Algunos métodos para la prospección de estaño.

GARCIA SANCHEZ, A. (*); GRACIA PLAZA, A. S. (**)

RESUMEN
Se hace una síntesis de datos, fundamentalmente bibliográficos, en relación con la geoquímica del Sn en áreas graníticas mineralizadas y con fines primordialmente prácticos para su uso en prospección. El trabajo se divide en dos partes: por un lado se estudian las aureolas de dispersión primarias del Sn en los propios granitoides, y por otro las aureolas de dispersión secundaria en los productos de su denudación.

SUMMARY
In this work a synthesis of bibliographic information concerning to the granitoides geochemistry relation with tin deposits is made for practical purposes in their use in prospection. On the other hand the tin primary dispersion aureoles in the granitic rocks are studied, on the another hand the tin secondary dispersion aureoles are considered in their denudation products.

INTRODUCCIÓN
En este trabajo se pretende sintetizar algunos de los numerosos datos existentes sobre el tema, con un objetivo fundamentalmente práctico, basándose, sobre todo, en resultados geoquímicos, y con el fin de su posible uso en prospección. Se analizan las características geoquímicas de los granitos en relación con posibles mineralizaciones de Sn, pues el establecimiento de algún criterio válido para dilucidar entre granitos fértiles y estériles —mediante el estudio de las aureolas de dispersión primarias— podría ser de gran utilidad en prospección a escala regional, y además ser eficaz para la localización de zonas mineralizadas de baja ley (albititas, greisens, de disemínación, etc.), que puedan haber pasado desapercibidas incluso en zonas de amplio historial minero.

Por otro lado, las aureolas de dispersión secundarias permiten, gracias a su localización y estudio, tanto la aproximación al yacimiento primario, como la prospección del posible yacimiento secundario, que en este caso del Sn constituye a menudo el principal objetivo de la prospección.

Puesto que criterios únicos en este tipo de investigaciones son siempre insuficientes, en principio se requeriría un estudio exhaustivo de diversos aspectos: cartográficos, geoquímicos, petrográficos, tectónicos, etc; pero ésto, desde el punto de vista de la exploración de grandes áreas, resulta antieconómico, y por ello los resultados obtenidos de una simple prospección geoquímica requieren gran capacidad de interpretación para ser eficaces.

ESTUDIO DE LAS AUREOlas DE DISPERSION PRIMARIA DEL Sn EN GRANITOIDES

Si se acepta como un hecho bien establecido la existencia de una relación genética entre algunos granitoides y los yacimientos de Sn espacialmente asociados, cabe pensar que desde el punto de vista de su prospección resultará ineludible y prioritario un estudio de contenidos y distribución del Sn en los propios granitoides, al menos como estudio preliminar a escala re-
Fig. 1.—Distribución de Sn en granitos del Centro-Oeste de España. GARCÍA SANCHEZ (1973); SAAVEDRA y GARCÍA SANCHEZ (1976); REVUELTA GARCÍA (1974); GONZALO CORRAL (1975); BLANCO MELLADO (1975); GIL GALINDO (1976).
gional o estratigráfica. Ahora bien, la cuestión está en ver si el método tiene utilidad práctica; es decir, si es capaz de dilucidar si un determinado complejo granítico está o no mineralizado, es fértil o estéril, o cual es su potencial metalogénico en Sn.

En general hay gran controversia en todo esto. Algunos autores opinan que el método no es válido. Entre ellos está HOCKING (1967, 1974) en base a resultados bastante confusos obtenidos en Cornwall con distribuciones erráticas de Sn sin clara relación con las mineralizaciones filonianas asociadas, y asimismo, por resultados semejantes en granitos de Malasia; CHAURIS (1966) concluye de forma análoga para granitos del Macizo Armorico; TAYLOR (1979) opina que en general los altos contenidos de Sn reflejan la presencia de mineralizaciones, aunque su ausencia no es necesariamente un factor adverso, y TISCHENDORF (1977) viene, en realidad, a decir lo mismo, pues en su opinión el carácter de especialización metalogénica en Sn de un granito se refleja en otros caracteres geoquímicos y mineralógicos más que en los propios contenidos de Sn.

