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Abstract: Multimode fibers have been extensively used in short-range communication systems
and optical imaging. More recently, they have been considered for optical computing by exploiting
the complex spatial and spatio-temporal transformation at the fiber end. Mimicking the dendrites
of real neurons, we consider here the spatial modes that propagate with different group velocities
along the fiber as different dendritic branches. The multimode fiber plays the role of an optical
dendritic unit and the signals obtained from the different dendritic branches are temporally mixed
and used for spatio-temporal information processing. We numerically demonstrate the use of
a few-mode, step-index fiber as a linear computing element in an ultra-fast spatio-temporal
coincidence detector that operates at 40 Gb/s data encoding rate. We evaluate this detector as a
linear classifier in header recognition and bit counting tasks.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

As a result of the increasing computing demands of our globally connected society, novel
computing paradigms are on the rise [1]. A promising candidate for novel computing solutions is
the so-called neuromorphic (brain-inspired) computing, which targets the goal of transferring
computational mechanisms used by biological brains to hardware systems [2]. In the quest for
alternative computing paradigms, unconventional physical substrates for computing are also
explored [3–6]. In this context, optical systems have several advantages, in terms of operational
speed, low energy consumption, and parallelism, compared to traditional electronic systems,
which could be exploited for computing [7].

Optical multimode fibers (MMFs) have been used as a highly scattering medium, which
scrambles the coherent light and produces random patterns that can be used for endoscopic
[8] or other imaging applications [9,10]. Recently, they were proposed as hardware elements
for unconventional computing [6,11–14]. In particular, MMFs came into the spotlight as
a medium that can convert an input optical intensity distribution to output spatial patterns
with high complexity. Depending on the geometry of the fiber, the refractive indices of the
core/cladding layers, and the light wavelength used at the input, different intensity profiles
of the supported spatial modes of the fiber may be obtained. At the fiber output, the overall
intensity profile is the result of the linear superposition of the spatio-temporal modal electric
fields. This input-to-output transformation in MMFs has been considered for optical computing
functionalities, such as age prediction from images of faces and audio speech classification
[6]. One can use MMFs or multimode waveguides and their input-to-output transformations
as physical substrates, not only for spatial, but also for spatio-temporal information processing
exploiting multidimensional speckle dynamics [13]. In this context, most of the works carried
out so far focus on the combination of MMFs and artificial neural network architectures to
perform computing tasks such as learning of ultrafast pulses [15], image classification [16] and
identification [17], computational mode decomposition [18], or prediction fiber optics nonlinear
dynamics [19]. Multi-core optical fibers [17,20] and multimode waveguide ring resonators [21]
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have also been suggested as an alternative physical substrate for the implementation of artificial
neural networks.

The spatio-temporal properties of light propagation in MMFs share a certain analogy with
the propagation of electric signals in the dendrites of biological neurons [22]. This analogy
can be utilized for information processing, since dendritic computation has been identified as
a major computing resource [23]. In particular, the complex morphology of the dendrites, in
combination with synaptic adaptation, can be seen as a set of powerful, spatio-temporal pattern
detectors [24]. Only a single dendrite has a computational power similar to that of a multi-layer
perceptron [24,25].

Here, we go beyond previous works by exploiting the spatio-temporal aspects of light
propagation in MMF for computing purposes. We present a numerical simulations-based proof-
of-concept that exploits the computational power of a few-mode fiber (FMF) for configuring an
ultra-fast spatio-temporal coincidence detector. Specifically, we make use of the different group
velocities of the various fiber modes to define individual dendritic branches. Each dendritic
branch is composed of all the spatial modes with the same group velocity. The temporal mixing
of the different modes introduces a short-term memory of any time-encoded information. In our
configuration, we consider a FMF that supports up to four dendritic branches. By introducing
a mismatched alignment between the incident beam and the fiber axis of the FMF at the fiber
input, we can control the number of active dendritic branches via the spatial fiber modes that are
excited. This leads to different spatial intensity beam profiles at the output. The optical output
is detected by single-area or segmented photodetectors (2x2 and 3x3 arrays) and is fed into a
logistic regression classifier to execute computing tasks, based on coincidence detection schemes.
We evaluate the classification performance of our optical dendritic unit (ODU) in two temporal
tasks: a 4-bit header recognition and a "1"s counter for the 4-bit header.

2. Description of the concept

The operating principle behind the FMF-based ODU operation is shown in the geometrical
representation of Fig. 1. The temporal mixing of an input signal occurs as it propagates with
different group velocities, via the different spatial fiber modes. Modes with the same group
velocity contribute to the same dendritic branch of the ODU. Standardized MMF at 1550nm have
core diameters of 50 µm or 62.5 µm and support hundreds of spatial modes. Here, we focus
on fiber designs with smaller diameter cores (FMF) that support only a small number of spatial
modes. The reason for this selection is to investigate an ODU with a small number of dendritic
branches and to easily decompose the contribution of each fiber mode to the spatio-temporal
optical pattern obtained at the output of the fiber. However, this concept can be generalized to
MMFs with large core diameters and hundreds of spatial modes.

