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Abstract: Phytoestrogens are considered beneficial for health, but some studies have shown that they
may cause adverse effects. This study investigated the effects of genistein administration during the
second week of life on energy metabolism and on the circuits regulating food intake. Two different
genistein doses, 10 or 50 µg/g, were administered to male and female rats from postnatal day (P)
6 to P13. Physiological parameters, such as body weight and caloric intake, were then analyzed at
P90. Moreover, proopiomelanocortin (POMC) expression in the arcuate nucleus (Arc) and orexin
expression in the dorsomedial hypothalamus (DMH), perifornical area (PF) and lateral hypothalamus
(LH) were studied. Our results showed a delay in the emergence of sex differences in the body
weight in the groups with higher genistein doses. Furthermore, a significant decrease in the number
of POMC-immunoreactive (POMC-ir) cells in the Arc in the two groups of females treated with
genistein was observed. In contrast, no alteration in orexin expression was detected in any of the
structures analyzed in either males or females. In conclusion, genistein can modulate estradiol’s
programming actions on the hypothalamic feeding circuits differentially in male and female rats
during development.

Keywords: genistein; proopiomelanocortin; arcuate nucleus; sex differences; rats

1. Introduction

Genistein is a phytoestrogen that belongs to the group of isoflavones. It is present
in a wide variety of legumes, mainly soybeans and their derivatives, which makes it one
of the most consumed phytoestrogens by humans [1]. Soy is a typical ingredient in the
traditional Asian diet, and it is also a widely consumed food in Western countries, being
one of the most common milk substitutes, mostly in children [2–4].

Phytoestrogens exert their actions principally through the estradiol receptor (ER) α
and ERβ, with higher reported affinity to the latter [5–7], but also through the G protein-
coupled estrogen receptor (GPER) [8,9]. Specifically, genistein has structural similarities
with estradiol, which allows it to bind estrogen receptors, acting as a potential agonist or
antagonist of the estrogens, depending on the estradiol levels or the tissue [10–14].

Phytoestrogens are considered endocrine disruptors (EDCs), and although most of
the EDCs have been demonstrated to have harmful effects on the organism (e.g., pesti-
cides, bisphenol A) [15], phytoestrogens, in general, seem to have beneficial effects on
health. Some practical advantages include the prevention of cardiovascular diseases [16],
decreased inflammatory response in microglia [17], prevention of denervation-induced
muscle atrophy [18], prevention of different types of cancer [19,20] and improvement in
menopausal symptoms [21,22]. However, not all results evidence beneficial actions on the
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organism due to reports of damaging effects arising from phytoestrogens′ exposure. In
addition, a proportion of clinical studies do not demonstrate a clear health improvement
(for review, see [23–25]).

The basal sexual genetic differences have an impact on structural, metabolic and behav-
ioral differences between male and female rats that are more evident in adulthood [26–28].
Some authors have recently shown that genistein produces some alterations in various
neural systems, such as vasopressinergic or dopaminergic systems, mainly when admin-
istered during development, and that those effects are sexually dimorphic in males and
females [29,30]. Moreover, previous results of our group have demonstrated that estradiol
administered from postnatal day (P) 6 to P13 has a modulatory role in rats in the early
stages of life due to under- or overnutrition [31–33], specifically in the programming of
the body weight in males and the mRNA POMC hypothalamic levels in females [34].
Estradiol conveyed mainly through ERα [35–39] is involved in the regulation of energy
metabolism inhibiting food intake [40]. Considering these results and the possible estro-
genic/antiestrogenic effects of genistein, it seems reasonable to assume that exposure to
genistein during the early postnatal period may produce some alteration to the devel-
opment of energy metabolism and on hypothalamic circuits that regulate food intake.
Numerous orexigenic and anorexigenic peptides are involved in the regulation of body
weight and feeding. Among them are the orexin and POMC peptides. The former are syn-
thesized and released from LH neurons and increase food intake in response to the release
of neuropeptide Y (NPY) from Arc neurons [41,42]. The latter, anorexigenic in their activity,
are expressed by Arc neurons that send satiety signals to the LH and paraventricular
hypothalamic nuclei (PVH) [43].

Given the increase in soy consumption in the general population and in children in
particular, it is necessary to determine the effects of its main component, genistein. In the
present work, we analyzed genistein treatment’s effect during the second week of life on
physiological parameters such as body weight and food consumption and neurohormonal
parameters, such as POMC and orexin hypothalamic expression, in male and female rats.