Por el contrario numerosos autores consideran este método útil en base a resultados positivos obtenidos en diversas áreas graníticas. Es decir, que aquellos granitos mineralizados o fértiles evidencian anomalía geoquímica de Sn en estrecha relación espacial con la mineralización propiamente dicha. Pero ¿cual es el nivel mínimo a partir del cual la concentración de Sn se puede considerar anómala? Hay también en esto ciertas dudas y discrepancias, debidas a que muchos de los datos que se manejan no son totalmente fiables por muy diversas causas, pero principalmente porque el Sn fue un elemento con grandes dificultades analíticas en este campo de la aplicación geoquímica, así como por otros problemas de muestreo, interpretación, etc., que vienen a indicar una vez más la necesidad de realizar una cartografía de escala apropiada previamente a la realización de cualquier estudio de este tipo.

Entre los autores con opinión favorable del método se encuentran: BARSUKOV (1958), que para granitos de la URSS encuentra de 16 a 30 ppm de Sn en granitos mineralizados y de 3 a 5 ppm en estéries; IVANOVA (1963), que en granitos de Transbaykalia observa 25 ppm en mineralizados y 5 ppm en estéries; RATTIGAN (1963) en Australia: 20 ppm y 3 ppm respectivamente; PHAN (1965) en Francia; 30 ppm y 8 ppm; DURASOVA (1968) con base en un estudio estadístico de un numeroso grupo de datos de diversas partes del mundo propone una media de 8.5 ppm de Sn en los granitos estanníferos y 3.3 ppm en los demás; HALL (1973) de 79 ppm y 5 ppm en Cornwall; HESP y RIGBY (1975) indican 26 ppm de media en los granitos asociados a yacimientos de Sn y 3.4 ppm en los no asociados.

En cuanto a algunos granitoides hercínicos ibéricos podemos concretar dos cifras: en torno a 15 o 20 ppm para los fértiles (ficies intrusiva principal y más de 100 ppm en otras) y 5 ppm para los estéries (SAAVEDRA Y GARCIA SANCHEZ, 1976; GARCÍA SANCHEZ, 1973; BLANCO MELLADO, 1976; GONZALO CORRAL, 1976; GIL GALINDO, 1976).

Por consiguiente, en términos generales y a escala de batolito, complejo granítico polifásico o plutón, es posible distinguir aquellos granitos con alto potencial en yacimientos. Para ello el nivel mínimo de la concentración de Sn puede estar en tono a 10 ppm. Sin embargo, es conveniente estudiar la distribución estadística de este elemento que puede concretar algo más el grado de fertilidad de las diversas facies del granito.

En las figuras 1 y 2 se presentan distintas distribuciones de Sn para distintas áreas graníticas del mundo y del Macizo Hespérico.

Cabe destacar lo siguiente:

- La distribución polimodal en los granitos fértiles.

- Generalmente distribución log-normal positiva, en las facies volumétricamente principales (adamellitas, granitos biotíticos), que sería consecuencia de la acumulación del Sn en un solo mineral, en este caso la biotita.

- Gran dispersión, con altos valores de la desviación tipo (S), en parte consecuencia de este tipo de distribución log-normal, de la existencia de subpoblaciones con valores altos de la moda (hasta 100 ppm) y también por sus caracteres de intrusiones polifásicas, hipoabiales, epizonas, con condiciones de alta actividad tectónica y zonas con alteraciones tardi y post-magmáticas, etc.
Fig. 2.—Distribución de Sn en rocas graníticas de diversas partes del mundo. RATTIGAN (1963), IVANOVA (1963) (U.R.S.S. y Australia, trazo continuo fértiles y discontinuo estériles); DURASOVA (1968); IMEOKPARIA (1980); HESP y RIGBY (1975).

Estas subpoblaciones de concentraciones de Sn en torno a las 100 ppm, corresponden a las facies más leucocráticas, más diferenciadas o alteradas, apicales y de borde, que son las que llevan la mineralización o que más estrechamente relacionadas con ella están.

Así el análisis detallado de la distribución puede ser de gran ayuda para delimitar más estrechamente zonas favorables a nivel de prospección local o táctica.

En base a los resultados expuestos se podría proponer la siguiente distribución tipo (figura 3) para los complejos graníticos fértiles metalogénicamente, o con yacimientos asociados.

La presencia y carácter de estos yacimientos, cuya evaluación y localización es objeto de otro tipo de investigación, va a depender de otra serie de circunstancias más o menos casuales que poco tienen que ver con el carácter y grado de fertilidad del complejo granítico, como son el grado de erosión alcanzado, características del techo encajante, fracturación, etc.

