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By looking at the pseudoscalar-vector meson spectra in the B̄ → J=ψρK̄ and B̄ → J=ψK̄�π weak
decays, we theoretically investigate the double-pole structure of theK1ð1270Þ resonance by using the chiral
unitary approach to account for the final-state interactions between the pseudoscalar (P) and vector (V)
mesons. The K1ð1270Þ resonance is dynamically generated through these interactions in coupled channels
and influences the shape of the invariant mass distributions under consideration. We show how these shapes
are affected by the K1ð1270Þ double-pole structure to confront the results from our model with future
experiments that might investigate the PV spectra in these decays.
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I. INTRODUCTION

The observation of the axial-vector mesons K1ð1270Þ
and K1ð1400Þ [1,2] were identified as the expected 1þ
strange mesons from the quark model. Subsequent experi-
ments have explored their properties and decay modes [3].
While the dominant K1ð1270Þ decay channel is ρK, the
K1ð1400Þ is observed to decay mostly through the
K�ð892Þπ one. These states have usually been studied in
terms of the mixing of the strange states of the JPC ¼ 1þþ

and JPC ¼ 1þ− nonets (see, for example, Refs. [4–6]).
Other exhaustive analyses of the 1þ low-lying mesons as
dynamically generated resonances found that the S ¼ 1 and
I ¼ 1=2 poles were not compatible with the above assign-
ment, but rather they should be identified as a double-pole
structure for the K1ð1270Þ [7]. The two-pole structure for
the K1ð1270Þ resonance is not unique: there are several
cases where two poles were found for hadronic resonances,
and a recent review can be seen in Ref. [8]. The discovery
of the two-pole structure of the K1ð1270Þ triggered studies
looking for scenarios where this prediction could be tested.

The analysis of the K−p → K−πþπ−p data at 63 GeV done
in Ref. [2] provided additional support to the existence of
two states: one with a mass of 1195 MeV coupling mostly
to theK�ð892Þπ channel, and one with a mass of 1284MeV
coupling to the ρK one. Several reactions aimed at
observing these two states were proposed, such as D0 →
πþVP [9], which is similar to B− → J=ψK−

1 ð1270Þ
with the hadronization involving three light mesons.
More recently, another study considered the Dþ →
νlþK1ð1270Þ decay [10], identifying the signatures in
the invariant-mass distributions of the decaying
K1ð1270Þ. On the other hand, expected improvements in
the experimental capabilities to study B-meson decays with
higher statistics, like in the Belle II experiment, make these
proposals an interesting scenario to look for.
In this work we provide an additional reaction, consid-

ering decays of the form B̄0 → J=ψVP, where VP are the
vector and pseudoscalar meson pairs, ρK̄ and K̄�π, using
the chiral unitary approach, and we look for signatures of
the two K1ð1270Þ states. A related study was done in
Ref. [11], where the reaction B− → J=ψρ0K− was studied
to look for signals of the Zcð4000Þ; however, simulta-
neously one K1ð1270Þ showed up in the ρK̄ mass dis-
tribution. Here we also look into the K̄�π channel in order
to see both K1ð1270Þ states.
The work is organized as follows. In Sec. II we present

the formalism for the elementary production at the quark
level, where the different VP channels are related by SUð3Þ
arguments. Then, we account for the final VP interaction
by implementing meson-meson scattering based on the
chiral unitary approach. In Sec. III we compute the
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invariant-mass distribution for the VP pair and its structure
in terms of the individual poles, and identify the regions
where the signature of such poles can be extracted.

II. FORMALISM

A. VP pseudoscalar and vector meson production

The relevant contribution for the B̄ → J=ψVP reaction is
given at the quark level by the diagram shown in Fig. 1. The
mechanism starts with a bd̄ quark pair, forming the initial
B̄0 meson, in which the b quark is converted into a c quark
by emitting aW boson, which then produces an anticharm c̄
along with a strange quark s. In the end, we are left with a
cc̄ pair making up a J=ψ meson, considered as a spectator,
and a sd̄ pair. In order to produce a pseudoscalar as well as
a vector meson, a q̄q pair with the quantum numbers of the
vacuum is added to the already existing sd̄ pair, according
to the 3P0 model [12–14]. Therefore, the final meson-
meson hadronic state has the following quark flavor
combination:

jHi ¼ jsðūuþ d̄dþ s̄sÞd̄i: ð1Þ

However, Eq. (1) above only refers to the quark content of
the final mesonic states and it does not carry any informa-
tion about the pseudoscalar or vector nature of those
hadronic states. This is done by defining the qq̄ matrix,
denoted as M, written as

M ¼

0
BB@

uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄

1
CCA; ð2Þ

in terms of which Eq. (1) reads

jHi ¼ jsðūuþ d̄dþ s̄sÞd̄i
¼

X
i

jsq̄iqid̄i ¼ jM3iMi2i ¼ jðMMÞ32i: ð3Þ

The final meson-meson components are found by establish-
ing the correspondence between M and the pseudoscalar
and vector meson SUð3Þ matrices, that is,

M⇒P¼

0
BBBBBB@

π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p K0

K− K̄0 − 1ffiffi
3

p ηþ
ffiffi
2
3

q
η0

1
CCCCCCA
;

ð4Þ

and

M ⇒ V ¼

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA; ð5Þ

where the standard η − η0 [15] and ω1 − ω8 mixings have
been used for P and V, respectively, in order to match the
right flavor content of the matrix M.
Since we aim at describing a reaction with a pseudoscalar

along with a vector meson as final states, the matrix M in
Eqs. (4) and (5) should be combined according to Eq. (3) in
such a way that it gives the product PV or VP. There is
nothing in our model that privileges one over the other, and
thus we consider an equal-weighted combination between
them in Eq. (3) so that it can be rewritten as

jHi ¼ jðPVÞ32i þ jðVPÞ32i: ð6Þ

Therefore, the pseudoscalar and vector mesons produced in
the reaction are

jHi ¼ jρþK̄−i − 1ffiffiffi
2

p jρ0K̄0i þ jK�−πþi − 1ffiffiffi
2

p jK̄�0π0i

þ 1ffiffiffi
2

p jωK̄0i þ jϕK̄0i; ð7Þ

where a term corresponding to the K̄�0η channel has
canceled out in the evaluation of Eq. (6) by using
Eqs. (4) and (5). Note that the procedure adopted provides
the final VP meson-meson components as well as their
relative weights, which will play a significant role in the
mass spectrum.
The final jHi state can be written in the isospin basis by

considering the following multiplets: ð−ρþ; ρ0; ρ−Þ,
ðK̄0;−K−Þ, and ð−πþ; π0; π−Þ for the ρ, K̄, and π mesons,

