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The electron-electron interactions affect the low-energy excitations of an electronic system and induce
deformations of the Fermi surface. These effects are especially important in anisotropic materials with strong
correlations, such as copper-oxide superconductors or ruthenates. Here we analyze the deformations produced
by electronic correlations in the Fermi surface of anisotropic two-dimensional systems, treating the regular and
singular regions of the Fermi surface on the same footing. Simple analytical expressions are obtained for the
corrections, based on local features of the Fermi surface. It is shown that, even for weak local interactions, the
behavior of the self-energy is nontrivial, showing a momentum dependence and a self-consistent interplay with
the Fermi surface topology. Results are compared to experimental observations and to other theoretical results.
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I. INTRODUCTION

Anisotropic materials present different physics at different
energy scales, and their behavior or response to external
probes is difficult to interpret. A large amount of experimen-
tal work hase made it possible to study the puzzling elec-
tronic properties of many anisotropic materials which, in
general, present potential technological applications. More
theoretical effort is needed in order to understand the de-
tailed experimental data which reveal an unconventional be-
havior. In conventional metals, the excitations that govern
their low-temperature physics present well-defined momenta
lying at the three-dimensional Fermi surfaces. In the aniso-
tropic materials, as layered transition metal oxides, unusual
electronic properties appear and, under certain conditions,
changes of the effective dimensionality occur. The electronic
interaction effects are enhanced as the dimensionality de-
creases and can change the fundamental properties of the
material.1 Therefore, due to both the anisotropy and the pe-
riodicity along the axis perpendicular to the planes, specific
collective excitations appear absent in two-dimensional �2D�
and three-dimensional �3D� electron gases.2,3

The high-temperature cuprate superconductors are among
the most studied layered transition metals oxides, treated as
2D systems in many approaches, due to its strong anisotropy.
In the hole-doped cuprates the Fermi surface �FS� topology
changes with doping from hole-like to electron-like.4,5 Re-
cently, a change in the sign of the Hall coefficient has been
reported for heavily overdoped LaSrCuO4.6 The evolution of
the FS in electron-doped copper-oxide superconductors with
doping has been reported by angle-resolved photoemission
spectroscopy �ARPES� experiments to change from electron-
pocket centered at the �� ,0� point of the Brillouin zone at
low doping to a hole-like FS centered at �� ,�� at higher
doping.7

Other transition metal oxides as cobaltates or ruthenates
are multiorbital systems and their FS present a complex to-
pology with different sheets derived from the different bands
at the Fermi energy. A correlated 2D material particularly
interesting is the Sr2RuO4, a ruthenate considered a model
Fermi liquid system with important electronic correlations

which have to be taken into account when interpreting pho-
toemission spectra8 to obtain a clear picture of the electronic
properties, especially in the vicinity of the Fermi energy. In
Sr2RuO4 the FS separates into three sheets �, �, and �, com-
ing from the dxz, dyz, and dxy orbitals.

In the study of the electron-electron interactions in aniso-
tropic metallic systems an open question is the deformation
of the Fermi surface induced by these interactions. The
Fermi surface is one of the key features needed to understand
the physical properties of a material, and its shape provides
important information. Recent improvements in experimen-
tal resolution have led to high precision measurements of the
Fermi surface, and also to the determination of the many-
body effects in the spectral function, as reported by ARPES
experiments.9 However, the interpretation of the data ob-
tained by different experimental techniques in anisotropic
strongly correlated systems remains a complex task.10

The Fermi surface depends on the self-energy corrections
to the quasiparticle energies, which, in turn, depend on the
shape of the Fermi surface. Hence, there is an interplay be-
tween the self-energy corrections and the Fermi surface to-
pology. For weak local interactions, the leading corrections
to the FS arise from second-order diagrams. The self-energy,
within this approximation, can show a significant momentum
dependence when the initial FS is anisotropic and lies near
hot spots, where the quasiparticles are strongly scattered.11

This simultaneous calculation of the FS and the second-order
self-energy corrections is a fo rmidable task. However, the
knowledge of the exact shape of the FS of a material is very
important since it may affect the transport properties as well
as the collective behavior, and have valuable information
from the point of view of theory in order to find the appro-
priate model to study the system. Many approaches have
been used to study this problem such as mean field,12,13 per-
tubation theory,14 bosonization methods,15,16 or perturbative
renormalization group calculations,17–21 and the cellular dy-
namical mean-field theory �CDMFT�, an extension of dy-
namical mean field theory,22 and many others. Despite great
theoretical effort done in the last years, there is a need to
develop alternative new methods in order to understand the
origin of the electronic properties in materials with strong
correlations.
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In this work, we calculate perturbative corrections and use
renormalization group arguments23,24 in order to study ana-
lytically the qualitative corrections to the shape of the FS
induced by the electron-electron interaction. This method al-
lows us to classify the different features of the FS from the
dependence of the self-energy corrections on the value of the
high energy cutoff �, defined at the beginning of the renor-
malization process. As will be shown later, one can also ana-
lyze the effects of variations in the Fermi velocity and the
curvature of the noninteracting FS on the self-energy correc-
tions. The calculations do not depend on the microscopic
model which gives rise to a particular Fermi surface, so that
it can be useful in different situations. For concreteness we
will consider the t− t� Hubbard model to study two-
dimensional Fermi surfaces of cuprates and an extension of it
to study the case of Sr2RuO4. The paper is organized as
follows. We define the model in Sec. II and describe the way
the self-energy corrections are calculated. In Sec. III we
present a detailed calculation of the changes expected for a
regular FS, as well as for a FS showing singular points like
Van Hove singularities, nesting or inflexion points. We com-
pare with results from ARPES experiments on anisotropic
materials, mainly cuprate superconductors and Sr2RuO4. In
the last section we highlight the most relevant aspects of our
calculation, and some conclusions are presented.

