who suggested that Xf- 
infection disrupts nitrogen metabolism and causes alterations in nitro
gen uptake, assimilation and distribution in the plant. This leaf nitrogen 
deficiency found mainly in trees growing under rainfed conditions 
(Fig. 6A), could be related to the accelerated leaf senescence due to the 
coupled effects of Xf-infection with water stress (Hsiao, 1973), and could 
potentially hamper the plant’s ability to protect photosynthetic ma
chinery under high light conditions during partial stomatal closure. In 
this line, (McElrone and Forseth, 2004) also reported how water stress 
induced an increase in severity of symptoms and progression of Xf along 
the stem of Parthenocissus quinquefolia. 

We showed that RuBisCO-related Vcmax (Fig. 6B) decreased in Xf- 
infected plants for both water conditions. This decrease in Vcmax is linked 
to a decline in photosynthetic activity, which is known to be associated 
to light-induced inhibition of photosystem II activity (Guidi et al., 2019). 
Furthermore, Vcmax reduction (Fig. 6B and Fig. 7B), is also attributed to 
an alteration in the metabolic pathways of photosynthesis, such as a 
reduction in the biochemical capacity to regenerate RuBP (Farquhar and 
Sharkey, 1982; Tezara et al., 1999). Furthermore, this decrease in Vcmax 
may also be linked to other abiotic factors, such as drought stress or 
nutrient deficiencies. Under drought conditions and high irradiance 
levels, trees induce stomatal closure when temperature increases. 
However, nutrient deficiencies cause chlorosis and symptoms that can 
be confounded with Xf infection. In trees growing under limited irri
gation conditions, the reduction of Vcmax is more pronounced (Fig. 7B), 
where Xf infection coexists with nutrient deficit (Table 4 and Fig. 7A) 
and water stress. This latter abiotic stress factor also reduced the 
photosynthesis capacity of trees by a decline in stomatal conductance in 
response to increasing canopy temperature (Supplementary Fig. S7C). 
On the contrary, nitrogen deficiency increases chlorophyll degradation 
in leaves, limiting the plant photosynthetic capacity during leaf senes
cence (Fig. 6D). These results confirm that the plant reduced its photo
synthetic capacity as ALS symptoms progressed in the almond trees, 
being more severe in limited water conditions (Fig. 7B). These findings 
agree with other RS works using high-resolution hyperspectral sensors 
and SCOPE model, which showed that Vcmax drop when water nutrient 
and water stress are limiting factors (e.g., Camino et al., 2019; Suarez 
et al., 2021). In general, as Xf symptoms increase, we found a decrease in 
chlorophyll and photosynthetic activity (e.g., Fig. 6D), which is 
magnified when the Xf infection coexists with other abiotic factor, such 
as water stress or nutritional deficiencies. 

We compared the variability of main plant traits obtained at the tree- 
crown level in Xf-affected orchards with reference orchards without Xf 
(Supplementary Fig. S10 and S11). We observed that reference orchards 
have similar variation in pigment, photosynthetic activity, nitrogen, and 
tree-crown temperature as non-diseased trees under irrigation, 
compared to symptomatic trees under rainfed conditions. The degra
dation of plant traits is more intense under rainfed conditions and in the 
presence of Xf, while under irrigation and good management practices 
Xf induced a smaller change for each plant trait. In this regard, Boyer 
(2003) stated that a predisposition to disease is often observed in host 
plants during water deficiencies. Although the biochemical and bio
physical causes are not known with certainty; this author proposed two 
main mechanisms to explain how water stress increases the suscepti
bility of plants to attack by pathogens: (i) gradients in water potential 

Table 6 
Overall accuracy, F1-score, Cohen’s kappa coefficient and AUC for visual in
spections for the most parsimonious ML model (pML) and the ensemble GB 
model on almond trees where the presence/absence of Xylella fastidiosa is 
confirmed by the RPA molecular diagnostic test (n = 360 trees).   