FIG. 1. Dominant diagram for the B̄ → J=ψðPVÞ reaction at
the quark level. In the first step, a b quark decays into a c quark by
emission of a gauge boson W, which then produces a strange
quark s along with a c̄ quark. Finally, we are left with a cc̄ pair,
forming the J=ψ , and the sd̄ pair. This latter pair is hadronized in
order to produce a pseudoscalar-vector meson pair emerging as
the final state.
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respectively. Then, the final VP states in isospin I ¼ 1=2
are given by

jρK̄iI¼1=2
I3¼1=2 ¼

ffiffiffi
2

3

r
jρþK−i −

ffiffiffi
1

3

r
jρ0K̄0i;

jK̄�πiI¼1=2
I3¼1=2 ¼ −

ffiffiffi
2

3

r
jK�−πþi þ

ffiffiffi
1

3

r
jK̄�0π0i: ð8Þ

Using this, we can recast jHi as

jHi ¼
ffiffiffi
3

2

r
jρK̄iI¼1=2

I3¼1=2 −
ffiffiffi
3

2

r
jK̄�πiI¼1=2

I3¼1=2

þ 1ffiffiffi
2

p jωK̄iI¼1=2
I3¼1=2 þ jϕK̄iI¼1=2

I3¼1=2: ð9Þ

This last equation also provides the relative weights,
denoted as hi, in the isospin basis between the ith VP
channels above. They are

hρK̄ ¼
ffiffiffi
3

2

r
; hK̄�π ¼ −

ffiffiffi
3

2

r
;

hωK̄ ¼ 1ffiffiffi
2

p ; hϕK̄ ¼ 1: ð10Þ

The differential decay width for the B̄ → J=ψðPVÞ
process, illustrated in Fig. 2, is given by

dΓ
dMinv

¼ 1

ð2πÞ3
1

4M2
B
pJ=ψ p̃πðK̄ÞjTB→J=ψðPVÞj2; ð11Þ

where MB is the B̄-meson mass while pJ=ψ and p̃πðK̄Þ are
the momentum associated with J=ψ in the B̄ rest frame and
πðK̄Þ mesons in the PV rest frame, respectively. As a
function of the PV invariant mass, Minv, they are

pJ=ψ ¼ λ1=2ðM2
B;M

2
J=ψ ;M

2
invÞ

2MB
; ð12Þ

p̃K̄ ¼ λ1=2ðM2
inv;M

2
ρ; m2

K̄Þ
2Minv

for the ρK̄ channel; ð13Þ

p̃π ¼
λ1=2ðM2

inv;M
2
K̄� ; m2

πÞ
2Minv

for the K̄�π channel; ð14Þ

where λ stands for the Källén function.
For the evaluation of the full decay amplitude, which is

needed in Eq. (11), we have to consider the diagrams in
Fig. 3, where the final-state interaction mechanism is
implemented to take into account the K1ð1270Þ resonance
contribution for the invariant-mass spectra we are interested
in. Since we are interested in the distributions with ρK̄ and
K̄�π as final VP states, we have

TB̄→J=ψρK̄¼Cðϵ⃗ψ · ϵ⃗ρÞ
�
hρK̄þ

X
i

hiGiðMinvÞtI¼1=2
i→ρK̄ ðMinvÞ

�

ð15Þ

and

TB̄→J=ψK̄�π

¼ Cðϵ⃗ψ · ϵ⃗K̄� Þ
�
hK̄�π þ

X
i

hiGiðMinvÞtI¼1=2
i→K̄�πðMinvÞ

�
;

ð16Þ

where the index i, running from 1 to 4, stands for each
possible VP channel involved in the loop, and C contains
the information of the strength of the weak decay at the tree
level. The channels are i ¼ 1 for ϕK̄, i ¼ 2 for ωK̄, i ¼ 3

for ρK̄, and i ¼ 4 for K̄�π. These loops are represented by
GiðMinvÞ which is the G-loop function (given as a function
of the invariant mass Minv) which we will discuss in
Sec. II B. The hi are the relative weights in the isospin
basis, defined in Eq. (10) above. Moreover, ϵ⃗ψ , ϵ⃗ρ, and ϵ⃗K̄�

are the polarization vectors for the J=ψ , ρ, and K̄� mesons,
respectively.
Furthermore, the amplitudes tI¼1=2

i→ρK̄ and tI¼1=2
i→K̄�π in

Eqs. (15) and (16) are the two-body scattering amplitudes
for all possible transitions from the ith channel to ρK̄ (and
to K̄�π), which in our approach encode the resonance
K1ð1270Þ as dynamically generated through these inter-
actions [16], and are explained in the following subsection.