II. METHOD

The method of calculation of the self-energy corrections
does not depend on the microscopic model used to obtain the
electronic structure and the FS. In our scheme simple ana-
lytical expressions of the effects induced by the interactions
are deduced from local features of the Fermi surface, and we
are able to treat, on the same footing, the regular and singular
regions of the FS. Therefore the method is particularly useful
in correlated anisotropic materials which present exotic prop-
erties and deviate from band structure calculations. The im-
portance of considering correlation effects when interpreting
experimental data is already known and recently a great ef-
fort has been made in order to evaluate the self-energy from
ARPES spectra.25 The evaluation of many body effects in
these complex materials is far from trivial since the electron
scattering presents a dependence on momentum and energy.
We limit the study to the weak coupling regime, considering
weak local interactions, consistent with the Hubbard model.

A. The model

We consider the t− t� Hubbard model which is the sim-
plest theoretical model that allows us to study different cor-
related materials and describes the shape of the FS observed
by ARPES in different materials as cuprates �see Ref. 9 and
references therein�. Depending on the ratio t� / t and on the
band filling, different phases and stabilities appear, as found
in early mean-field and quantum Monte Carlo studies of the
model.26 By changing the parameters a rich phase diagram,
including antiferromagnetic, ferromagnetic and supercon-
ducting phases, has been found for the 2D t− t� Hubbard
model which describes many physical features of copper-

oxides and of Sr2RuO4.27 For the cuprates, the most studied
model is the Hubbard model on a square lattice and consid-
ering an effective single band. The Hamiltonian of the t− t�
Hubbard model is:

H = �
s;i,j

tijcs,i
† cs,j + U�

i

ni↑ni↓, �1�

where cs,i�cs,i
† � are destruction �creation� operators for elec-

trons of spin s on site i, ni,s=cs,i
† cs,i is the number operator, U

is the on-site repulsion, and tij = t are the nearest and tij = t�
the next-nearest neighbors hopping amplitudes, respectively.
The Fermi surfaces of the noninteracting systems are defined
by

�F = 	�k� � = 2t�cos�kxa� + cos�kya�� + 4t� cos�kxa�cos�kya� ,

�2�

where a is the lattice constant.
Assuming that t�0, t��0 and �2t� � 
 �t�, the Fermi surface is

convex for −2t+4t���F��0=−8t�+16t�3 / t2. For −8t�
+16t�3 / t2��F�−4t� the Fermi surface shows eight inflex-
ion points, which begin at kx=ky =k0=a−1 cos−1�−2t� / t� and
move symmetrically around the �±1, ±1� directions, toward
the center of the edges of the square Brillouin zone,
�0, ±�� , �±� ,0�. For �F=4t� the Fermi surface passes
through the saddle points �Van Hove singularities� located at
these special points of the Brillouin zone �BZ�. For 4t�
�F
�−4t, the Fermi surface is convex and hole-like, centered at
the corners of the BZ, �±� , ±��. In Fig. 1 the variation of
the FS shapes with doping is qualitatively shown. When only
nearest-neighbor hopping is considered, t�=0, the model has
particle hole symmetry, and the Fermi surface shows perfect
nesting for �F=0. FS shapes similar to these shown in Fig. 1
have been experimentally observed by ARPES on different
cuprate samples, at different doping levels.

B. Self-energy analysis

We will analyze the interplay between the electron-
electron interactions and the FS topology in the weak-
coupling regime. The corrections to the noninteracting Fermi
surface are given by the real part of the self-energy. For each
filling n, a Fermi surface is defined. The electron-electron
interaction leads to a self-energy

��k� ,� = Re ��k� ,� + i Im ��k� ,� �3�

which modifies the bare one-particle propagator G0�k� ,�−1

=−�k� + i� sgn �k� �where �→0+� to

G�k� ,� =
1

 − �	�k� � − �F� − ��k� ,�
�4�

and the FS of the interacting system is given by the =0
solution of the equation

�F − 	�k� � − Re ��k� ,� = 0, �5�

where Re ��k� ,� is the real part of the self-energy. The dia-
grams that renormalize the one-particle Green function up to
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second order in perturbation theory are depicted in Fig. 2
The Hartree diagram, shown at the left of the figure, gives a
contribution which is independent of momentum and energy,
hence it cannot deform the FS. The two-loop diagram ��b� in
Fig. 2�, modifies the FS through its k� dependence and, in
addition, it changes the quasiparticle-weight through its 
dependence.

As explained above there are many possible shapes of the
FS which fit the experimental results from copper-oxide or
ruthenate samples. The conventional perturbation theory fails
in describing FS for which logarithmic divergences in the
density of states �DOS� appear at certain values of the pa-
rameters of Eq. �1�. Then we proceed to calculate the self-
energy by adopting a renormalization group strategy.23,24 It is
assumed that the effect of the high energy electron-hole pairs
on the quasiparticles near the Fermi surface have been inte-
grated out, leading to a renormalization of the parameters
t , t� and U of the Hamiltonian. The possibility that other
couplings are generated in the system is not allowed. Thus,

the Hamiltonian, Eq. �1�, describes low temperature pro-
cesses below a high energy cutoff, �� t , t�. For consistency,
we consider the Hubbard interaction U�� as well below the
energy cutoff. Therefore the corrections to the quasiparticle
energies are determined as a function of �, which defines an
energy scale about the Fermi line which will contain the
modes we are interested in �low energy excitations with
��k� � 
��, separated from the high energy excitations �with
��k� � ��� which will be integrated out. We have to notice that
we are restricting ourselves to a momentum-independent
coupling U which corresponds to a local interaction in the
real space. During the process we assume that the Fermi
surface of the interacting system exists, and that this FS,
dressed by the corrections due to the interactions, has the
same topology as that of the noninteracting system.