En dicha figura 3 pueden observarse:

— Que hay una moda de la concentración de Sn a 3 ppm en granodioritas y adamellitas
no estanníferas que posiblemente pertenezcan a otra intrusión en cierto grado separada genéticamente.

— Que la moda de [Sn] aproximadamente igual a 20 de la subpoblación principal correspondiente a facies de granitos biotíticos y de dos micas, que serían los «precursors» según Tischendorf, o asociados a escala regional con los granitos «especializados».

— Que otras subpoblaciones secundarias con modas de [Sn] 60, 80, 100, etc. corresponden a leucogranitos, aplitas, alaskitas, facies alteradas, albítitas, greisens, apicales y de bordes, mineralizadas.

Estudio de la distribución del Sn en Biotitas

Numerosos datos indican que de los minerales esenciales del granito es la biotita el mayor acumulador de Sn (por ejemplo BARSUKOV, 1958, entre el 80 y el 100 % del Sn de la roca está concentrado en la biotita). Otros minerales accesores del granito contienen Sn en cantidades importantes (esfena hasta 3000 ppm, ilmenita 200, turmalina 1500, circón 150, allanita 150, etc.) pero esto es de menor importancia cuantitativamente, por ello se ha considerado clásicamente a este mineral como el principal indicador en prospección. Pero ¿hay diferencias claras entre las [Sn] en biotitas de granitos fértiles y estériles? Como en el apartado anterior existen dudas y discrepancias, y además dado que con el grado de diferenciación el contenido de Sn aumenta, puede pensarse que el enriquecimiento de este metal en la biotita es sólo una consecuencia de la disminución del porcentaje de dicho mineral en la roca, y de esta forma, considerar erróneamente que las facies más diferenciadas son estanníferas en cualquier caso. Por ello es conveniente conocer, aunque sea de forma aproximada, el tanto por ciento de la biotita de la roca (dato, por otro lado, fácil de conseguir en el mismo proceso de separación del mineral para su análisis) y utilizar el valor corregido de [Sn]_{Biot. % Biot./100 para evitar errores.}

Igualmente la [Sn]_{Biot. varía con la composición de la misma:

— correlación positiva con Fe³⁺, Li⁺, F⁻.
— correlación negativa con Fe²⁺, Mg²⁺, O⁻.

explicables por simples razones cristalquímicas, por lo que podrían encontrarse anomalías de Sn en biotitas debidas solamente a estas causas.

No obstante todo lo anterior, numerosos resultados indican que podría utilizarse este método de prospección a escala regional: TISCHENDORF (1977), en granitos especializados y precursores del Erzgebirge y otros granitos estériles de Alemania Oriental:
\[
\begin{array}{cccc}
\text{Especializados} & \text{Precursores} & \text{No estanníferos} \\
\overline{x} & N & \overline{x} & N & \overline{x} & N \\
349 & 40 & 193 & 20 & 38 & 25 \\
\end{array}
\]

GROVES (1972) en Tasmania:

Granitos de dos micas estanníferos

\[
\begin{array}{l}
\text{[Sn]_{Biot.} \ldots \ldots} \\
556 \text{ ppm.} \\
\end{array}
\]

Granitos biotíticos y adamellitas estériles

\[
\begin{array}{l}
\text{[Sn]_{Biot.} \ldots \ldots} \\
64 \text{ ppm.} \\
\end{array}
\]

Asimismo BRADSHAW (1967) en Cornwall encuentra que la [Sn]_{Biot.} es mayor que la de otros granitos estériles de Inglaterra. Así, puede considerarse que la [Sn]_{Biot.} de granitos estériles es del orden de 50 ppm o menos, y en fértilles de 100 a 400 ppm. y puede utilizarse este mineral como indicador en prospección de Sn, aunque con ciertas reservas, como cuando aparece casiterita libre en el granito, hecho bastante probable cuando la [Sn]_{roca} \geq 30 \text{ ppm (SATTRAN y KLOMINSKY, 1970); en este caso la anomalía de Sn no se traducirá en su concentración en la biotita, a no ser que toda la casiterita esté incluida en ella. Otro factor negativo resultaría la abundancia de inclusiones de otros minerales en la biotita como el circon, la esfena, la ilmenita, etc.}

El inconveniente aparente de hacerse necesaria una separación del mineral, no es tanto si consideramos que de la muestra de granito machacada a tamaño de algunos mm puede obtenerse la cantidad de biotita necesaria para el análisis de manera bastante simple (0.1 a 0.2 g.).