B. Final-state interaction and the K1ð1270Þ resonance
Once the final meson-meson pair is produced at tree level

in the B̄ → J=ψVP reaction, they undergo final-state
interaction from which the K1ð1270Þ resonance emerges
dynamically. In fact, in Ref. [16] this resonance was
dynamically generated through the s-wave interaction
between the pseudoscalar and vector mesons in the
I ¼ 1=2 channel. The final-state interaction mechanism
is introduced by adopting a unitarization procedure using
the Bethe-Salpeter equation in coupled channels, from
which some hadronic states show up as poles in the

FIG. 2. Amplitude for the B̄ → J=ψðPVÞ decay. The C con-
stant is the parametrization of the weak vertex.
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unphysical Riemann sheets of the scattering matrices. This
approach is a unitary extension of chiral perturbation
theory, called the chiral unitary approach [17–19], which
has allowed to describe many hadronic resonances as
composite states of mesons and/or baryons. In particular,
in Ref. [16] the transition amplitudes tI¼1=2

i→j appearing in
Eqs. (15) and (16) were unitarized by solving a coupled-
channel scattering equation in an algebraic form, written in
matrix form as

t ¼ ð1 − VGÞ−1V; ð17Þ

where in Vij, tij the indices stand for the coupled channels:
1 for ϕK̄, 2 for ωK̄, 3 for ρK̄, 4 for K̄�π, and 5 for K̄�η. In
addition, Vij is the interaction kernel, which corresponds to

the tree-level amplitudes evaluated for all channels we are
considering in this work by using the chiral Lagrangians
from Ref. [20] given by

LVVPP ¼ −
1

4f2
Trð½Vμ; ∂νVμ�½P; ∂νP�Þ; ð18Þ

where f is the pion decay constant (f ¼ 93 MeV) and V, P
are the matrices given in Eqs. (4) and (5). Furthermore,
GkðsÞ is the meson-meson loop function associated with
the kth channel, which can be regularized either by
dimensional or cutoff regularization schemes. In the present
work, we follow Ref. [16] which employed the former
scheme. In this case, the GkðsÞ loop function is given by

Gkð
ffiffiffi
s

p Þ ¼ 1

16π2

�
aðμÞ þ ln

M2
k

μ2
þm2

k −M2
k þ s

2s
ln
m2

k

M2
k

þ qkffiffiffi
s

p ½lnðs − ðM2
k −m2

kÞ þ 2qk
ffiffiffi
s

p Þ þ lnðsþ ðM2
k −m2

kÞ þ 2qk
ffiffiffi
s

p Þ

− lnð−sþ ðM2
k −m2

kÞ þ 2qk
ffiffiffi
s

p Þ − lnð−s − ðM2
k −m2

kÞ þ 2qk
ffiffiffi
s

p Þ�
�
; ð19Þ

where Mk and mk stand for the vector and pseudoscalar
meson masses in the kth channel, respectively. Moreover,
aðμÞ is the subtraction constant and in this work we
take aðμÞ ¼ −1.85 for μ ¼ 900 MeV, which is the scale
of dimensional regularization, obtained in Ref. [16] by
fitting the experimentalK−p → K−πþπ−p data. In addition,
qk ¼ jq⃗kj is the on-shell three-momentum of the meson in
the loop, given in the center-of-mass frame by

qk ¼
λ1=2ðs;M2

k; m
2
kÞ

2
ffiffiffi
s

p : ð20Þ

The ρ and K̄� mesons have a relatively large width and
hence a wide mass distribution. In order to take this feature
into account in our formalism, we convolve the loop
function GkðsÞ with the corresponding vector meson
spectral function

Im½DðsVÞ� ¼ Im

�
1

sV −M2
V þ iMVΓV

�
; ð21Þ

where MV stands for the vector meson mass and ΓV is the
vector meson width, considered here as energy indepen-
dent. Choosing an energy-dependent form for ΓV, as was
done in Refs. [9,10], does not provide any significant
change in our results compared with the usual uncertainties
of our approach. The spectral function above is related to
the exact propagator for the vector meson by using the
Lehmann representation, which gives us

DðsÞ ¼ −
1

π

Z
∞

sth

dsV
Im½DðsVÞ�
s − sV þ iϵ

; ð22Þ

where sth is the corresponding vector meson threshold for
the decay channels with the ρ or K̄� mesons. Therefore, the
convolution of the GkðsÞ loop function defined in Eq. (19)

FIG. 3. Relevant diagrams contributing to the amplitude TB̄→J=ψðPVÞ implementing the final-state interaction. The first diagram on the
right-hand side corresponds to the tree level. On the other hand, the second one with a loop encodes the final-state interaction
mechanism, and actually it is a sum over all PiVi pseudoscalar and vector mesons associated with the i channel: i ¼ 1 for ϕK̄, i ¼ 2 for
ωK̄, i ¼ 3 for ρK̄, and i ¼ 4 for K̄�π.
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with the vector meson spectral function given by Eq. (22)
provides

Gð ffiffiffi
s

p
;Mk;mkÞ

¼
R ðMVþ2ΓVÞ2
ðMV−2ΓVÞ2 dsVGð

ffiffiffi
s

p
;

ffiffiffiffiffi
sV

p
; mkÞ × Im½DðsVÞ�R ðMVþ2ΓVÞ2

ðMV−2ΓVÞ2 dsVIm½DðsVÞ�
; ð23Þ

where the limits ðMV � 2ΓVÞ2 are considered to be a
reasonable cut in the integration above. These cuts
cause a small deviation of the normalization of the
Breit-Wigner distribution encoded in the spectral function
in Eq. (21) and in order to reestablish it we divided by the
normalization integral defined in the denominator
in Eq. (23).
By looking for poles of Eq. (17) in unphysical

Riemann sheets of the complex
ffiffiffi
s

p
variable, two poles

are found in the I ¼ 1=2 channel, a broader one atffiffiffiffiffispp ¼ ð1195 − i123Þ MeV, and a narrower one at ffiffiffiffiffispp ¼
ð1284 − i73Þ where, for poles not very far from the real
axis, ffiffiffiffiffispp can be approximated by ffiffiffiffiffispp ¼ ðMp − iΓ=2Þ in
which the real part stands for the pole mass, whereas the
imaginary one is associated with half the width. For the
sake of convenience, we shall refer to the former and latter
as pole A and B, respectively. For the sake of completeness,
we show in Table I the parameters obtained in Ref. [16] for
the numerical calculation of Eq. (17) described in this

section, and the couplings to the ith-channel gAðBÞi of each
K1ð1270Þ pole.
This will be important in order to study the behavior of

the distributions given in Eq. (11) considering each pole
contribution individually. The amplitudes given in Eq. (17)
contain the information about the whole dynamics for the
VP interaction, including the resonance structure.
Although both poles are intertwined in the highly nonlinear
dynamics involved in the amplitude of Eq. (17), it is
also interesting for illustrative purposes to differentiate
the contribution from each individual pole. Since it is not
possible to directly isolate each pole contribution
from Eq. (17), this task can be achieved by adopting a