2. Results
2.1. Differences in Body Weight and Caloric Intake

In the evolution of body weight, a main effect of sex (F1,50 = 253.559; p < 0.001) was
found. Neither the treatment (F2,50 = 0.170; p = 0.844) nor the interaction (F2,50 = 0.520;
p = 0.598) showed a significant effect.

As shown in Figure 1A, sex differences in body weight appeared on P41 in control
and G10 groups (p < 0.05 in all cases), with males heavier than females. A delay in the
appearance of sex differences can be observed in G50 groups from P48 onwards (p < 0.05
in all cases). No significant differences were observed when males and females were
analyzed separately.

Food intake was measured in grams. A main effect of sex (F1,50 = 297.788; p < 0.001)
was found. Treatment (F2,50 = 0.183; p = 0.833) and an interaction between these two
factors (F2,50 = 0.696; p = 0.504) were not significant. As can be seen in Figure 1B, sex
differences appeared on P41 and continued until P83. In all groups, males ate more than
the corresponding females.
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Figure 1. (A) Body weight evolution in all groups. (B) Weekly food intake in all groups (repeated 
measured ANOVA). Statistically significant differences (p < 0.05) are labelled as follows: a = sex 
differences in C and G10 groups; b = sex differences in G50 groups. # = sex differences in all 
groups studied. All values are expressed as means ± S.D. CM: control males: CF: control females; 
G10M: genistein treated males, dose 10 µg/g; G10F: genistein treated females, dose 10 µg/g; G50M: 
genistein treated males, dose 50 µg/g; G50F: genistein treated females, dose 50 µg/g. 
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was found. Treatment (F2,50 = 0.183; p = 0.833) and an interaction between these two fac-
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ences appeared on P41 and continued until P83. In all groups, males ate more than the 
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2.2. Orexin-ir and POMC-ir Cell Analysis 
No orexin-ir cells were detected in the ventromedial (VMH) or paraventricular hy-

pothalamic nuclei (PVH). Orexin-ir cells were observed in the medial-ventral area of the 
lateral hypothalamus (LHmv). Likewise, a small population of orexin-ir cells was detected 
in the lateral edge of the dorsomedial hypothalamic nucleus (DMH) adjacent to the orexin-
ir cells in the perifornical nucleus (PF). Together, these two areas were considered as the 
DMH-PF continuum for counting and analysis. In all nuclei studied, the cells that ex-
pressed orexin were easily detectable because the cell body was heavily labelled (Figure 
2D,E). 
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Figure 1. (A) Body weight evolution in all groups. (B) Weekly food intake in all groups (repeated measured ANOVA).
Statistically significant differences (p < 0.05) are labelled as follows: a = sex differences in C and G10 groups; b = sex
differences in G50 groups. # = sex differences in all groups studied. All values are expressed as means ± S.D. CM: control
males: CF: control females; G10M: genistein treated males, dose 10 µg/g; G10F: genistein treated females, dose 10 µg/g;
G50M: genistein treated males, dose 50 µg/g; G50F: genistein treated females, dose 50 µg/g.

2.2. Orexin-ir and POMC-ir Cell Analysis

No orexin-ir cells were detected in the ventromedial (VMH) or paraventricular hy-
pothalamic nuclei (PVH). Orexin-ir cells were observed in the medial-ventral area of the
lateral hypothalamus (LHmv). Likewise, a small population of orexin-ir cells was detected
in the lateral edge of the dorsomedial hypothalamic nucleus (DMH) adjacent to the orexin-ir
cells in the perifornical nucleus (PF). Together, these two areas were considered as the
DMH-PF continuum for counting and analysis. In all nuclei studied, the cells that expressed
orexin were easily detectable because the cell body was heavily labelled (Figure 2D,E).

No differences between the hemispheres were found in the PF-DMH continuum
(F1,54 = 0.926; p = 0.402) or the LH (F1,54 = 1.196; p = 0.310). Moreover, no main effect of
sex (F1,30 = 0.598; p = 0.445), treatment (F2,30 = 1.614; p = 0.216) or interaction between
the factors (F2,30 = 0.079; p = 0.924) was found in this same continuum, and similar results
were also observed in the LH with no main effect of sex (F1,30 = 0.002; p = 0.964), treatment
(F2,30 = 0.218; p = 0.805) or interaction between the factors (F2,30 = 0.234; p = 0.793).