Este método tiene la ventaja de manejar concentraciones de Sn más altas, que obviamente hacen más sencillo el método analítico, pues en su sensibilidad radican la mayoría de los casos los problemas de análisis. Por ello hay que tener en cuenta que si para granitos es necesario llegar al menos a sensibilidades de 10 ppm, con la biotita serían suficientes 50 ppm.

Distribución del F en granitoides como guía indirecta en prospección de Sn

Entre las diversas aplicaciones de la geoquímica del F en granitos está la de su posible utilización en prospección de yacimientos de Sn, debido a la estrecha relación existente entre estos dos elementos. A pesar de que en este campo también hay discrepancias entre los diversos autores, son muchos los que piensan que el F es de capital importancia en los procesos de formación de granitos estanníferos, y ello por varias razones que se resumen fundamentalmente en los mecanismos de extracción y transporte del Sn en condiciones neumatólíticas e hidrotermales como fluoruros, hidroxifluoruros, etc. (datos experimentales), y en el hecho de que contenidos altos en volátiles en el magma, especialmente F, ocasionan condiciones específicas de formación y evolución del granito, tales como disminución de la viscosidad del fluido, caída de hasta 100 °C de la temperatura de cristalización, que propician los fenómenos autometasomáticos condicionantes de la especialización metalógénica y consiguiente formación de yacimientos. Así TISCHENDORF (1977), llega a afirmar que el factor más importante en la formación de un yacimiento de Sn asociado a granitos es su alto contenido en F, más que su alto contenido en Sn, ya que por ejemplo la lixiviación de 1 ppm de Sn de 1 km³ de granito originaría algunos miles de toneladas de casiterita.

Pero incluso prescindiendo de esto, solamente atendiendo a sus comportamientos durante la cristalización fraccionada, cabría esperar buena correlación Sn-F, debido a su común tendencia a acumularse en los fundidos silicatados respecto al sólido y por consiguiente concentrarse en los últimos diferenciados, FUGE (1977), GROVES (1973).

En la figura 4 se presentan diversas correlaciones F-Sn en granitos del Erzgebirge (TISCHENDORF, 1977), Tasmania (GROVES Y MCCARTHY, 1978) y algunos granitos con mineralización del Macizo Hespérico.

Se observa buena correlación en los granitos estanníferos y puede considerarse un nivel en torno a 1000 ppm ce F como índice de fertilidad. No obstante conviene tener cuidado con
algunos datos, como, por ejemplo, los referentes a granitos precursores o de aplitas mineralizadas, que incluso con anómalos contenidos de Sn pueden presentar bajas concentraciones de F.

Independientemente de que el método pueda ser eficaz en prospección en un estadío previo de reconocimiento regional, tiene ciertas ventajas de orden práctico, como:

— facilidad del análisis de F (mediante electrodo específico) hasta 0.1 ppm, en disolución con excelente reproducibilidad; e incluso dados los niveles de concentración de F en granitos se puede recurrir a analizar solamente el F extraible bien con 0.001 N Na OH, o 0.01 N ClH, ClO₄H-NO₃H, o bien el total a partir de un sinterizado de la muestra con CO₃ Na-NO₃K fácil de obtener.

— posibilidad de utilización en prospección hidroquímica, mediante el análisis del F de las aguas de la red de drenaje método muy eficaz y práctico pero que por la inalterabilidad química de la casiterita (Ps Sn (OH)₄ = 10⁻⁶⁰, del orden de ppb en aguas) no puede aplicarse directamente al Sn en sí. Esto puede dar buenos resultados como contraste geoquímico, teniendo
en cuenta la gran reactividad del F y su fácil movilización supergénica. Es decir, cabe esperar que sobre un fondo geoquímico normal en las aguas de drenaje de menos de una ppm aparezcan anomalías bastante claras de varias ppm de F en áreas restringidas en torno a las mineralizaciones. En otro tipo de yacimientos se han obtenido buenos resultados: JACKS y otros (1973) en aguas en torno a skárens mineralizados con scheelita y molibdenita, LALONDE (1976) en yacimientos de barita y fluorita, etc.