OA F1-score kappa AUC 

pML model 
Random forest (RF) 88% 88.66 0.76 0.88 
Gradient boost (GB) 88% 88.89 0.76 0.88 
X Gradient boost (X-GB) 89% 90.10 0.79 0.90 
Ensemble (stacking RF-GB-XGB) 90% 90.95 0.80 0.90 
Visual inspections 91% 91.79 0.82 0.91  
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can be altered by water deficits and prevent growth in the host without 
altering growth of the pathogen; and (ii) there is a decrease in photo
synthetic activity and protein synthetic activity when water deficits 
develop that could decrease the synthesis of metabolites and enzymes 
important for disease resistance (Boyer, 2003). Moreover, McElrone 
et al. (2003) reported on Parthenocissus quinquefolia plants subjected to 
drought stress and infected with Xf, that the major effect of infection by 
Xf occurs due to reduced hydraulic conductance caused by clogging of 
the vessels, and not increased cavitation and embolism of xylem 
elements. 

We also highlight our findings for carbon-based constituents, which 
include lignin among other compounds (e.g., cellulose, lignin deposits), 
that showed an uptick in their levels as Xf severity increased (Fig. 4B and 
Fig. 6C) irrespective of the water regime. This increased lignin synthesis 
in Xf-infected trees is reported as a defense response to pathogen 
infection, and is a well-known defense mechanism that has been widely 
demonstrated for different pathosystems (Gayoso et al., 2010; Wallis 
and Chen, 2012; Xu et al., 2011) including Xf in olive (Sabella et al., 
2018) and grapevine (Wallis and Chen, 2012). 

We remark that the proposed ML framework yielded good perfor
mance for all the estimated plant traits and in the two water conditions. 
In particular, we also highlight the robust linear relationship found 
between Vcmax/CBC and leaf Ntotal (Fig. 6) and between NDVI and LAI 
(Fig. 5C). Overall, the ML framework showed that the use of ML models 
could successfully track the changes of plant traits in almond trees 
growing under irrigation or rainfed conditions, nutritional and Xf dis
ease status. Therefore, the robustness of the ML framework allows the 
transferability of this methodology to other plant species and plant 
pests. The operational ML frameworks developed in this study with the 
combination of geostatistical methods (e.g., IDW) would be a powerful 
tool for the characterization of healthy/disease status on Xf outbreak 
areas in near real time. This spatial mapping of plant traits (e.g., Vcmax, 
leaf Ntotal) enabled us to obtain a spatial scheme of affected orchards 
from discrete tree-crown data based on the assumption of spatial auto
correlation. Furthermore, the spatial mapping show the potential for 
monitoring disease progress based on a set of specific plant traits that are 
sensitive to leaf biochemical changes (e.g., Anth, lignin) and photosyn
thesis process (Vcmax) related to the Xf-infection. However, additional 
field measurements should be also assessed in future studies to be able to 
quantify the uncertainties identified in the ML models. 

4.2. Mineral composition on Xylella fastidiosa-infected leaves 

We conducted a mineral analysis at leaf-level to check nutritional 
differences between leaves sampled from healthy and Xf-infected trees. 
We found that Zn showed higher levels in Xf-symptomatic almond leaves 
than in those showing no disease symptoms and grown under rainfed 
conditions. Previous studies indicated that Zn is an important virulence 
factor for Xf and is required for efficient colonization of the host with 
Navarrete et al. (2015) suggesting that the host leaf ionome is correlated 
with bacterial virulence. In this regard, in our study, Ca concentration 
significantly increased in leaves with Xf symptoms under water-limiting 
conditions, whereas P significantly decreased in Xf-infected leaves 
(Table 4). These findings are in agreement with De La Fuente et al. 
(2013), who found that Xf-infection causes significant increases in 
concentrations of Ca prior to the appearance of symptoms and decreases 
in P concentrations after symptoms appeared. In this same context the 
higher content in Fe in Xf-symptomatic leaves also agree with the results 
of previous studies (i.e., Silva-Stenico et al., 2009), that found high 
concentrations of Fe and Zn in citrus leaves affected by Xf. 

Our findings indicate that by studying mineral constituents may 
reveal changes associated with Xf-infection and symptom development. 
To successfully capture mineral changes at canopy scale for Xf detection 
with hyperspectral sensors, we need further studies based on upscaling 
techniques for estimating leaf mineral composition. In this regard, PLS 
regression techniques shown in other RS works (e.g., Pimstein et al., 

2011) or the reflectance-based ML model proposed in this study to 
quantify Ntotal at tree scale (Fig. 6), could be promising modeling stra
tegies to characterize mineral constituents at canopy scale. Therefore, 
the feasibility of including mineral composition in new RS studies could 
reduce the uncertainties of the Xf detection ML models. 