Breit-Wigner approach for those amplitudes. Then, at the
pole position, we have

tIAðBÞi;j ¼ gAðBÞi gAðBÞj

s − sp
; ð24Þ

where sp is the pole position of the K1 poles A and B,

whereas gAðBÞiðjÞ stands for the coupling of the iðjÞth channel

to the pole AðBÞ. We know that the closer to the real axis
these poles are, the better this approximation works. In
addition, it is expected that experimentally these amplitudes
are parametrized by a Breit-Wigner form so that, by
adopting it in our formalism, a comparison between our
results and those from future experiments is more reason-
able. Furthermore, this parametrization can also be used to
encode the double-pole K1 structure if we assume that the
amplitudes are given by a double-Breit-Wigner shape
defined as

Ti;j ¼ tIAi;j þ tIBi;j ; ð25Þ

where tIAi;j and tIBi;j are given by Eq. (24) for poles A and B,
respectively.
It is interesting to mention that the chiral Lagrangian of

Eq. (18) can be deduced from a more general framework—
the local hidden gauge approach [21–24]—by exchanging
vector mesons. This framework allows us to address a
related source of interaction based on the exchange of
pseudoscalar mesons. We address these two issues in
Appendixes A and B, respectively.
Examples of reactions similar to ours, which look

carefully into the final-state interactions of the mesons
produced, are the D0 → K0

Sπ
þπ− reaction studied in

Ref. [25] and the Dþ → K−πþπþ reaction studied in
Refs. [26,27]. In Ref. [25] one of the mesons was kept
as a spectator, while Refs. [26,27] dealt with a three-body
interacting system. In Ref. [26] the transition amplitude
was obtained as the sum of amplitudes classified in terms of
isospin, based upon the dominant modes of weak decay,
which are external and internal emission [28]. The final-
state interaction was taken into account by means of the

TABLE I. Parameters obtained in Ref. [16]. In the first line, the values for the subtraction constant
α, the scale of dimensional regularization μ, and the two K1 poles are given. In the lower part, we list

the channels and their corresponding couplings gAðBÞi to each K1 pole A and B.

αðμÞ μ scale Lower pole (A) Higher pole (B)

−1.85 900 ð1195 − i123Þ MeV ð1284 − i73Þ MeV

Channels Couplings gAi gBi

ϕK̄ 2096 − i1208 1166 − i774
ωK̄ −2046þ i821 −1051þ i620
ρK̄ −1671þ i1599 4804þ i395
K̄�π 4747 − i2874 769–11171
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Omnès representation in terms of experimental phase shifts.
More detailed, and using models for the final-state inter-
actions, is the work of Ref. [27] from which we can draw
conclusions concerning our present work.
The first consideration to be made is that while

undoubtedly these works do a very good job concerning
the final-state interaction of the meson components, they
rely upon free parameters, some of which depend directly
on the reaction studied. For instance, Ref. [26] required
seven complex parameters that were adjusted to the data of
the reaction, and in Ref. [27] the number of parameters
adjusted to the data was of the order of 20, depending on
the options. The use of these formalisms in a new reaction
would contain unknown parameters. Here we benefit from
the fact that we consider the J=ψ interaction with the light
mesons to be weak, as found in the study of coupled
channels in Ref. [29], and hence we only have to worry
about the vector-pseudoscalar interaction of ρK̄ together
with K̄�π. On the other hand, we do not pretend to
reproduce the whole phase space of the reaction, but rather
a narrow region of the ρK̄ and K̄�π invariant masses around
the peaks of the K1ð1270Þ resonances that we find. For this
purpose, the work of Ref. [7] for the vector-pseudoscalar
interaction, which predicted two K1ð1270Þ resonances that
were tested against data of the K−p → K−πþπ−p reaction
of Ref. [2] in Ref. [8], is sufficiently accurate. Also, by
limiting ourselves to a narrow region we do not have to
worry about possible contributions from scalar and tensor
terms, which were considered in Refs. [26,27].
At this point, we have to address a problem concerning

the VP interaction that was not considered in Ref. [7].
Indeed, in Refs. [7,16] the source of VP interaction was
given by vector exchange extracted from the local hidden
gauge approach [21–23]. We prove in Appendix A that the
vector exchange interaction leads to the contact chiral
interaction of Ref. [20] used in Refs. [7,16]. However,

there is another source of interaction based on the pseu-
doscalar exchange, as depicted in Fig. 7 of Appendix B.
This interaction was considered in Refs. [26,27,30]. The
reason not to consider it is analogous to a similar source
of interaction considered in the VV interaction in
Refs [31,32]. Indeed, in these works, this new source of
interaction was taken into account via the box diagram of
Fig. 8 in Appendix B. What was found there was that the
real part of the new potential was negligible, and only the
imaginary part, due to the large phase space for ρρ → ππ
decay, was relevant. We take the opportunity to do the
equivalent work here, and this is done in Appendix B. In
Figs. 9, 10, 11, and 12 we show new mechanisms
contributing to the VP interaction which involve pseudo-
scalar exchange. We find in all cases a very small
contribution of a few percent relative to the large terms
coming from vector exchange.
It is interesting to see that this conclusion agrees with the

observation made in Ref. [27], where the two interaction
mechanisms—vector exchange and pseudoscalar exchange
—were explicitly considered [see Figs. 4(a) and 2 of
Ref. [27], respectively]. The authors of Ref. [27] stated
that “we found that the effect of the diagram Fig. 4(a)
connected to ðπþπ0ÞI¼1