Otra característica geoquímica de los granitos de interés para la prospección

Prescindiendo de que la causa para que un determinado grano sea fértil o estéril esté en su modo de origen, su grado de diferenciación, evolución magmática, alteraciones deutéricas finales, etc. y que los mecanismos de la evolución geoquímica de determinados elementos trazas se fundamenten en principios cristaloquímicos clásicos, o en la teoría de la formación de complejos, o en las interacciones ácido-base en un fundido silicatado; el hecho es que aparece muy clara (en la bibliografía y en numerosos datos de los que disponemos de la zona central del Macizo Hespérico) una estrecha coherencia geoquímica entre el Sn y determinados elementos: Rb, Li, Cs, etc., que se manifiesta en buenas correlaciones positivas. Por el contrario, son muy claras las correlaciones negativas del Sn con Sr, Ba, Zr, Ti, etc.

Por ello desde un punto de vista de prospección regional podría ser útil, si se dispone de datos en este sentido, caracterizar geoquímicamente los plutones y facies más evolucionados dentro de un complejo intrusivo y con potencial estanfífero más acabado.

A la vista de los numerosos datos disponibles sobre elementos trazas, se pueden resumir como orientación así:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Fértil</th>
<th>Estéril</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb</td>
<td>400-800 ppm</td>
<td>< 400 ppm</td>
</tr>
<tr>
<td>Li</td>
<td>>100 ppm</td>
<td><100 ppm</td>
</tr>
<tr>
<td>Sr</td>
<td><100 ppm</td>
<td>100-400 ppm</td>
</tr>
<tr>
<td>Ba</td>
<td><100 ppm</td>
<td>100-400 ppm</td>
</tr>
<tr>
<td>Rb/Ba</td>
<td>2-5</td>
<td><1</td>
</tr>
<tr>
<td>Mg/Li</td>
<td>40-100</td>
<td>200-350</td>
</tr>
<tr>
<td>Zr/Sn</td>
<td>20-40</td>
<td>60-100</td>
</tr>
<tr>
<td>K/Rb</td>
<td><100</td>
<td>>100</td>
</tr>
</tbody>
</table>

En cuanto a la geoquímica de elementos mayoritarios, también puede ser aprovechable con objetivos de prospección en un estudio previo de selección de áreas más favorables.

En este sentido también existen numerosas y dispersas opiniones pero las más significativas pueden sintetizarse en la forma siguiente:

En los granitos estanfíferos el porcentaje de SiO₂ alcanza valores del orden del 72 o 73, e incluso mayores; el CaO baja en relación a los estériles con valores de ≤ 1 %; y el TiO₂ también con valores relativamente bajos de 0.1 a 0.2 % de acuerdo con numerosos autores, pero especialmente con los resultados de un estudio estadístico, bastante amplio, de TISCHEN-DORF (1977) y también con los abundantes datos de granitos de la zona central del Macizo Hespérico (Salamanca y Cáceres).

JUNIPER y KLEEMAN (1979), utilizando diversos diagramas triangulares separan claramente granitos fértil y estériles de Australia. En el diagrama SiO₂ -CaO + MgO + FeO -Na₂O + K₂O + Al₂O₃, los granitos fértils se agrupan hacia el lado SiO₂-Na₂O + K₂O + Al₂O₃; en el diagrama Na +K-Fe-Mg, los fériles se separan claramente hacia el vértice Na + K, y en el diagrama Na-K-Ca los puntos correspondientes a los granitos fériles se agrupan hacia el lado Na-K.

También se han mostrado útiles en este sentido los índices de Kohler-Raaz como demues-
tran los resultados de SATTRAN y KLOMINsky (1970) para granitos mineralizados del Macizo de Bohemia; los resultados de HESP y RIGBY (1974) en Australia y los de GARCIA SANCHEZ y GRACIA PLAZA (1979) en el plutón del Jálama (Salamanca-Cáceres). Según esto los granitos estanníferos tienen los siguientes valores de estos índices:

\[+ qz = 60-70; \ F = 20-25 \ %; \ fm = 5-15 \ % \]

(siendo + qz proporcional a la silice libre, F al Na, K y Ca en los feldespatos y fm a los minerales fémicos).