The two-loop self-energy shown in Fig. 2�b� can be com-
puted from

i�2�k� ,� =
1

�2��3 	 d�	 d2qG0�k� − q� , − ����q� ,�� ,

�6�

where the one-loop particle-hole polarizability, in terms of
the one-particle propagator, reads

i��q� ,� =
U2

�2��3 	 d�	 d2k��� − ��k� ����� − ��k�+q� ��

�G0�k� ,��G0�k� + q� , + �� . �7�

The cutoff in energies � is used to implement the renor-
malization group �RG� scheme:23 The virtual states in the
loop of the diagram shown in Fig. 2�b� have to be kept in the
energy range determined by the cutoff.

III. RESULTS

After we compute the self-energy as explained above, we
will analyze the deformation induced in the Fermi surface
shape. We are interested in anisotropic two-dimensional FS
similar to those measured for the cuprates which present re-
gions with different scattering rates. For clarity, we consider
first Fermi surfaces with hot spots, which are regions where
the scattering of the quasiparticles is strongly enhanced. At
these points, the scattering could be singular giving diver-
gences of the susceptibility. Separately we address the defor-
mations of regular FS, curved surfaces which do not have
singularities. These surfaces present a scattering rate rela-
tively weak. We will show that once the Fermi velocity and

FIG. 1. �Color online� Qualitative picture of the evolution of the
FS with filling from almost isotropic to convex, going through a FS
exhibiting inflexion points, and one with Van Hove singularities
�top panel, t�=−0.3t�. A region with almost perfect nesting is shown
in the bottom panel �t�=0.3t�.

FIG. 2. Low-order self-energy diagrams. �a� Hartree diagram.
�b� Two loop correction.
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curvature of the noninteracting FS are known, we can evalu-
ate the corrections to the FS shape. Even considering a weak
local interaction, without momentum dependence, the effects
are strongly dependent of the location at the FS.

A. Self-energy corrections to the Fermi surface near hot spots

In anisotropic materials, the FS can present regions or
special points which are called hot spots where the quasipar-
ticles become strongly scattered and their behavior deviates
from the conventional Landau Fermi liquid. The FS of lay-
ered transition oxides, as have been shown above, change
with doping adopting different shapes which lie close to Van
Hove singularities, or present nested flat regions or inflexion
points combined with regular sectors.

The effects of the Hubbard interaction have been studied
when the Fermi surface presents hot spots both, near the
perfect nesting28–30 or near a van Hove singularity.31–38 The
curvature of the FS has important implications in the prop-
erties of the system, and the inflexion points, which separate
regions where the curvature has opposite signs, may induce
anomalous effects.39,40 The crucial role that the FS geometry
plays on the unusual physics of 2D systems makes desirable
a deeper insight in the interplay between it and measurable
parameters. The functional dependence of the self-energy on
the cutoff is different in the vicinity of the hot spots than in
regular zones of the FS. Near the hot spots to be considered
here, the dispersion relation satisfies, near the Fermi level,

�k� 
 �±
kx

2

mx
�

ky
2

my

Van Hove,

vFk� nesting,
� �8�

where �k� =	�k� �−�F, k� is the momentum perpendicular to
the FS relative to kF, k�= �k� −k�F��, vF is the Fermi velocity
at any particular point, and mxmy.

Unlike the usual quadratic dependence expected in a
Fermi liquid, the frequency dependence of the imaginary part
of the self-energy in a nested region of the Fermi surface, or
at Van Hove singularities is known to be linear:

Im �2�k� ,�k�� � ��k� � . �9�

At the FS parts away from the hot spots, the leading contri-
bution to the two-loop self-energy, when the Fermi surface is
near a Van Hove singularity, comes from diagrams where the
polarizability bubble, ��q� ,� expressed in Eq. �7�, involves
transitions near the saddle point.41

Only particles in the vicinity of hot spots on the FS are
strongly scattered and present an anomalously large lifetime,
while away from the hot spots the single particle lifetime
follows Landau’s Fermi liquid theory energy dependency. At
some values of the band filling the FS is near a nesting
situation, as shown in Fig. 1, then the polarizability at low
momenta is similar to that of a one-dimensional Fermi liq-
uid, due to the flat FS regions. The susceptibilities can be
written as

��q� ,�  �W−1�̃vH� 

m*�q� �2� Van Hove,

W−1�̃1D� 

vF�q� �� nesting, � �10�

where m* is an average of the second derivative of the bands
at the saddle point. Note that, in both cases, the DOS is
proportional to the inverse bare bandwidth W−1 t−1 , t�−1.

The imaginary part of the second-order self-energy near
the regular regions of the Fermi surface can be written as41

Im �2�k� ,�k��  	
0

�k�

d	
0

qmax

dq Im ��q,� , �11�

where qmax��� /vF, and vF is the Fermi velocity in these
regions. By combining Eqs. �10� and �11�, we find

Im �2�k� ,�k�� ���k�
3/2

Van Hove,

�k�
2

nesting.
� �12�

According to Eq. �12� the usual Fermi liquid result is
recovered for the regular parts of the Fermi surface near
almost nested regions. This result arises from the fact that the
small momentum response of a quasi-one-dimensional metal
does not differ qualitatively from that predicted by Landau’s
theory of a Fermi liquid while, close to the Van Hove singu-
larities, the energy dependence of the Im �2�k� ,�k�� presents
anomalous exponents.