POMC-ir cells were easily distinguishable because the cell body was heavily labelled
(Figure 2B,C). Cells expressing POMC were detected in the medial (ArcM), lateral (ArcL)
and posteromedial (ArcPM) subdivisions of the arcuate nucleus (Arc) but not in the Arc-
Dorsal subdivision.

No differences between the hemispheres were found in the anterior arcuate
(F1,56 = 0.001; p = 0.979) or the posterior arcuate (F1,56 = 0.021; p = 0.884).

In the ArcM, a main effect of sex was found (F1,36 = 5.347; p < 0.001) but no effect of
treatment (F2,36 = 0.196; p = 0.823) or interaction (F2,36 = 1.051; p = 0.164). Moreover, in
the ArcL and the ArcPM, no effect of sex (F1,36 = 0.001; p = 0.973; F1,36 = 0.795; p = 0.379,
respectively), treatment (F2,36 = 1.514; p = 0.234; F2,36 = 0.724; p = 0.492, respectively) or
interaction (F2,36 = 1.905; p = 0.164; F1,36 = 0.467; p = 0.631, respectively) were found.
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Figure 2. (A) Schematic representation of the procedure used from treatment to immunostaining. 
From P6 to P13, daily injections of synthetic genistein (10 or 50 µg/g) or vehicle according to exper-
imental group were administered. From weaning on P21 to P34, an acclimatization period was 
implemented. Food intake and body weight were measured weekly from P34 until P89. Animals 
were sacrificed on P90. (B,C) Photomicrographs showing the distribution of immunostaining of 
POMC-ir positive cells in Arc nucleus. (D,E) Orexin-ir positive cells in the PF and LH. Arrows 
show orexin-ir and POMC-ir positive cells counted. ArcM: arcuate medial subdivision, ArcL: arcu-
ate lateral subdivision; LH: lateral nucleus of the hypothalamus; DMH-PF: dorsomedial-periforni-
cal nucleus B Bar = 200 µm; C Bar = 50 µm ; D Bar = 300 µm; E Bar = 75 µm [44]. 
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(F1,54 = 0.926; p = 0.402) or the LH (F1,54 = 1.196; p = 0.310). Moreover, no main effect of 

Figure 2. (A) Schematic representation of the procedure used from treatment to immunostaining.
From P6 to P13, daily injections of synthetic genistein (10 or 50 µg/g) or vehicle according to
experimental group were administered. From weaning on P21 to P34, an acclimatization period was
implemented. Food intake and body weight were measured weekly from P34 until P89. Animals
were sacrificed on P90. (B,C) Photomicrographs showing the distribution of immunostaining of
POMC-ir positive cells in Arc nucleus. (D,E) Orexin-ir positive cells in the PF and LH. Arrows show
orexin-ir and POMC-ir positive cells counted. ArcM: arcuate medial subdivision, ArcL: arcuate lateral
subdivision; LH: lateral nucleus of the hypothalamus; DMH-PF: dorsomedial-perifornical nucleus B
Bar = 200 µm; C Bar = 50 µm ; D Bar = 300 µm; E Bar = 75 µm [44].
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Analysis of each sex separately showed a difference in the ArcM in females. The
CF exhibited a greater number of POMC-ir cells than the females treated with low or
high genistein doses (p < 0.05, in both cases). In contrast, males did not show significant
differences among the three groups studied (Figure 3).

Metabolites 2021, 11, x FOR PEER REVIEW 5 of 11 
 

 

sex (F1,30 = 0.598; p = 0.445), treatment (F2,30 = 1.614; p = 0.216) or interaction between the 
factors (F2,30 = 0.079; p = 0.924) was found in this same continuum, and similar results 
were also observed in the LH with no main effect of sex (F1,30 = 0.002; p = 0.964), treatment 
(F2,30 = 0.218; p = 0.805) or interaction between the factors (F2,30 = 0.234; p = 0.793). 

POMC-ir cells were easily distinguishable because the cell body was heavily labelled 
(Figure 2B,C). Cells expressing POMC were detected in the medial (ArcM), lateral (ArcL) 
and posteromedial (ArcPM) subdivisions of the arcuate nucleus (Arc) but not in the 
ArcDorsal subdivision. 

No differences between the hemispheres were found in the anterior arcuate (F1,56 = 
0.001; p = 0.979) or the posterior arcuate (F1,56 = 0.021; p = 0.884). 