Otras caracterizaciones de granitos con posible interés en prospección de Sn son las efectuadas por CHAPPEL Y WHITE (1974) en base a diversos criterios que dividen a los granitos australianos en dos series o tipos: granitos I y granitos S estando las mineralizaciones de Sn asociadas a los de tipo S; y por último ISIHARA (1977 y 1978) distingue, en el Japón, granitos de la serie de la magnetita y de la ilmenita. Los primeros tienen mayores cantidades de minerales opacos accesorios (del 0.1 al 2 % en volumen) comprendiendo magnetita, ilmenita, hematites, pirita, esfena, epidota y altas relaciones Fe³⁺/Fe²⁺ y Mg/Fe en las biotitas; los segundos son más pobres en opacos (< 0.1 % en volumen), no tienen magnetita y la fracción de opacos está compuesta por ilmenita, pirotina, grafito y con bajas relaciones Fe³⁺/Fe²⁺ y Mg/Fe en biotitas. Los yacimientos de Sn se localizan solamente en los granitos de la serie de la Ilmenita que son asimismo más ricos en Sn, F, Li, Rb y Be (ISIHARA y TERASHIMA, 1977a y 1977b).

ESTUDIO DE LAS AUREOLAS DE DISPERSION SECUNDARIAS

El uso de cualquier método de prospección de las aureolas secundarias de casiterita está inevitablemente condicionado por los caracteres propios del mineral: su gran estabilidad química, pues pertenece al grupo de los minerales «inatacados», y su peculiar comportamiento mecánico frente a los procesos gliptogenéticos.

En el yacimiento primario la casiterita está presente con frecuencia en tamaños de grano de diámetros superiores a 1 o 1.5 mm, pero fracturada según más o menos perfectos planos de exfoliación, por lo que los agregados de casiterita y cuarzo se disgregan con bastante facilidad en su desplazamiento, tras la meteorización de la roca encajante, sin que por ello se produzca una buena separación entre ambas especies minerales. Al mismo tiempo los choques entre partículas comienzan a reducir el diámetro medio de los granos de casiterita sueltos que presentan, además, aspecto anguloso (VARLAMOFF, 1953).

Después, ya en régimen aluvionar, los elementos estanníferos se separan de los siliceos siendo escasos los granos mixtos en los concentrados aluvionares de casiterita.

Durante el transporte los granos de casiterita se fragmentan y pulen por los choques y roces con otras partículas y el fondo del cauce. Por debajo de ciertos tamaños las partículas de casiterita resultan menos frágiles y se rompen con mayor dificultad produciéndose entonces un pulido por eliminación de finísimas partículas —del orden de pocas micras— sin que se produzcan divisiones como en los granos más voluminosos.

Por lo hasta aquí dicho los granos de casiterita tienden a alcanzar preferentemente dos órdenes de granulometría muy distintos, sin continuidad entre ellos. La actuación de los elementos naturales tiende a concentrar los granos más voluminosos, mientras que normalmente tiende a dispersar los más finos, lo que en ocasiones se traduce en una cierta homogeneización secuadoquímica —en estado coloidal— de su dispersión mecánica utilizable en exploraciones y prospecciones de carácter regional ya que estas aureolas llegan a alcanzar distancias de más de 10 km y sobreimpuestas a fondos regionales ordinarios de pizarras (6 ppm) o areniscas y rocas carbonatadas (1 o 2 ppm) etc., pueden constituir indicio de anomalía, no obstante la gran dificultad de su interpretación e incluso los problemas de carácter analítico que presentan.

Por lo general y debido a relativamente ordenado depósito de las partículas de casiterita por tamaños decrecientes dentro de las aureolas secundarias al alejarse del área fuente, la
fracción granulométrica considerada habitualmente como beneficiable queda sedimentada en un intervalo espacial que, aunque muy variable, no suele superar los tres km y casi nunca llega a los mil metros siempre que no existan realimentaciones del aluvión.

Conviene, llegado este punto, pasar brevemente repaso a los distintos tipos de yacimientos de casiterita que pueden producirse una vez arrancada esta de su yacimiento primario.

El conjunto de estos yacimientos que pueden definirse como «detríticos», reflejando, no obstante su diversidad, su único carácter común invariable, suministran cerca del 70 % de la producción mundial de estonio, y son sin duda los de mayor atractivo para el minero por su económico laboreo.

Los distintos componentes de la gliptogénesis actuan en diferentes proporciones sobre la roca madre produciendo una cobertera de acumulación «in situ» de los minerales menos atacables —entre los que se encuentra la casiterita— o «eluvión».

Con el crecimiento de este aumenta la alteración química de los minerales alterables, produciéndose una gran simplificación de la mineralogía del depósito residual.