The effects induced by inflexion points have been ad-
dressed in Refs. 39 and 40, where the instabilities of aniso-
tropic 2D systems are analyzed. Near the inflexion points,
the dispersion relation can be expanded about the Fermi level
and satisfies

�k� 
�vFk� + b1k�
3 inflexion point,

vFk� + b2k�
4 special inflexion point,

� �13�

where k� is the momentum parallel to the FS relative to kF,
k� = �k� −k�F��, k� is the momentum perpendicular to the FS
relative to kF, k�= �k� −k�F��, and b1,2 are constants. The spe-
cial inflexion points lie along a reflection symmetry axis of
the BZ �Ref. 40� �the kx=ky =k0 points�. We use the tech-
niques previously developed in Refs. 39 and 40 to obtain the
second-order self-energy near an inflexion point:

Im �2�k� ,�k�� � �k�
3/2. �14�

In the case of a special inflexion point, where the Fermi
surface changes from convex to concave and a pair of inflex-
ion points are generated for �F=�0 and k� ��k0 ,k0� defined
earlier, the imaginary part of the self-energy behaves as
Im �2�k� ,�k����k�

5/4.
Once the imaginary part of the self-energy is known, we

can obtain the real part of the self-energy from it by means of
a Kramers-Kronig transformation. Although Im �2�k� ,�k�� has
been given for =�k�, since we are in the weak coupling
regime U����F, where �F is of the order of the noninter-
acting bandwidth, then the imaginary part of the self-energy
associated to a state with energy �k� is only significant in an
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energy range −�+�k� ���+�k�. We assume that one can
approximate Im �k��� in this range by an expansion on �
−�k�� /W, where W is an energy scale of the order of the
bandwidth in the noninteracting problem, and keep only the
lowest-order term. This approximation neglects contributions
from a region of energies centered around �−�k� � �� and of
width ��, which is, at most, a fraction of �. The contribu-
tion of the Kramers-Kronig transformation performed in this
region of energies is, at most, of order Im �k���� and does
not modify the dependence of Re �k���k�� on the local prop-
erties of the Fermi surface. Therefore we can obtain the real
part of the self-energy from the imaginary part by a Kramers-
Kronig transformation, and restricting the frequency integral
to the interval 0���, we obtain

Re �2�k� ,�k�� � − g2��� ��log2��

�k�
� Van Hove,

log��

�k�
� nesting, �

�15�

where the negative sign is due to the fact that it is a second-
order contribution in perturbation theory, and g is a dimen-
sionless coupling constant of order U /W. The sign is inde-
pendent of the sign of U in Eq. �1�. In the regular parts of the
Fermi surface, Eq. �12� leads to

Re �2�k� ,�k�� � �− g2 ���3/2

W1/2 Van Hove,

− g2 ���2

W
nesting, � �16�

where the additional powers in W arise from the m* and vF
factors in the susceptibility, expressed in Eq. �10�.

In the limit � /W→0, the different dependence on � of
the self-energy corrections at different regions of the Fermi
surface is enough to give a qualitative description of the
changes of the Fermi surface. For instance, when the nonin-
teracting Fermi surface is close to the saddle point, k�
�a−1�±� ,0� ,a−1�0, ±��, the self-energy correction is nega-
tive and highest in this region. Note that the logarithmic
divergences in Eq. �15� are regularized by the temperature or
elastic scattering.

At band fillings where the FS lies close to the Van Hove
singularities, most of the low energy states close to the Fermi
energy are around the saddle points �0, ±�� and �±� ,0� �see
Fig. 1�. Strong screening processes arise due to the big den-
sity of states at these points, and if the chemical potential of
the system is kept fixed, i.e., the system is in contact with a
charge reservoir, the number of particles varies and the Fermi
energy tends to be pinned at the Van Hove singularities.42

Then, in order to remove the Fermi surface from a Van Hove
point or nesting situation, a large number of electrons must
be added to the regular regions. When the points of the FS
near these hot spots are at distance k from the hot spot, the
change in the self-energy needed to shift the Fermi surface
by an amount �k is, using Eq. �15�,

�� � g2�
�k

k
�17�

with additional logarithmic corrections near a Van Hove sin-
gularity. Near the regular regions of the Fermi surface, a shift
in energy of order �� leads to a change in the momentum
normal to the Fermi surface of magnitude �kreg�� /vF. The
area covered in this shift gives the number of electrons which
are added to the system near the regular regions of the Fermi
surface. We find

�n  kmax�kreg  g2kmax�

vF

�k

k
, �18�

where kmaxa−1 determines the size of the regular regions of
the Fermi surface. The value of �n diverges as the Fermi
surface moves toward the hot spot k→0. Hence, the number
of electrons needed to shift the FS away from the hot spot
also diverges. This result has been obtained from calculations
at fixed chemical potential,38,42 where the presence of a
charge reservoir is considered, with regular self-energy cor-
rections. This situation has particular interest when studying
the physics of high-Tc cuprates, where doping of the CuO2
layers and interactions with the rest of the perovskite struc-
ture are important. The pinning of the Fermi level to the Van
Hove singularity has been investigated in the 2D t− t� Hub-
bard model by RG techniques,43 taking into account the for-
mation of flat bands due to the renormalization of the elec-
tron spectrum. The pinning of the Fermi level to the Van
Hove singularities is found without making use of a reser-
voir, and the chemical potential of the system remains prac-
tically constant in a range of dopings near the Van Hove
filling.