4.3. Plant trait contributions in ML models for Xylella fastidiosa detection 

The most reliable functional traits to discriminate between asymp
tomatic and Xf-symptomatic almond trees were those related to 
pigment, Vcmax, CBC and thermal-based indicator. In particular, the 
contribution of pigments was confirmed in earlier studies for this same 
pathogen in olive but focused on VNIR hyperspectral sensors (Zarco- 
Tejada et al., 2018). Additionally, Camino et al. (2021) demonstrated 
the relevance of spectral N indicators when developing models for Xf 
detection in almonds at tree crown scales by combining RT models and 
hyperspectral sensors. In contrast, to the best of our knowledge, there 
are no RS studies to date that include Vcmax, as proxy of photosynthetic 
capacity, and lignin deposition (including in CBC) in the remote detec
tion of Xf-infection. In this study, we have quantified the relative 
contribution of plant physiological traits when adding Vcmax and CBC in 
the pML model, and their effects when fitted to field data with different 
disease prevalence and water regimes. In this regard, Vcmax, Cab, and 
CBC, accounted for at least 51% in irrigated orchards, but dropped up to 
31% in rainfed conditions. Under these later conditions, Anth, and Tc 
accounting together up to 43% of the total, followed by CBC, LIDFa and 
Vcmax. This study confirms the findings by Zarco-Tejada et al. (2021), 
that showed the importance of using a thermal indicator, as proxy of 
transpiration rates, especially when Xf-infection coexists with abiotic 
factors, such as water stress and nitrogen deficiency. When we analyzed 
the contribution of plant traits in the pML in almond trees under both 
water regimes, we found that pigments (Cab and Anth), Tc, Cw, CBC, and 
Vcmax yielded similar contribution in the ML models, while LAI and Ntotal 
showed the lowest contribution. 

4.4. Parsimonious ML model for Xylella fastidiosa detection 

In the most pML model for Xf-detection, which combined Vcmax with 
thermal-based Tc, CBC, and a limited set of plant traits, the three ML 
classifiers yielded a higher performance (Table 4) when almond or
chards are managed under rainfed conditions (Table 4). However, the 
ability of the models for Xf detection decreased when orchards were 
under irrigated conditions with a relative low proportion of trees 
affected by Xf-infection. In particular, the three ML classifiers reduced 
their OA by about 2–3% compared to the performance reached by the 
pML under rainfed conditions. These results confirm the ability of a 
parsimonious model to detect Xf-infection under heterogeneous disease 
prevalence and with different types of orchard management (e.g., water, 
nutritional, or pest management). These results achieved similar accu
racies with previous work (e.g., Zarco-Tejada et al., 2018, 2021), where 
they implemented ML approaches by combining a high number of 
spectral indices and plant traits derived from RT models. Here, we 
highlighted that the decision tree-based classifiers could achieve an 
overall accuracy of >90% when comparing with the molecular diagnosis 
dataset, when only nine plant traits are included in the pML model. The 
decision tree-based classifiers we used for Xf detection identify the most 
important input features or variables used in each model; this is 
important as it permits a feature analysis and identifies the contribution 
of each plant trait in the model for detecting Xf symptoms. Although 
neural network-based algorithms have been shown to outperform other 
ML models in many different use-cases, their learning process typically 
produces features that are too abstract to reveal underlying processes. 

5. Conclusions 

This study constitutes a significant progress in Xf detection through 
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an operational ML framework that allows the monitoring of photosyn
thetic activity (e.g., Vcmax), pigments, carbon-based constituents and 
thermal-based Tc changes potentially associated to Xf-infection in trees 
under two water regimes and different orchard management practices. 
We show that the development of a simple ML model where adding 
photosynthetic capacity besides plant traits related to transpiration 
rates, pigments‑nitrogen, lignin deposits, and structural decay was able 
to successfully detect Xf-infected trees, obtaining an overall accuracy of 
90% when the ML model was compared to trees tested for Xf-infection 
by the RPA molecular diagnostic test. The proposed ML framework re
duces the uncertainties of plant traits using a biophysical model and 
opens up a new approach for large-scale application of ML to different 
crops and plant pathogens. 
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