P K̄0 is the most important among the
three-body type diagrams that we consider”. The pseudo-
scalar exchange part for the VP interaction was considered
as a Z graph in Fig. 2 of Ref. [27]. If one selects the Z
graphs related to the VP interaction, it is found that the
vector exchange has a larger impact on the χ2 than the
pseudoscalar exchange [33]. One should add that, using
Eq. (18), one finds that the strength of the vector exchange
for the I ¼ 1=2 interaction that we consider here is twice as
large as the one in the I ¼ 3=2 case (ρþK̄0) that is produced
in the Dþ decay in Ref. [27], and it is attractive in I ¼ 1=2,
while it is repulsive for I ¼ 3=2. This further magnifies the
relevance of vector exchange in our case.

(a) (b)

FIG. 4. (a) dΓ=MρþK− invariant-mass distribution for the B̄0 → J=ψρþK− reaction (black solid line), compared with the curves
obtained by considering only pole A (red dotted line) and pole B (blue dot-dashed line). (b) dΓ=MK�−πþ distribution for B̄0 →
J=ψK�−πþ channel also compared with distributions due to each pole contribution separately. BW is the Breit-Wigner parametrization,
whereas UChPT stands for chiral unitary theory.
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III. RESULTS

In Figs. 4(a) and 4(b) we show the VP invariant-mass
distributions for B̄0 → J=ψρþK− and B̄0 → J=ψK�−πþ
reactions, respectively. The dashed lines (labeled
UChPT) represent the results obtained using the unitarized
amplitudes for the two-body VP final-state interaction
[Eq. (17)]. The solid lines (labeled BW) represent the
curves obtained if we parametrize the two-body VP
amplitudes in Eq. (17) by using a double Breit-Wigner-
like shape [Eq. (25)]. In Fig. 4 we also show the individual
contributions of both poles A (dotted line) and B (dot-
dashed line) in the Breit-Wigner approach.
Note that the phase spaces for both B̄0 → J=ψρþK− and

B̄0 → J=ψK�−πþ decays take nonzero values below the
corresponding VP threshold as a consequence of the
convolution with the vector meson spectral function in
order to take into account the finite widths of the ρ and K̄�

mesons. This effect is especially relevant for the ρK̄
channel.
On the other hand, the global normalization factor in

Eqs. (15) and (16) is the same for both decay channels, and
it does not play a relevant role in our results since what
matters is the relative strengths and shapes between the
mass distribution of the different channels and mechanisms
considered. Actually, this global normalization, C, is the
only free parameter in our model.
It is worth noting that the chiral unitary approach

used in this case has a range of applicability up to about
1500–1600 MeV in the invariant mass. We plot the
distributions in the whole range, but one should bear in
mind that the predictions for the high invariant masses are
less reliable.
A first clear observation from Fig. 4 is that the

K1ð1270Þ resonant shape dominates the distributions at
low invariant masses. However, each distribution is mainly
manifesting a different pole associated with the K1ð1270Þ.

In fact, one would expect from the values of the couplings
shown in Table I that the pole Awould manifest more in the
K̄�π distribution and the pole B in ρK̄. Indeed, we see in
Fig. 4(a) that the ρþK− mass distribution has a pronounced
peak at 1284 MeV, which is just the energy region where
the highest K1ð1270Þ pole emerges (pole B in Table I). On
the other hand, in Fig. 4(b) the K�−πþ distribution peaks at
1185 MeV, which is the energy region dominated by the
lowest K1 pole (pole A in Table I). In addition, the former
mass spectrum is narrower than the latter, manifesting the
fact that pole B, which couples mostly to ρK̄, is the
narrower one, with a width around 146 MeV. By contrast,
pole A, with a width equal to 246 MeV, is broader than the
pole B and couples mostly to K̄�π, and then causes the peak
in the K�−πþ distribution to be wider.
The previous discussion is also applicable if we look at

the BW curves obtained by using the double Breit-Wigner-
like amplitudes [Eq. (25)]. The reason for the difference
between the UChPTand BW curves is that the unitarization
amplitudes in Eq. (17) contain the full VP dynamics and
not just the resonant information. We see that this differ-
ence is more relevant for the ρK̄ distribution. If we look at
the individual contributions of the different poles, we
clearly see the dominance of pole B for the ρþK− case
and pole A for the K�−πþ case.
Finally, we study the relative importance of the tree-level

contribution in Fig. 3 compared to the final-state interaction
(implemented here by using UChPT or the Breit-Wigner
approach). This is shown in Fig. 5 where we confront the
results obtained considering only the resonant part (dashed
lines) with those for the whole mechanism: tree-level plus
resonant parts (solid lines). We can see that for the K̄�π
channel the shapes of the UChPT curves with and
without the tree-level contributions are similar in strength
but shifted by about 50 MeV. For the double-pole
Breit-Wigner parametrization the effect of turning off the

(a) (b)

FIG. 5. (a) dΓ=MρþK− invariant-mass distribution for the B̄0 → J=ψρþK− reaction with and without the tree-level mechanism.
(b) dΓ=MK�−πþ distribution for the B̄0 → J=ψK�−πþ channel also compared with the distribution without interference between tree level
and the resonant part of the amplitude.
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tree-level contribution is more visible in the strength of the
spectra than in the shift of the curves. It decreases the
maximum strength of the peak by half its value. For the ρK̄
channel the UChPT curves exhibit a noticeable difference
in their shapes at high energies, but the strength is not
altered much in the resonant region.