B. Self-energy corrections to regular Fermi surfaces

In this section we study a 2D system at a band filling
which yields a curved FS, slightly anisotropic, in the absence
of singularities. Near the Fermi surface, by choosing an ap-
propriate coordinate system, the electronic dispersion can be
approximated by

�k� = vFk� + �k�
2, �19�

where �k� =	�k� �−�F, k� is the momentum perpendicular to
the FS relative to kF, k�= �k� −k�F��, k� is the momentum
parallel to the FS relative to kF, k� = �k� −k�F��, vF is the Fermi
velocity at any particular point vF= n̂� ·�	�k� �, and � is re-
lated to the local curvature of the Fermi surface b
= n̂� · ��2	�k� ��n̂�, by �=bvF /2. This expansion implies, with-
out assuming any rotational symmetry, a FS locally indistin-
guishable from a circular one, where the energy Eq. �19�
would correspond to a radius kF=mFvF, where we have re-
named �=1/2mF, mF being the effective mass. The Fermi
velocity vF and the FS curvature b, are functions of t , t� ,�F
and the position along the Fermi line. We calculate the
second-order diagram of Fig. 2, assuming that the main con-
tribution to the self-energy arises from processes where the
momentum transfer is small, forward scattering channel, or
from processes which involve scattering from the region un-
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der consideration to the opposite part of the Fermi surface,
i.e., backward scattering �in the Appendix we give the ex-
pressions of the polarizability for these two channels�. This
assumption can be justified by noting that we are considering
a local Hubbard interaction, which is momentum indepen-
dent, so that the leading effects are associated to the structure
of the DOS. The processes discussed here are those joining
the regions which have the highest DOS.

From Eq. �6� we can obtain the imaginary part of the
self-energy, which describes the decay of quasiparticles in
the region under consideration and that it is independent of
the cutoff �. The contribution from forward scattering pro-
cesses is

Im �2�k� ,� =
3

64

U2a4

�2�2

2

vF
2���

. �20�

The quadratic dependence of energy is expected, and con-
sistent with Landau’s theory of a Fermi liquid. This contri-
bution diverges as vF→0, that is, when the Fermi surface
approaches a Van Hove singularity, or as �b � →0 which sig-
nals the presence of an inflexion point or nesting. The con-
tribution due to backward scattering is exactly the same as
that from forward scattering, Eq. �20�, with the same numeri-
cal prefactors.

Using a Kramers-Kronig transformation, and integrating
in the interval 0���, we obtain

Re �2�k� ,� = −
3

64

U2a4

�2�3

1

vF
2���

���2 + 2� + 22 log�� − 


�� . �21�

From the experimental point of view the determination of
the scattering rate �Im ��k� ,�� presents particular interest
and much effort has been devoted in order to obtain it: by
ARPES because of the momentum and energy-resolved
measurements8,25,44,45 and recently by electrical transport ex-
periments at microwave frequencies.46

The extraction of the correlation functions from the ex-
perimental data is a complicated task and, although many
theoretical approximations exist, the computation of correla-
tion effects is also difficult. From ARPES results in under-
doped and optimally doped cuprate samples45 an anisotropic
scattering rate around the Fermi surface has been found and
the bare Fermi velocity has been directly obtained. By using
a different methodology the real and imaginary parts of the
self-energy has been obtained from photoemission data by a
self-consistent procedure.25

In Fig. 3 we represent the self-energy as a function of the
frequency according to results from Eqs. �20� and �21�,
where the linear �quadratic� behavior of the real �imaginary�
part of the self-energy at low frequencies, typical of a Fermi
liquid system, is recovered. We find a qualitative agreement
with the low-energy part of the self-energy functions ex-
tracted self-consistently from the experiments in Refs. 25
and 47. It should be noted that we consider here the electron-
electron scattering only. The impurity and electron-phonon
scattering will, no doubt, cause finite lifetime and energy

renormalization of the excitations but our main concern is
the self-energy due to electron-electron correlation. The im-
purity scattering term can be considered to be isotropic �from
an isotropic distribution of static impurity scatterers� an it
will give a constant term in Im ��k� ,�. The electron-phonon
self-energy can be assumed to be small at low temperature.
Then, the assumption that the dominant scattering mecha-
nism is the electron-electron interaction in the systems under
study is not unreasonable.8 The essential features of the
electron-phonon coupling are explained in Ref. 48, both in
the superconducting and normal states. An effective Re � is
extracted from ARPES measurements and by fitting and
modelling of the data information about bosonic excitations.

As a last result, from the real part of the self-energy Eq.
�21�, we can calculate the quasiparticle weight

Zk�F
= �1 −

� Re ��k�F,�
�

�
→0

−1

�22�

which for our case reads

Zk�F
=

1

1 +
3�2a4

64�3

U2�

���vF
2

. �23�

In the weak coupling regime, the quasiparticle weight
would be minimum either if the Fermi velocity becomes very
small �Van Hove singularity, consistent with results in Ref.
49� or if the curvature of the Fermi surface changes sign
�inflexion point�.

Finally, from Eq. �21� we obtain the expression which
gives the zero frequency limit of the real part of the self-
energy

Re �2�k� , = 0� = −
3

64

U2a4

�2�3

�2

vF
2���

�24�

which renormalizes the FS according to Eq. �5�.

C. Application to Fermi surfaces of copper-oxide
superconductors

As stated in the Introduction, copper-oxide superconduct-
ors have a strongly anisotropic layered structure. Cuprates
present anomalous properties in many physical aspects and

FIG. 3. �Color online� Real and imaginary parts of the self-
energy as a function of the energy : full red line −Re �, dashed
blue line Im �
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are one of the main challenges to condensed matter physics.
The peculiarities of the phase diagram have been addressed
by different techniques and no consensus has been reached.
Experimental results indicate a behavior far from the Fermi
liquid, and the changes induced by doping on the ground
state character of the normal state add complexity to the
problem. Both, the low dimensionality �CuO2 planes� to-
gether with the strong electronic correlations, have to be
taken into account to understand the low energy excitation
spectrum of the cuprates. The effects of the strong correla-
tions on the Fermi surface shapes of the cuprates is a hot
issue. Recently Civelli et al.22 have addressed the problem
by using an extension of the dynamical mean-field theory,
the cellular dynamical mean-field theory �CDMFT� which
allows the study of k-dependent properties. They study the
2D Hubbard model in the strongly correlated regime �U
=16t�. A strong renormalization of the FS shape, due to in-

teractions, is found together with a momentum space differ-
entiation: appearance of hot and cold regions in the Brillouin
zone.