In the ArcM, a main effect of sex was found (F1,36 = 5.347; p < 0.001) but no effect of 
treatment (F2,36 = 0.196; p = 0.823) or interaction (F2,36 = 1.051; p = 0.164). Moreover, in 
the ArcL and the ArcPM, no effect of sex (F1,36 = 0.001; p = 0.973; F1,36 = 0.795; p = 0.379, 
respectively), treatment (F2,36 = 1.514; p = 0.234; F2,36 = 0.724; p = 0.492, respectively) or 
interaction (F2,36 = 1.905; p = 0.164; F1,36 = 0.467; p = 0.631, respectively) were found. 

Analysis of each sex separately showed a difference in the ArcM in females. The CF 
exhibited a greater number of POMC-ir cells than the females treated with low or high 
genistein doses (p < 0.05, in both cases). In contrast, males did not show significant differ-
ences among the three groups studied (Figure 3). 

 
Figure 3. Graph (A) showing the number of POMC-ir neurons in ArcM in all experimental groups 
(two-way ANOVA) * indicates differences between groups (p < 0.05 in all cases). The error bars 
indicate standard error of the mean. CM: control males; CF: control females; G10M: genistein 
treated males, dose 10 µg/g; G10F: genistein treated females, dose 10 µg/g; G50M: genistein treated 
males, dose 50 µg/g; G50F: genistein treated females, dose 50 µg/g. n = 6 in all groups. All treat-
ments, either injection of genistein or vehicle, were administered from P6 to P13. (B–D) photomi-
crographs showing the distribution of POMC-ir positive cells in Arc nucleus. B = control female, C 
= G10 female, D = G50 female. Bar = 200 µm. .[44]. 

3. Discussion 

Figure 3. Graph (A) showing the number of POMC-ir neurons in ArcM in all experimental groups
(two-way ANOVA) * indicates differences between groups (p < 0.05 in all cases). The error bars
indicate standard error of the mean. CM: control males; CF: control females; G10M: genistein treated
males, dose 10 µg/g; G10F: genistein treated females, dose 10 µg/g; G50M: genistein treated males,
dose 50 µg/g; G50F: genistein treated females, dose 50 µg/g. n = 6 in all groups. All treatments,
either injection of genistein or vehicle, were administered from P6 to P13. (B–D) photomicrographs
showing the distribution of POMC-ir positive cells in Arc nucleus. B = control female, C = G10
female, D = G50 female. Bar = 200 µm [44].

3. Discussion

The present study results showed that the exposure to genistein in the early stages of
development modifies hypothalamic POMC neurons’ long-term expression in the arcuate
nucleus of female but not male Wistar rats. Moreover, high doses of genistein produced
a delay in the emergence of sex differences in body weight. In contrast, caloric intake or
orexin expression were not altered in either sex.

Treatment with genistein from P6 to P13 did not affect the caloric intake because
there were no differences between the groups or both sexes’ developmental pattern. The
differences appeared from P48 onwards in all groups. Concerning the body weight, we
detected differences in the evolution of normal sexual dimorphism, an observation resulting
from the one week delay in the emergence of sex differences in the genistein groups with
high dose. Sex differences in control and G10 groups were observed from P41 onwards but
at P48 in G50 groups. Similar results in the emergence of sex differences in control groups
were reported in a previous study by our group [32].

Although the effects of genistein during development do not significantly alter physio-
logical parameters such as caloric intake or body weight, a relevant effect has been detected
in the brain. Specifically, the number of cells expressing POMC decreased in the medial
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subdivision of the arcuate nucleus of female rats when low or high doses of genistein were
administered from P6 to P13. However, no effect of genistein was detected on POMC
expression in this same nucleus in males.

The fact that genistein treatment altered the expression of POMC in the ArcM in female
but not male rats is not surprising if previous results from our group are considered. In the
same postnatal period, the administration of estradiol modulated the levels of hypothalamic
POMC mRNA in females on a low-protein or high-fat diet, but no effect was detected in
the male rats or in any other feeding-related peptide studied [31,32]. Furthermore, when
the activity of ERα, ERβ and GPER receptors was blocked from P5 to P13, there was a
decrease in hypothalamic POMC mRNA levels in female rats, but again, this effect was not
detected in males, and no other alterations were shown in other peptides studied [34]. In
line with these data, the results of the present study show first that genistein through an
agonist or antagonist estrogenic activity alters the long-term expression of POMC during
development in female but not male rats, and therefore this phytoestrogen could interfere
with the programming activity of estradiol early in life. Secondly, in all cases, a misbalance
in estrogenic activity affects POMC but no other peptides related to food intake in the
hypothalamus [31,32] or specifically orexin in the DMH, PF or LH nuclei.

