Interactive effect of relative humidity and elevated CO₂ on C and N metabolism of two barley genotypes

<u>Rubén Vicente</u>, Fernando Torralbo, Carmen González-Murua, Iker Aranjuelo, Rosa Morcuende

Plant Ecophysiology and Metabolism lab www.itqb.unl.pt

SPANISH SYMPOSIUM ON PHYSIOLOGY AND BREEDING OF CEREALS PARPORA III Spanish Symposium on Physiology and Breeding of Cereals 17-18 November 2020

Climate change and crop production

C₃ plant responses to elevated [CO₂]

Why are leaf nitrogen concentrations lower under elevated CO₂?

Coordination of C and N metabolism under elevated [CO₂]

:-,•

EFFECTS OF ELEVATED CO₂

Vicente et al. (2016) Plant Cell Physiol

increased

decreased

Increased N allocation to young leaves at low N supply (with a

C/N coordination

good renewal frequency) alleviated photosynthetic acclimation to elevated CO₂

> Vicente et al. (2015) Acta Physiol Plant Vicente et al. (2017) Plant Sci

Hypothesis

:-,•

The manipulation of transpiration through changes in relative humidity can alter nutrient assimilation and the response to elevated CO_2 in barley

 In recent decades, RH has fallen over the land

Byrne & O'Gorman (2018) PNAS

 Mechanism of stomatal responses to humidity

Buckley (2016) Plant Cell Environ

Approach

:-,•

Investigate the interactive effects of eCO_2 and RH on plant physiology and C/N coordination in source/sink organs of two barley genotypes (Harrington and RCSL-89)

Physiological, biochemical and molecular analyses

Principal Component Analysis

Gas exchange measurements in flag leaves

eCO₂ increased photosynthesis while the fall of RH decreased increased transpiration rate

eCO₂ decreased flag leaf dry matter, but increased ear biomass and ear biomass contribution with no significant changes in shoot biomass or due to RH

C-N content in flag leaves and ears

Harrington RCSL-89 RCSL-89 Harrington 6 6 5 5 flag leaf N (%) ear N (%) c 8 4 3 b b b 2 2 а 1 1 0 CO2 PH65 202 PH45 0 CO2 PH65 8002 PH45 CO2 PHAS 8C02 RH65 CO2 PHAS CO2 RH65 2CO2 PHAS CO2 PHAS CO2 PH65 CO2 PHAS 8C02 PH65 8C02 PH65 \$CO2 PH65 aCO2 PHAS

eCO₂ tended to decrease ear N content under 65%RH, leading to a high C:N ratio (effect not shown with 45% RH)

C-/N-rich compounds and enzyme activities

	Harrington				RCSL-89					
	65% RH		45% RH		65%	5 RH	45% RH			
	aCO ₂	eCO ₂								
Glucose (µmol g FW ⁻¹)	35.0 b	10.5 a	28.3 b	12.1 a	9.7 a	11.4 a	26.9 b	21.7 b		
Fructose (µmol g FW⁻¹)	27.1 b	14.3 a	23.2 b	10.6 a	10.9 a	12.1 a	21.2 b	16.5 ab		
Sucrose (µmol g FW⁻¹)	113.7 b	63.2 a	96.0 b	68.8 a	78.9	73.6	95.2	89.9		
Fructans (μmol g FW ⁻¹)	20.7	14.9	19	19.1	24.4 ab	18.0 a	36.9 b	22.2 ab		
Starch (μmol g FW ⁻¹)	5.2 a	22.0 b	18.4 b	14.6 ab	20.0 b	54.6 c	9.0 a	9.9 a		
NO₃ (μmol g FW⁻¹)	12.0	12.3	10.5	11.6	12.4	14.3	14.4	12.3		
NH₄ ⁺ (nmol g FW ⁻¹)	0.3 a	0.2 a	0.6 b	0.1 a	0.3 b	0.1 a	0.5 c	0.2 b		
Chlorophylls (mg g FW ⁻¹)	2.3	2.4	2.2	2.6	2.3 a	2.5 a	2.3 a	2.9 b		
Amino acids (μmol g FW ⁻¹)	28.2 c	16.1 a	27.2 с	19.8 b	29.7 b	18.8 a	30.8 b	28.0 b		
Soluble protein (mg g FW ⁻¹)	19.8 a	21.4 ab	22.7 ab	26.6 b	20.3	23.6	21.8	19.0		
NR (μ mol NO ₂ ⁻ g FW ⁻¹ h ⁻¹)	2.6 ab	1.8 a	3.9 ab	3.3 b	2.8 ab	1.5 a	2.7 ab	3.1 b		
GS (μ mol GHM g FW ⁻¹ h ⁻¹)	62.8 b	60.9 b	62.1 b	34.3 a	63.4	62.7	68.5	63.2		scale
GOGAT (μ mol NADH g FW ⁻¹ h ⁻¹	3.3 b	2.0 a	4.0 b	3.7 b	4.3	2.7	4.1	3.4		
GDH (μ mol NADH g FW ⁻¹ h ⁻¹)	36.2	39.5	37.9	31.1	34.3 a	45.5 b	24.2 a	27.4 a	min	

eCO₂ inhibited leaf N metabolism. However, ear N content highlighted that eCO₂ enhanced N assimilation and/or translocation to the ears (total ear N)
→ large availability of C skeletons for the synthesis of N compounds?

45% RH (higher Tr) decreased ear N content but combined with a high C supply (eCO₂) favoured N assimilation and translocation to ears

Gene expression analyses by qRT-PCR

• -	
•	

		Harrington					
		aCO2 RH65	eCO2 RH65	aCO2 RH45	eCO2 RH45		
Light harvesting	LHCII (1)						
	LHCII (2)						
	PSII R						
	PSBQ						
	PSBP						
	A1	а	b	а	b		
	A2	а	b	ab	b		
	POR						
<u>Rubisco</u>	RBCL	а	а	b	а		
	RBCS	b	а	b	b		
Fructan metabolism	1-SST	b	b	b	а		
	6-SFT						
	1-FFT	b	b	b	а		
	1-FEH	b	а	b	b		
	6-FEH						
Cell wall	CWINV						
	SCCW						
Nitrogen metabolism	NR						

_	-		_
		• 1	\mathbf{n}
		1	
		-	

	aCO2 RH65	eCO2 RH65	aCO2 RH45	eCO2 RH45
HCII (1)				
HCII (2)	b	а	d	с
SII R				
SBQ	b	а	ab	ab
SBP	а	а	b	ab
.1	а	b	ab	ab
2	а	b	b	b
OR	ab	а	b	ab
BCL	ab	а	С	b
BCS	b	а	b	b
-SST				
-SFT				
-FFT				
-FEH				
-FEH	а	ab	b	ab
WINV	а	ab	b	ab
CCW	а	b	b	b
R				

Summary

- eCO₂ stimulated nutrient allocation to grain filling in well-fertilised barley plants, particularly when transpiration rate was stimulated by lower RH in a genotype-specific manner
- Although a higher carbohydrate-storage capacity in stems can help to maximize the photosynthetic capacity under elevated CO₂ in RCSL-89 genotype [Torralbo *et al.* (2019) *J Exp Bot*], this does not seem an advantage when N assimilation is not limited by soil moisture or transpiration rate.
- Relative humidity is an important factor to take into account for the understanding of plant responses to climate change

Acknowledgements

Thank you for your attention