We study, as well, the two-dimensional Hubbard model
on a square lattice, and we will consider hopping amplitudes
tij to nearest neighbors t and to next-nearest neighbors t�.
Since we are in the perturbative regime we consider local
weak coupling instead of the strong coupling addressed in
Ref. 22. We adopt the hopping values t=−1 and t�=−0.3t
which mimic the hole-doped cuprates �t / t�
0�, and we will
consider two different doping levels. In Eq. �24� we can see
how the self-energy corrections due to electron-electron in-
teractions depend on local features of the noninteracting FS,
as the Fermi velocity vF and the curvature b. For the disper-
sion relation given by Eq. �2�, the expressions derived for the
Fermi velocity and the curvature �taking for simplicity a=1�
at the Fermi level, are

vF�k� � = ��t + 2t� cos ky�2 sin2 kx + �t + 2t� cos kx�2 sin2 ky , �25�

b�k� � = −
�t + 2t� cos kx��t + 2t� cos ky��t cos ky sin2 kx + 2t� cos2 ky sin2 kx + �t cos kx − t��− 3 + cos 2kx��sin2 ky�

��t + 2t� cos ky�2 sin2 kx + �t + 2t� cos kx�2 sin2 ky�3/2 , �26�

where k� stands for the Fermi momentum k�F. These expres-
sions illustrate the momentum dependence of the self-enegy
corrections. At high doping, the FS presents an almost square
shape with rounded corners. We find that the self-energy cor-
rections are stronger for the regions with the smallest curva-
ture at the diagonal parts of the BZ. This behavior, shown in
Fig. 4�a� for �F=−2.3
8t�, is similar to the result obtained
by Freire et al. in Ref. 50 for the renormalization of a flat FS
by a two-loop field theory RG approach, where interactions
induce a small curvature to the bare flat FS. They found as
well that the renormalized FS becomes truncated due to the
interactions, not found here. Next we will consider a lower
doping level. By changing the filling, the FS shape varies,
and close to half-filling, for �F=−0.9=3t�, the FS has the
form shown in Fig. 4�b� The change in shape qualitatively
agrees with the doping evolution of kF measured by ARPES
on cuprates,4,5 and the FS shape is similar to the FS reported

in different experiments. At this doping, close to half-filling,
the self-energy corrections enhance the hole-like curvature
around �±� , ±�� and �±� , ���, and flatten the FS close to
the �±� ,0� and �0, ±�� points of the BZ as is shown in Fig.
4�b�. This result coincides with the renormalization found in
Ref. 22 even though they are in the strongly correlated re-
gime.

Corrections found in Fig. 4 can be understood by looking
at Fig. 5 where the real part of the self-energy is depicted at
=0 in the square BZ. At the central region of the BZ near
the � point, the main corrections occur around the diagonal
of the BZ, as we have found in the high doping case, where
the flat parts of the noninteracting FS become curved. At this
point, the larger contribution to Re ��k� ,� will be due to the
curvature of the Fermi surface, which is almost flat in the
nodal region at this value of the band filling. In fact, it can be
observed in Fig. 5, following the �−� ,−��− �� ,�� diagonal

FIG. 4. �Color online� Deformations
induced by the interactions on the FS of
the t− t� Hubbard model. The axes are
labeled in units of a−1, where a is the
lattice constant. The black line represents
the unperturbed FS while the red �gray�
line represents the FS corrected by the
interaction. For t� / t=−0.3 �a�: high dop-
ing range and �b� close to half-filling. For
t� / t= +0.3 �c� close to half-filling.
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line, that the minima of Re ��k� ,� coincide with the minima
of the curvature, that corresponds to the maximum correction
to the noninteracting FS.

Looking again at Fig. 5 we see that, for higher fillings, the
corrections are more pronounced where inflexion points start
to appear in the Fermi surface �see Fig. 1�. The first of these
inflexion points k0 occurs in the diagonal of the BZ, in the
nodal direction. Once this first inflexion point appears, if we
increase the occupation toward half-filling, new inflexion
points merge in each FS and they distribute themselves sym-
metrically with respect to the diagonals of the BZ. This is
why the divergence valley has this star-like structure. Finally,
at lower doping levels, as that represented in the right panel
of Fig. 4, the Fermi line reaches the region closer to the
border of the BZ, and the main corrections appear at the
proximity of the antinodal points �0, ±��, �±� ,0�. As can be
observed in Fig. 5, Re ��k� ,0� shows pronounced dips close
to the saddle points, and therefore the FS is renormalized in
this region. These minima are due to Van Hove singularities
where the vF vanishes.

This result agrees with one-loop functional RG calcula-
tion of the self-energy in the weak coupling regime of the 2D
t− t�-Hubbard model at Van Hove band fillings49 where van-
ishing of the quasiparticle weight on approaching the antin-
odal points is found. Away from the Van Hove fillings a
quasiparticle peak, with small spectral weight, emerges at
�� ,0� and �0,��.

The case of an electron-doped system can be analyzed by
a particle-hole transformation of the Hamiltonian which re-

verses the sign of t�, �t / t��0�. For t�= +0.3t we find that,
close to half-filling, the self-energy corrections are stronger
in the proximity of the saddle points, where vF→0. As can
be seen in Fig. 4�c�, the corrected FS is closer to a nesting
situation than the bare FS.