Gao et al. [45] demonstrated the existence of a direct relation between estradiol and
POMC since this hormone can increase excitatory inputs on POMC neurons and POMC
tone in the Arc in rats and mice [45]. This fact can explain the consistent response of POMC
to the changes in the estradiol activity during development and how important the activity
of this hormone is to the long-term expression of POMC in the hypothalamus. Our results
show that the influence of genistein on estrogenic activity during development also results
in an alteration of the melanocortin system in females in the long term.

At this point, it is important to note that the administration of estradiol in control
animals in the same postnatal period did not alter hypothalamic POMC mRNA levels
either in males or females in adulthood [32], suggesting a specific antagonist effect of
genistein on the activity of estradiol in the programming of feeding circuits during de-
velopment. On the one hand, it is worth bearing in mind that the effects of estradiol on
food intake are mainly via the ERα [35–39] and that genistein has a higher affinity for
ERβ, which could lead to differential effects of the phytoestrogen compared to estradiol.
To our knowledge, no direct effect of genistein on POMC has been reported, but some
results suggest a possible indirect effect of genistein on the downregulation of POMC
expression in the Arc. It has been demonstrated that dietary soy produces an increase
in hypothalamic neuropeptide Y (NPY) or agouti-related protein (AgRP) levels [46–48]
and the inhibitory action of NPY/AgRP neurons on POMC neurons, possibly through
GABA, has been soundly demonstrated [49–53]. Further research is therefore needed to
determine the specific action of genistein during the programming period on ERs and
whether genistein acts directly on POMC neurons or whether its effects on this system are
due to an indirect action via NPY.

Numerous studies have reported that soy proteins may exert beneficial health effects
by improving metabolic parameters and preventing obesity and diabetes, mainly in adult
pre-and postmenopausal women [54–56]. However, many studies have shown that expo-
sure to phytoestrogens early in development has adverse effects on reproductive function
(see [57], for review) and alters various neurotransmitter systems [29,30,58]. These data,
along with the results of the present work, demonstrate that exposure to genistein during
the most sensitive stages of development alters neurotransmitter and neuropeptidergic
systems involved in reproductive or feeding neurohormonal systems.

Very few studies have paid attention to the effects of phytoestrogens during develop-
ment on the functions of the hypothalamic circuits regulating energy metabolism and/or
feeding disorders. Data from other authors reported that phytoestrogens alter the repro-
ductive system [57], and now our results reveal that phytoestrogens can also differentially
modulate some actions of the estradiol during development in male and female rats. Tak-
ing into account that soy is the main substitute food for milk in children and that the
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lactation period is a sensitive period for the optimal development of brain circuits, further
research will be needed to unravel the mechanisms through which genistein during devel-
opment may alter the intake system in order to detect adverse effects on energy metabolism
and feeding.

4. Materials and Methods
4.1. Animals

All experiments were designed according to the guidelines published in the “NIH
Guide for the care and use of laboratory animals”, the principles presented in the “Guide-
lines for the Use of Animals in Neuroscience Research” by the Society for Neuroscience,
the European Union legislation (Council Directives 86/609/EEC and 2010/63/UE) and
the Spanish Government Directive (R.D. 1201/2005). Experimental procedures were ap-
proved by our Institutional Bioethical Committee (UNED, Madrid). Special care was taken
to minimize animal suffering and reduce the number of animals used to the minimum
necessary. Wistar rats were reared under stable temperature, humidity and light conditions
(22 ± 2 ◦C; 55 ± 10% humidity; 12 h light/12 h dark cycle, lights on from 08:00 to 20:00)
with food and water ad libitum. For mating, a male was placed in a cage with two females
for one week. Pregnant females were housed individually in plastic maternity cages with
wood shavings as the nesting material. On postnatal day 1 (P1), pups born on the same
day were weighed, sexed, and randomly distributed (five females and five males/dam).
From P6 to P13, pups were treated with a daily s.c. injection of vehicle (corn oil), or syn-
thetic genistein (Genistein Synthetic, ≥98%, Sigma-Aldrich St. Luois, MO, USA) in two
doses: a low dose of genistein (10 µg/g) or a high dose of genistein 50 µg/g. The 10 µg
dose was previously used by other authors who obtained differential effects in males and
females on several physiological and brain parameters [59–61] This experimental design
resulted in the following groups: control male (n = 10, CM), control female (n = 9, CF), G10
male (n = 10, G10M), G10 female (n = 9, G10F), G50 male (n = 10, G50M) and G50 female
(n = 8, G50F). n = 6 and n = 7 in each group were used to study orexin and POMC expression,
respectively. From weaning on P21 to P34, an acclimatization period was implemented.
From P33 to P89, body weight and food intake were measured every 7 days, except for the
week prior to perfusion when body weight was recorded at 6 days (Figure 2A).