Las coberteras de tipo eluvionar se forman con frecuencia en zonas con pendiente por las que se deslizan varios cientos de metros formando «deluviones», que poseen una distribución granulométrica y de composición bastante homogénea, por lo que suelen pasar desapercibidos al prospector de estonio, al faltar la elaboración del depósito suficiente para permitir la detección de concentraciones con interés económico.

Cuando se alcanzan zonas más bajas del relieve, los deluviones se detienen y acumulan formando «coluviones».

En zonas muy peneplanizadas las formaciones coluvionales presentan con frecuencia importantes depósitos de minerales detríticos que colmatan las depresiones.

Si la erosión en la región es intensa, los coluviones constituyen solamente formaciones temporales e inician inmediatamente un transporte de mayor importancia, transformándose en auténticos «aluviones» cuya estructura, aunque lejos de ser perfecta, está mucho más organizada granulométrica y mineralógicamente que en los tipos antes descritos.
Estudio geoquímico y mineralógico de las aureolas de dispersión secundaria

Ya dentro del campo de la metodología de la prospección geoquímica y entre las técnicas de uso habitual, encontramos que sólo aquellas que tienen como principal objetivo las dispersiones de carácter mecánico tienen posible utilización para la localización de anomalías de estaño debidas a casiterita, y tanto dentro de las de carácter regional, como en las de extensión local, es posible extraer como útiles las de prospección en sedimentos de redes de drenaje y las de suelos residuales, quedando alguna otra de naturaleza indirecta, dentro de las de tipo hidroquímico, que ya se han citado anteriormente.

El desmuestre de sedimentos en redes de drenaje es recomendable previamente a cualquier otro método de investigación, debiendo tener su escala un carácter regional, desde 1:50.000 hasta 1:200.000 con toma de muestras a intervalos de 200 hasta 800 m, dando por lo general buen resultado en regiones con redes hidrográficas muy activas.

Los desmuestres en redes geométricas regulares de suelos residuales permiten la delimitación de zonas anómalas y la realización de mapas metalométricos.

Las escalas más apropiadas son la 1:25.000 con perfiles a 250 m y muestras cada 50 m y 1:10.000 con perfiles a 100 m y muestras cada 20 m pero exigen un conocimiento geológico previo bastante detallado que permita establecer la orientación más apropiadas de los perfiles, y una más clara interpretación de la naturaleza y origen de las anomalías definitivas.

Una segunda fase, que denominamos «local», puede presentar igualmente dos métodos similares a los anteriores: de sedimentos en redes de drenaje con escalas de 1:2000 a 1:500 y muestras cada 20 m, y de suelos residuales con mallas regulares de desmuestre con estaciones a 10 m.

Un conocimiento geológico de detalle y en consecuencia una mayor abundancia de trabajos son imprescindibles en esta fase.

Si atendemos al concepto tradicional de la prospección geoquímica, estos demuestres deberían ser seguidos por el análisis químico de Sn contenido en las muestras, lo que permitirá conocer la distribución de este metal en el entorno geológico desmuestreado.

Este método entraña, en nuestro caso, graves inconvenientes provenientes fundamentalmente de dos aspectos: la escasez del principal mineral explotable —la casiterita— y su distribución extraordinariamente errática que plantean importantes problemas de representatividad en los demuestres (acompañado de abundantes problemas técnicos analíticos) y la extraordinariamente difícil, si no imposible, interpretación de los resultados obtenidos del análisis químico, ya que no siempre es correlacionable un alto contenido de Sn químico con la importancia económica del mineral beneficiable. Así, no es raro encontrar en la bibliografía gran cantidad de ejemplos de contenidos elevados de Sn metal asociados a minerales distintos de la casiterita: granates, epidota, idocrasa, malayaita, magnetita, biotita, hornblendita, esfena, turmalina, circón, ilmenita, columbo-tantalita, etc., sin contar minerales propios de medios sulfurados estanníferos como la estannina y la varlamofita, minerales fácilmente dispersables y muy rara vez explotables; además de que muchos de estos minerales son muy comunes en asociación paragenética con la casiterita.

A cambio, solamente presenta como supuesta ventaja su gran rapidez y economía frente a los métodos que posteriormente propondremos.