IV. CONCLUSIONS

We have theoretically investigated the double-pole
structure of the K1ð1270Þ resonance, which was shown
in Ref. [16] to be dynamically generated through the
pseudoscalar-vector meson interaction in coupled channels,
by looking at the invariant-mass distributions for the ρK̄
and K̄�π pairs, respectively, in the B̄ → J=ψρK̄ and B̄ →
J=ψK̄�π reactions. The final-state interaction mechanism
was implemented employing the chiral unitary approach, in
which the pseudoscalar-vector meson interaction gives rise
to the two K1ð1270Þ poles that, in our model, affect both
the ρK̄ and K̄�π distributions differently. This feature
allowed us to unveil the double-pole structure in these
reactions.
In particular, we have shown that the ρK̄ distribution in

the B̄ → J=ψρK̄ reaction is dominated by the contribution
from the K1 highest mass pole, whereas the lowest
mass pole contributes more for the K̄�π distribution in
the B̄ → J=ψK̄�π decay. As we have pointed out, this is due
to the values of the coupling constants of those poles to the
different channels considered in this work—more
specifically, the ρK̄ and K̄�π channels. On the other hand,
it is important to stress that even though it is possible to see
one pole dominate over the other in each distribution, both
VP spectra still have the two K1ð1270Þ poles contributing
to their shapes. In view of that, we have also modeled the
two-body dynamics by using a double-pole Breit-
Wigner parametrization such that the contributions
of the two poles could be disentangled. In this case,
one expects to observe the manifestation of each pole
separately in the VP spectra to which each resonance
couples most strongly.
An experimental investigation of those reactions

would be most welcome to shed light on the nature
of K1ð1270Þ.
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APPENDIX A: VP INTERACTION IN THE
LOCAL HIDDEN GAUGE APPROACH

We evaluate the VP interaction in the local hidden gauge
(LHG) approach [21–24] through vector exchange, as
depicted in Fig. 6.
For this we borrow the VVV and VPP Lagrangians from

the LHG, given by

LVVV ¼ ighðVμ∂νVμ − ∂νVμVμÞVνi; ðA1Þ

where g ¼ MV=2f (MV ≈ 800 MeV, f ¼ 93 MeV) and

LVPP ¼ −ighVμ½P; ∂μP�i; ðA2Þ

where h…i stands for the trace in SUð3Þ and V, P are the
matrices given in Eqs. (4) and (5). The chiral Lagrangian of
Eq. (18) can be obtained from these Lagrangians in the
following way. First, we make the approximation that the
three-momenta of the vector mesons are very small with
respect to the vector meson mass. This is so in our
particular case, and hence one takes the limit of negligible
three-momenta versus the vector meson mass. In this case,
the vector field Vν in Eq. (A1) cannot correspond to an
external vector of Fig. 6. This is so because if it were an
external vector, then ν ¼ 1, 2, 3 since ϵ0 ¼ 0when pV ¼ 0.
But then we have ∂ν which gives rise to a vector three-
momentum that is zero. Then,Vν is the V 0 vector exchanged
in Fig. 6 and one has a structure like in the VPP
Lagrangian, only with the extra factor ϵμϵ0μ ¼ −ϵ0 · ϵ for
the external vectors.
The amplitude for the diagram of Fig. 6 is then given as

−it¼−gðVμ∂νVμ−∂νVμVμÞijVν
ji

i
q2−M2

V
Vν0
lm½P;∂ν0P�ml;

ðA3Þ

where the indices i, j, l,m are the matrix indices of P and V
in Eqs. (4) and (5) written explicitly to obtain the traces.

FIG. 6. VP interaction through the exchange of vector mesons.
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Since

X
pol

ϵνjiϵ
ν0
lm ¼

�
−gνν0 þ qνqν

0

M2
V

�
δjlδim; ðA4Þ

we readily obtain, neglecting the term qνqν
0
=M2

V consis-
tently with the approximations done,

−it ¼ −i
g2

M2
V
hðVμ∂νVμ − ∂νVμVμÞ½P; ∂νP�i; ðA5Þ

and hence

L ¼ −
1

4f2
h½Vμ; ∂νVμ�½P; ∂νP�i; ðA6Þ

which is the chiral Lagrangian of Ref. [20], as shown in
Eq. (18). This equivalence was already shown in a
particular case for the ρπ interaction in Ref. [24]. Here
we have made a general derivation.
As shown in Ref. [7], the s-wave projected potential for

the transition of channel i to j is given by

Vij ¼ Cij
ϵ · ϵ0

8f2

�
3s − ðM2 þm2 þM02 þm02Þ − 1

s
ðM2 −m2ÞðM02 −m02Þ

�
; ðA7Þ

where M, m, M0, m0 are the initial and final vector and
pseudoscalar masses, respectively, ϵ and ϵ0 are the polari-
zation vectors of the initial and final vectors, and Cij

are coefficients given in Table II of Ref. [7]. Of rele-
vance here are the coefficients CρK;ρK ¼ CK�π;K�π ¼ −2,
CρK;K�π ¼ 1=2.

APPENDIX B: PSEUDOSCALAR EXCHANGE IN
THE VECTOR PSEUDOSCALAR INTERACTION

In Ref. [30] it was pointed out that a source of the VP
interaction is given by the diagram in Fig. 7.
This interaction was also considered in Ref. [27] in the

study of the VP interaction in theDþ → K−πþπþ reaction;
however, this was done in addition to the vector exchange
discussed here in Appendix A, and it was found that the
vector exchange is far more important than the contribution
of pseudoscalar exchange [27,33]. We address this issue
here in connection with our VP channels ρK̄, K̄�π that we
have in the problem under study.
The effect of pseudoscalar exchange was already

addressed in the study of the vector-vector interaction in
Refs. [31,32]. The box diagram of Fig. 8 was evaluated
exactly with the full structure of the four intermediate
propagators. Then, the VV → VV potential obtained there
was added to the one obtained from VV → VV with a

single vector exchanged discussed in Appendix A and the
whole potential was iterated with the Bethe-Salpeter
equation. It was found that the real part of the box diagrams
was negligible compared to the vector exchange, but the
imaginary part provided a source of decay for the found VV
molecular bound states. This was relevant because the
bound VV states without this term had nowidth except for a
small one when considering the width of the vector mesons.
However, the PP intermediate states have a small mass and
provide a large phase space for the decay. The box gave rise
to a width of the VV states but no change in their mass.
The equivalent diagram to Fig. 8 for the VP interaction,