4.2. Tissue Preparation

On P90, animals were deeply anaesthetized with an overdose of tribromoethanol in
saline (1 mL/kg). Then, the animals were transcardially perfused with saline followed
by 4% paraformaldehyde (PAF). The brains were removed, stored in a freshly prepared
PAF solution for two hours at 4 ◦C and then washed several times in phosphate-buffered
saline (PBS). Next, the brains were stored in a 30% sucrose solution in PBS at 4 ◦C until
they were examined. The brains were then frozen on dry ice and serially sectioned along
the coronal plane at a thickness of 40 µm. Serial sections were collected in four series, two
of which were used in this study processed as free-floating sections for orexin and POMC
immunostaining.

4.3. Orexin and POMC Immunostaining

The sections were incubated in PBS overnight. Endogenous peroxidase activity
was blocked by incubation with H2O2 in 0.5% Triton X-100 in PBS for 30 min. After
a brief wash in PBS, the sections were incubated in normal goat serum (diluted 1:5 in
PBS; Vector, Burlingame, CA, USA) for 30 min at room temperature. Then, the sections
were incubated for 48 h at 4 ◦C in a rabbit anti-orexin A primary antibody (Calbiochem,
San Diego, CA, USA) or in a rabbit anti-POMC primary antibody (Phoenix Pharmaceuticals
Inc., Burlingame, CA, USA); 1:2000 in both cases. After several brief washes in PBS, the
sections were incubated with biotinylated anti-rabbit IgG serum (Vector, 1:200) for 90 min
and then in avidin-peroxidase complex (Immunopure ABC Vector Burlingame, CA, USA)
for 60 min at room temperature. Finally, the presence of peroxidase activity was visualized
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with a solution containing 0.02 g/mL diaminobenzidine (DAB; Aldrich, Madrid, Spain)
and 0.025% hydrogen peroxidase in Tris–HCl, pH 7.6. The sections were mounted on
gelatin-coated slides, dehydrated in ethanol, washed in xylene and coverslipped with DPX
(Surgipath Europe Ltd., Peterborough, UK).

The number of orexin-ir cells in the dorsomedial hypothalamus (DMH), perifornical
area (PF) and lateral hypothalamus (LH) and the number of POMC-ir cells in the subdivi-
sions of the arcuate nucleus (the dorsal [ArcD], medial [ArcM], lateral [ArcL] and medial
posterior [ArcPM]) [44] were estimated. Briefly, a microphotograph of each section was
acquired using a scanner (Nikon Collscope Eclipse Net-VSL, Tokyo, Japan) with a monitor
(Digital Sight DS-L1, Tokyo, Japan). The number of orexin-ir or POMC-ir cells in each sec-
tion was estimated using ImageJ (ImageJ bundled with 64-bit Java 1.8.0; National Institutes
of Health, Bethesda, MD, USA) following the Königsmark cell counting procedure [62]. The
scattered orexin-ir cells on the lateral edge of the DMH were considered to be continuous
with the PF nucleus. The orexin-ir or POMC-ir cells included within the boundaries of the
different nuclei were counted.

4.4. Statistical Analysis

The evolution of body weight and caloric intake during the experimental procedure
was analyzed using repeated-measures ANOVA with treatment as the within-subject factor
and body weight and caloric intake as the between-subject factors. To determine the
differences among the groups, one-way ANOVA was performed when appropriate. Post
hoc comparisons were performed with Student–Newman–Keuls tests. The significance
level was set at p < 0.05.

The number of orexin-ir and POMC-ir cells in both hemispheres was estimated. The
data were subjected to one-way ANOVA with the hemisphere as a factor to determine
the potential differences between the right and left hemispheres. Once the effect of the
hemisphere was discarded, the mean value of the two hemispheres was used for statistical
analysis performed by one-way ANOVA followed by Student–Newman–Keuls tests when
appropriate, and the significance level was p < 0.05.
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