Una variante del método de prospección regional, y aun local, que siempre ha mantenido gran aceptación entre los mineros es el de prospección a la batea, que permite con gran rapidez y casi con absoluta falta de infraestructura la localización de zonas favorables para la explotación; pero que presenta el inconveniente de no proporcionar una valoración cuantitativa de la anomalía localizada y por su carácter subjetivo, que hace depender el método del hombre que batea, no puede ser considerado aceptable desde el punto de vista de la repetitividad y la precisión.

Una asociación de estos dos métodos a diversas escalas constituiría en nuestra opinión la técnica más apropiada para la prospección y valoración de anomalías de interés económico.

El desmuestre debe seguir el método geoquímico habitual ya descrito pero con toma de muestras bastante más voluminosas, que posteriormente deberán ser procesadas en laboratorio hasta conseguir un concentrado que pueda ser estudiado a la lupa binocular o el micros-
copio, proporcionando de esta manera información sobre el tamaño, forma y caracteres de los minerales del concentrado, entre los que se encontrará la casiterita. Esta, como se sabe, obedece a unas características tipomórficas (KUKHARENKO, 1961) que permiten establecer a partir de datos sobre el color (cuyo grado de oscurecimiento disminuye con la temperatura), cristalografía dominante, brillo (disminuyendo su intensidad a medida que lo hace la temperatura de cristalización) hábito, y distribución de elementos químicos en trazas (por ejemplo Fe, Nb y Ta aumentan proporcionalmente con la temperatura) las peculiaridades del yacimiento primario del que procede, y a partir de su distribución granulométrica.

![Diagrama de tipos de cristalización de la casiterita](image)

Fig. 6. — Tipos de cristalización de la casiterita. 1-4 ortomagmática y pegmatítica; 5-12 hidrotermales de alta a baja temperatura.

grado de angulosidad y estructura del yacimiento desmuestreado, el posible grado de proximidad del yacimiento primario así como el tipo de yacimiento secundario en que se encuentra, además de las asociaciones minerales esperables con sus posibles interferencias analíticas o industriales, e incluso informando sobre otros minerales de probable interés.

Por otro lado, la concentración lograda facilitará la resolución de los problemas analíticos, y en consecuencia permitirá una valoración más precisa de la importancia de la anomalía localizada.

Un programa adicional con tratamiento de muestras de gran volumen en plantas piloto de concentración, permitirá un estudio de mayor detalle y de la importancia del yacimiento localizado, tanto si se trata de un yacimiento primario como secundario.

Un buen ejemplo sobre este tipo de estudios es el que presenta RATTIGAN (1963) sobre suelos residuales de granitos de Mt. Cameron (Tasmania). Consiste en un trabajo de correla-
ción entre muestras puntuales, tomando cinco sobre una superficie de aproximadamente un m², de unos 400 g. cada una y de 0 a 25 cm. de profundidad, frente a una única muestra global tomada en el mismo lugar, de unos 600 Kg. y concentrada gravimétricamente. Los resultados obtenidos son los siguientes:

<table>
<thead>
<tr>
<th>Muestras puntuales (Sn)</th>
<th>Muestra global (Sn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nº 1</td>
<td>180 g/Tm</td>
</tr>
<tr>
<td>nº 2</td>
<td>245 "</td>
</tr>
<tr>
<td>nº 3</td>
<td>315 "</td>
</tr>
<tr>
<td>nº 4</td>
<td>475 "</td>
</tr>
<tr>
<td>nº 5</td>
<td>270 "</td>
</tr>
<tr>
<td></td>
<td>350 g/Tm</td>
</tr>
</tbody>
</table>

Esto muestra claramente la gran variedad de resultados que es posible obtener si la muestra tiene carácter puntual y la discrepancia de todos ellos con un valor más cercano a la realidad minera como es el del Sn recuperable representado por el contenido de la muestra global.

Se hace necesario pues, insistir en la importancia del carácter errático de la distribución de la casiterita en cualquiera de sus yacimientos y, asimismo, de la importancia del conocimiento de la granulometría en que aquella se presenta en el depósito.

Por otro lado los trabajos en plantas piloto permiten obtener gran cantidad de información sobre la naturaleza de los tratamientos de cada yacimiento en particular, y sus características metalúrgicas, lo que contribuye de manera importante al conocimiento completo del yacimiento.
BIBLIOGRAFÍA

(1974): The search for deposits from which tin can be profitably recovered now and in the foreseeable future. Fourth World Tin Congress, Kuala Lumpur.