based on Fig. 7, is given in Fig. 9. We evaluate its
contribution here for the case of our interest ρK̄ → ρK̄
and the term is depicted in Fig. 10.
However, unlike in the case of VV, where we need two

steps in the reaction VV → PP × PP → VV to obtain a
VV → VV interaction term, here the single step VP → PV
driven by pseudoscalar exchange already provides a VP →
PV interaction term. In order to quantify the relevance of
the pseudoscalar exchange versus vector exchange, we
compare the contributions of Fig. 11(a) with Fig. 11(b) and
Fig. 12(a) with Fig. 12(b).
We find it sufficient to evaluate the diagrams close to the

ρK threshold to benefit from the approximations discussed

FIG. 8. Box diagram in the VV interaction given by P exchange
and intermediate PP states.

FIG. 7. Source for VP interaction through the exchange of
pseudoscalars.
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in Appendix A when the three-momenta of the vectors
compared to their masses are negligible. In this case, we
have ϵ0 ¼ 0 for the ρ and given the fact that the large
contribution from the diagram involving intermediate K�π
comes when K̄�π is close to on shell and the K̄� has a small
momentum, we also take ϵ0 ¼ 0 for the K̄�. In the
Appendix of Ref. [34] it was found that this assumption
gave surprisingly good results up to relatively large
momenta of the K̄� compared to a full relativistic calcu-
lation for timelike K̄�.
To evaluate the pseudoscalar exchange potential we need

the Lagrangian of Eq. (A2) and the isospin structure of the

jρK̄; I ¼ 1=2; I3 ¼ 1=2i and jK̄�π; I ¼ 1=2; I3 ¼ 1=2i
states given by

jρK̄;I¼1=2;I3¼1=2i¼
ffiffiffi
2

3

r
jρþK−i− 1ffiffiffi

3
p jρ0K̄0i;

jK̄�π;I¼1=2;I3¼1=2i¼−
� ffiffiffi

2

3

r
jπþK�−i− 1ffiffiffi

3
p jπ0K̄�0i

�
:

ðB1Þ
For the vector exchange potentials we use Eq. (A7).
The contribution of the loop diagram of Fig. 11(a) is

given by

−it11a ¼
Z

d4q
ð2πÞ4 g

2ðϵK� · qÞðϵ0K� · qÞ i
q2 −m2

π þ iϵ
i

ðp1 − qÞ2 −m2
K þ iϵ

×
i

ðp1 þ p2 − qÞ2 −m2
K� þ iϵ

ð−iṼK�π;K�πÞðϵ0K� · ϵ00K� Þ; ðB2Þ

with Ṽij given by Eq. (A7) without the ϵ · ϵ0 factor. The q0 integration is performed analytically using contour integration.
For this purpose, we use

1

q2 −m2
π
¼ 1

2ωðqÞ
�

1

q0 − ωðqÞ þ iϵ
−

1

q0 þ ωðqÞ − iϵ

�
; ðB3Þ

and the same for the K̄ propagator. For theK� propagator, because of the heavyK� mass and the fact that it propagates in the
s channel, where it is close to on shell, or eventually on shell, it is sufficient to take into account only the first term in
Eq. (B3)—the positive-energy part of the propagator.

FIG. 9. Box diagram contributing to VP → VP. FIG. 10. Box diagram for ρK̄ → ρK̄ through a K̄�π intermedi-
ate state.

(a) (b)

FIG. 11. Two-step one-meson exchange: (a) pseudoscalar and vector exchange; (b) vector and vector exchange.
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We further take into account that
P

pol ϵ
0̄
K�iϵ

0̄
K�j ¼ δij and that

R
d3qqiqjfðq2Þ ¼ δij

R
d3qq2fðq2Þ=3, which projects

into s wave the term qiqj, and we find

t11a ¼ −
1

3
g2ðϵK� · ϵ00K� ÞṼK�π;K�π

Z
d3q
ð2πÞ3 q

2
1

8ωπωKωK�

�
1ffiffiffi

s
p

− ωπ − ωK� þ i ΓK�
2

×

�
1

p0
1 − ωπ − ωK þ iϵ

þ 1

p0
2 − ωK − ωK� þ i ΓK�

2

�
−

1

p0
1 þ ωK þ ωπ

1

p0
2 − ωK − ωK� þ i ΓK�

2

��
Λ2 −m2

π

Λ2 þ q2

�
2

; ðB4Þ

where ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ q2
p

, we include the K� width, and we have added a form factor for the pseudoscalar exchange. We have
taken Λ ¼ 1200 MeV, as was used in Ref. [31], and in addition we cut the q integration to qmax ¼ 900 MeV, an inherent
cutoff in the loop integration associated with the use of the chiral potentials in Ref. [7].
Using the same argumentation, we obtain for the diagram of Fig. 12(a)

t12a ¼
4

3
g2

1

3
ðϵK� · ϵρÞṼρK;ρK

Z
d3q
ð2πÞ3 q

2
1

8ωπωKωρ

�
1ffiffiffi

s
p

− ωK − ωρ þ i Γρ

2

×

�
1

p0
1 − ωπ − ωK þ iϵ

þ 1

p0
2 − ωπ − ωρ þ i Γρ

2

�

−
1

p0
1 þ ωπ þ ωK

×
1

p0
2 − ωπ − ωρ þ i Γρ

2

��
Λ2 −m2

π

Λ2 þ q2

�
2

: ðB5Þ

The diagrams of Figs. 11(b) and 12(b) are easily evaluated and we obtain

t11b ¼ ðϵK� · ϵ00K� Þ
Z

d3q
ð2πÞ3

1

2ωπ

1

2ωK�

1ffiffiffi
s

p
− ωπ − ωK� þ i Γ

�
K
2

ðṼK�π;K�πÞ2; ðB6Þ

t12b ¼ðϵK� · ϵρÞ
Z

d3q
ð2πÞ3

1

2ωK

1

2ωρ

1ffiffiffi
s

p
− ωK − ωρ þ i Γρ

2

ðṼK�π;ρKṼρK;ρKÞ: ðB7Þ

Next we evaluate the diagram of Fig. 10 which contains two pseudoscalar exchanges. Then, we find for the product of the
two left vertices of Fig. 10