Our results, near half-filling, are in overall agreement with
those of Ref. 22, although we find that the self-energy cor-
rections are stronger at the antinodal region in both, hole-like
and electron-like, Fermi surfaces.

D. Application to Fermi surface of Sr2RuO4

Sr2RuO4 is a highly anisotropic layered compound, with
an electrical anisotropy of about 4000.51 It has a strongly
two-dimensional electronic structure and exhibits a good
Fermi liquid behavior below 30 K, as probed by bulk trans-
port measurements.51 The Fermi surface measured by
ARPES matches the de Haas van Alphen measurements and
it can be well described by band structure calculations.
Therefore Sr2RuO4 is considered a correlated 2D material.
As it occurs in the cuprates, the competition between super-
conducting and magnetic instabilities plays an important role
in the low energy physics of Sr2RuO4 which, with a critical
temperature of about Tc
1.5 K, presents an unconventional
superconductivity with a p-wave and spin-triplet pairing.52

This material has three relevant bands,53 �, �, and �, of t2g
symmetry, formed from the 4d orbitals of the Ru4+ ion. The
�� ,�� bands are derived from �dxz ,dyz� orbitals and form two
quasi-one-dimensional bands along the directions z and y,
respectively, that are weakly hybridized. The � band is de-
rived from the dxy-orbital and disperses into a real 2D band.
In Fig. 6 are depicted the electronic structure, left panel and
corresponding FS, right panel, calculated following the dis-
persion relation

	��k� � = − 2t1��cos�kxa� + cos�kya�� − 4t2� cos�kxa�cos�kya� − 	0�,

	�,��k� � = − �t1�,� + t2�,���cos�kxa� + cos�kya�� ± ���t1�,� − t2�,���cos�kxa� − cos�kya���2 + 16t3�,�
2 sin �kxa�2 sin �kya�2 − 	0�,�.

�27�

FIG. 5. �Color online� Real part of the self-energy for t�=
−0.3t represented in the square Brilluoin zone.

FIG. 6. �Color online� Left: Band structure of Sr2RuO4 obtained
from Eq. �27� using the parameter values given in Ref. 54. The blue
�outer� sheet corresponds to the � band, the red �inner� sheet is the
� band, and the green sheet corresponds to the � band. Right:
Corresponding Fermi surface.
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The tight-binding parameters are taken from Ref. 53 and 54
This FS is in good agreement with that reported by ARPES
experiments and obtained by band calculations. As before,
the self-energy corrections to the three sheets of the FS de-
pend on the Fermi velocity and the curvature �not given here
due to its size�. In Fig. 7 we can see the momentum depen-
dence of the Fermi velocity for the three bands. It is easy to
appreciate that the minima of the three plots are, besides in
the � point, in the antinodal points, �±� ,0� and �0, ±��, and
in the diagonal of the BZ, �±� , ±�� and �±� , �n�.

The momentum dependence of the real part of the self-
energy for the three bands is shown in Fig. 8. In the left-hand
side we can see the correction to the � sheet, that is signifi-
cant only either when the Fermi line lies near the � point or
in the proximity of the corners of the BZ, �±� , ±�� points.
In a recent experimental work,8 the form of Im ��� ex-
tracted for the bulk � band from the ARPES spectra is found
to be consistent with a Fermi liquid, and that the quasiparti-
cles residing in the surface layer � band show similar many-
body interactions. �Notice that the analysis and fitting proce-
dure over raw data of this band made in Ref. 8 leads to
self-energy curves of the form of Fig. 3�. In the central fig-
ure, the contribution corresponding to the � band is shown.
Here we can see that the correction is maximum �most nega-
tive� in the zones between the diagonals, due to the nearly
flat regions of the Fermi line corresponding to the � band.

Finally, the corrections to the � band are shown in the
right-hand side of Fig. 8 �notice the different scales in the
three graphs�. In this case the corrections are maxima near
the antinodal points �±� ,0� and �0, ±��, due to the proxim-
ity of this band to a Van Hove point. In Ref. 54 it is pointed

out that calculated � band properties depend very sensitively
on how close it approaches the Van Hove points �� ,0�,
�0,��.

The main corrections occur at the � band, as is shown in
Fig. 9 where the bare and renormalized FS are depicted. Here
noninteracting FS �full blue line� is changed, due to electron-
electron correlations, to the interacting FS �dashed red line�.
This result agrees with photoemission measurements which
indicate that the �-band has much stronger interactions and
plays a dominant role at low temperature.55

The corrections in the � and � bands are due to curvature
effects, while the corrections to the � band are due to Fermi
velocity effects, because of the proximity of this band to the
saddle points, as has been pointed out above. Then, in agree-
ment with ARPES measurements8 and other theoretical
results,54 the main corrections induced in the FS of Sr2RuO4
occur at the �-band corresponding sheet. The importance of
the FS geometry has been analyzed in Ref. 54 where the
nonanalytic corrections to the specific heat and susceptibility
of a 2D Fermi liquid have been considered and the results
applied to Sr2RuO4. Both, the dependence of the � band
properties on how close the band approaches the Van Hove
points and the dominant interaction in the � band are found
in Ref. 54, because it has the highest density of states at the
Fermi level, as well as the largest mass and susceptibility
enhancements.53

Similarly, the importance of the band structure properties
of these materials can be seen in the context of multilayer
ruthenates, for which the proximity of their Fermi surface to
a Van Hove singularity can give rise to a quantum critical
end point in the magnetic phase diagram, as it is found,
within a mean-field analysis, in Ref. 56.

FIG. 7. �Color online� Fermi velocity of the noninteracting bands: The left graph corresponds to the � band, center graph corresponds to
� band, and right graph corresponds to � band of Sr2RuO4.

FIG. 8. �Color online� Real part of the self-energy corrections for the three bands of Sr2RuO4 in the first square BZ: The left graph
corresponds to the � band, middle graph to the � band, and right graph corresponds to � band. We have used the parameter values U
=0.01 and �=1. Notice the different scales in the three graphs.
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IV. CONCLUSIONS

The unconventional physics shown by anisotropic materi-
als, as high-Tc superconductors and ruthenates, poses big dif-
ficulties when a theoretical model has to be chosen. On the
other hand, although it is generally accepted that the many-
body interactions of electrons play a key role in the underly-
ing physics of these compounds and may be related to the
occurrence of superconductivity in the cuprates, a consensus
has not been reached about the origin of important features
widely observed by different experimental techniques. The
anisotropy momentum space shown by many electronic
properties of the planes adds complexity to the possible theo-
ries.

In the cuprates, the pseudogap phase, metallic but with a
broken Fermi surface �segments known as Fermi arcs57� is an
example of the remarkable momentum dependence of the
interactions. Furthermore, the band renormalization observed
by ARPES in different families of high-Tc superconductors,
known as kink in the dispersion, which indicates a strong
coupling to a collective mode �see Ref. 48 and references
therein�, shows different energy scales and temperature de-
pendence at the nodal and antinodal regions of the BZ, sug-
gesting two different kinks of different origin, whose nature
is under debate: both phonon and magnetic mode have been
suggested as possible causes.

More recently, a high energy anomaly in the spectral
function has been observed in three different families of
high-Tc superconductors, and apparently in several ruthenate
compounds.58 This anomaly indicates that the quasiparticles
at �F are dressed not only by the interactions with bosons at
low energy, but also by interactions at higher energies. This
peculiar high energy behavior together with the unconven-
tional low energy properties, poses a challenge on theoretical
models.

The knowledge of the dressed FS is crucial to understand
the behavior of correlated materials, especially when an ef-
fective model is needed to explain the unconventional phys-
ics. We have presented here a simplified way of taking into
account the self-energy corrections to the Fermi surface. We
have made use of the different dependence of the self-energy
on the high energy cutoff in order to analyze the main fea-
tures of the changes of the FS. The analysis presented here is
valid only at weak coupling, and we do not consider correc-

tions to the interactions or to the wave-function renormaliza-
tion. On the other hand, the expressions obtained are analyti-
cal and related to the local features of the noninteracting FS
in a simple way, so that they can be readily used to get an
estimate of the corrections expected.

The results suggest that the main self-energy corrections,
which are always negative in our scheme, peak when the FS
is close to the �±� ,0�, �0±�� points in the Brillouin zone. If
these contributions are cast as corrections to the hopping
elements of the initial Hamiltonian, we find that the nearest
neighbor hopping t is weakly changed �as it does not con-
tribute to the band dispersion in these regions�. The next-
nearest neighbor hopping t�, which shifts the bands by −4t�
in this region, acquires a negative correction. This implies
that the absolute value of t� grows when t��0, or decreases,
when t�
0, in reasonable agreement with the results re-
ported in Ref. 22. Note that the tendency observed in our
calculation toward the formation of flat regions near these
points, when analyzed in higher-order perturbation theory,
will lead to stronger corrections. Our results also confirm the
pinning of the FS near saddle points, due to the interactions.
The analysis presented here is consistent with the measured
Fermi surfaces of the cuprates9 and qualitatively agrees with
the doping evolution reported by ARPES.4,5,9 The self-energy
corrections found for the FS of Sr2RuO4, which mainly
renormalize the � sheet, are as well in qualitative agreement
with ARPES measurements8 and previous calculations.54 The
broad spectrum of experimental data available at this mo-
ment makes comparison between results from different tech-
niques one of the most efficient methods to obtain informa-
tion about response and correlation functions of
unconventional materials. To get an estimation of the self-
energy corrections to the Fermi surface in a simple way,
independent of the model, as the one here proposed, is help-
ful in order to gain insight into many low-energy physics
aspects.
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APPENDIX: POLARIZABILITY

In this appendix the particle-hole polarizability for the
forward and backward scattering channels are given. These
polarizabilities are calculated in oreder to obtain the self-
energy Eq. �20�. The imaginary part of ��q� ,� for the for-
ward channel is, using Eq. �7� and the parametrization from
Eq. �19�,

Im �F�q� ,� = −
U2

16�

��
�vF

� 2�

 − Mq�
F , �A1�

where q� is a small vector that connects two pieces close
together in the FS and Mq�

F=vFq�+ 2
9�q�

2. The argument of
the square root has to be positive, which gives an extra con-
dition,  sgn����Mq�

Fsign���.

FIG. 9. �Color online� Bare �continuous blue� and interacting
�dashed red� Fermi surface of Sr2RuO4.
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Similarly, for the backward scattering we obtain

Im �B�Q� + q� ,� = −
U2

16�

1

�vF
��2���� + Mq�

B� − �2��Mq�
B − ��� if �� 
 Mq�

B sgn��� ,

sgn����2����sgn��� + Mq�
B� if �� � �Mq�

B� , � �A2�

where q� is the deviation of teh wave-vector from the vector

Q� that connects the region studied with the opposite part of
the FS, and Mq�

B=VFq�− 2
9�q�

2.

For q� =0 we have that Im �B�Q� +q� ,����, which
agrees with the results obtained in Ref. 59, where a spin-

fluctuation model for the Q=2kF instability is studied. For
small  and fixed q� we have, expanding Eq. �A2� up to
first order in � � /Mq�

B �for the case � � 
Mq�
Bsgn����,

that Im �B�Q� +q� ,���, as expected for a Fermi
liquid.59
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