−it̃ρK̄→K̄�π ¼ 4g2ðq · ϵρÞðq · ϵK̄� Þ; ðB8Þ

and for the loop of Fig. 10 including the propagators we find

−it10 ¼ 16g4
Z

d4q
ð2πÞ4 ðq · ϵρÞðq · ϵK̄� Þðq · ϵK̄� Þðq · ϵ0ρÞ

�
i

ðp1 − qÞ2 −m2
π þ iϵ

�
2

×
i

q2 −m2
π þ iϵ

i
ðp1 þ p2 − qÞ2 −m2

K̄� þ iϵ
; ðB9Þ

which, upon summing over the K̄� polarizations,
P

pol ϵ
i
K̄�ϵ

j
K̄� ¼ δij, can be written as

(a) (b)

FIG. 12. Same as Fig. 11 for the K�π → Kρ transition.
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−it10 ¼ −i16g4
∂

∂m02
π

�
i
Z

d4q
ð2πÞ4 jqj

2ðq · ϵρÞðq · ϵ0ρÞ
1

ðp1 − qÞ2 −m02
π þ iϵ

×
1

q2 −m2
π þ iϵ

1

ðp1 þ p2 − qÞ2 −m2
K̄� þ iϵ

�				
m0

π¼mπ

: ðB10Þ

The use of the partial derivative with respect tom02
π saves us one propagator, and then by decomposing the propagators as

in Eq. (B3) and keeping only the positive-energy part for the heavy K̄�, we can immediately perform the q0 integration
analytically using Cauchy residues, with the result

t10 ¼
16

3
g4ðϵρ · ϵ0ρÞ

∂
∂m02

π

Z
dqq6

2π2
1

2ω

1

2ω0
1

2ω�

�
Λ2 −m2

π

Λ2 þ q2

�
4
�

1ffiffiffi
s

p
− ω − ω� þ iΓ�

2

×

�
1

p0
1 − ω − ω0 þ iϵ

þ 1

p0
2 − ω0 − ω� þ iΓ�

2

�
−

1

p0
1 þ ωþ ω0

1

p0
2 − ω0 − ω� þ iΓ�

2

�
; ðB11Þ

where ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþq2
p

, ω0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m02

π þq2
p

, ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K̄� þ q2
q

,

Γ� is the K̄� width, and the energy of VP in the rest frameffiffiffi
s

p ¼ p0
1 þ p0

2.
The magnitude of t10 should be compared to the term

coming from vector exchange tvex, which is evaluated
following Appendix A and gives

tvex ¼ −2
1

4f2
ðp1 þ p3Þðp2 þ p4Þðϵρ · ϵ0ρÞ; ðB12Þ

which can be cast as in Eq. (A7) projected in s wave. We
find at the ρK̄ threshold

tvex ¼ 87.78; t10 ¼ 0.25 − i4.10: ðB13Þ

We summarize the results obtained in Table II for the
energy

ffiffiffi
s

p ¼ 1270 MeV, which is the nominal energy of
the K1ð1270Þ. As discussed above, we take the external
three-momenta to be zero and the on-shell energies p0

1, p
0
2

to be
ffiffiffi
s

p ¼ 1270 MeV. For t10 we use the ρK threshold
dynamics, which leads to Eq. (B13).
As we can see, the contribution of the t11a, with K

exchange, is very small compared to the tree-level VK̄�π;K̄�π
or the box diagram of Fig. 11(b)—about 1% for the real part
or 3% for the imaginary part compared to t11b—which gives
an idea of the relative weight of the pseudoscalar exchange.

One should note that we also have a diagram in which the
vector exchange appears to the left and the pseudo-
scalar exchange appears to the right in Fig. 11(a), which
would double its contribution but, although smaller than
the contribution of Fig. 11(b), we also have an extra
contribution of the type of t11b coming from Fig. 11(b)
with the ρK intermediate state, so the corrections from
pseudoscalar exchange are really small. If we look at t12a and
t12b the effect seems to be relatively larger: 10% for the real
part and 44% for the imaginary part. But, if one compares the
imaginary part with the real part it is only a 16% correction.
Once again, we would double the strength of this mecha-
nism by exchanging the π and V exchange in Fig. 12(a), but
we also double the strength of Fig. 12(b) by adding K�π in
the intermediate state. We should also note that the relatively
larger corrections found in the case of the K̄�π → ρK̄
transition in Fig. 12 affect an amplitude which, as seen in
Appendix A, has a strength 1=4 of the diagonal K̄�π → K̄�π,
ρK̄ → ρK̄ transitions, as a consequence of which there
is a small mixing of K�π and ρK which is not affected
by themaximum 16% correction to theK�π → ρK transition
term that has a strength of 1=4 of the diagonal ones.
The contribution of the box diagram of Fig. 10 with

the exchange of two pions given by the t10 in Table II
is also very small, and so is that of the similar
box diagram for K�π → K�π with the ρK̄ interme-
diate state.

TABLE II. Values of the different box diagrams calculated at
ffiffiffi
s

p ¼ 1270 MeV. The different ti refer to the corresponding diagram of
Fig. i.

ṼK̄�π;K̄�π ṼρK;ρK ṼK̄�π;ρK

−82.25 −89.34 21.85

t11a t11b t12a t12b t10

−0.80 − i1.87 −64.7 − i61.1 −1.96 − i3.01 18.73þ i6.73 0.25 − i4.10
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