Fig. 1. A ray representation of light propagation in a MMF (FMF). An input optical signal
x(t = 0) may follow different paths (rays) in the propagation medium of physical length L.
At the fiber end, the signal xM arrives at different times (t1 − t3), depending on the ray path
that was followed (M1 − M3).
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2.1. Spatio-temporal propagation and definition of the ODU

In a spatio-temporal description of pulse propagation in a MMF, along the longitudinal coordinate
z and under the weakly guiding approximation, the electric field can be represented as a
composition over all the modes supported by the fiber [26]:

E(x, y, z, t) = Re[
∑︂

p

ψp(x, y,ω0)

Np(ω0)
Ap(z, t) exp−iω0t] (1)

where ω0 is the central optical frequency, ψp(x, y) is the spatial profile and Ap(z, t) is the slowly
varying complex envelope of the electric field of the pth mode. The index p enumerates the LP
modes in our study (Fig. 2). Np(ω0) is a normalization coefficient which ensures that the power of
the pth mode is given by |Ap(z, t)|2. Each mode has a different propagation constant, β(p), which
determines the phase velocity of the electric field of the pth mode. In our numerical simulations
we use the model of the multimode generalized nonlinear Schrödinger equation (MM-GNLSE),
as presented in [27,28]. We assume linear propagation, so only the corresponding linear terms
are considered. These are the terms that appear in the wave equation, derived from Maxwell’s
equations in a dielectric medium. The equation that gives the electric field’s temporal envelope
of the pth spatial mode in the linear regime is:
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The pulse propagation is studied here using the propagation of the fundamental mode as a time
reference. Consequently, the terms ∆β(p)0 and ∆β(p)1 express the propagation constant difference
and the inverse group velocity difference with respect to the fundamental mode LP01, respectively.
The third term of the equation represents higher-order dispersion effects, where we set Nd = 4.
The terms in Eq. (2) result from approximating the frequency dependence of the propagation
constant of each mode with a Taylor series around ω0, and then applying a transformation in the
time domain. We solve Eq. (2) in the spectral domain, by applying the dispersion operator to
the electric field at the input of the fiber. Linear mode coupling is not considered here, as we
numerically model an ideal straight-line FMF without any perturbations.

Fig. 2. Spatial normalized intensity profile of the p = 1 to 8 modes supported by a step-index
FMF, with core diameter of 14 µm, at λ0 = 1550 nm.

In our FMF design, we consider silica material with a step-index profile for the core’s refractive
index, a refractive index difference between core and cladding of 0.0139, and a core diameter of
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14 µm. This design, at a wavelength of λ0 = 1550 nm, supports in total 8 modes, which correspond
to five groups of LP modes: LP01, LP11, LP21, LP02, and LP31, including the degenerate mode
families: LP11a/LP11b, LP21a/LP21b, and LP31a/LP31b. The linearly polarized LPj1 modes
(j ≥ 1) are two-fold degenerate, with each of the modes having different azimuthal variations of
intensity, while the LP0m modes (m ≥ 1) are instead circularly symmetric and non-degenerate.
The degenerate LP modes have the same propagation constant and therefore the same group
velocity. In Fig. 2, we show the corresponding spatial intensity patterns of all the supported fiber
modes. Fig. 3 (left) shows the inverse group velocity of the supported fiber modes with respect
to that of the fundamental LP01 mode (p = 1). This FMF design supports spatial modes with
four different group velocities, thus defining four dendritic branches (D1-D4). Those modes that
contribute to the same dendritic branch are shown with the same color in Fig. 3. The first branch
(D1) is defined by the fundamental mode LP01 (p = 1). The second branch (D2) consists of the
degenerate modes LP11a/LP11b (p = 2 and 3). The third branch (D3) comprises three modes,
the degenerates LP21a/LP21b (p = 4 and 5) and the mode LP02 (p=6). Finally, the fourth branch
(D4) is formed by the degenerate modes LP31a/LP31b (p = 7 and 8).

Fig. 3. Left: Inverse group velocity difference between the LP01 mode (p = 1) and the rest
of the modes guided in the FMF. The eight different fiber modes p define four dendritic
branches (different colors). Right: Temporal profile of a 25 ps Gaussian optical pulse
coupled at the input of the FMF (top), after a propagation of L=4.5 m (middle), and 9 m
(bottom). The four output pulses emerge after fiber propagation, due to the group velocity
difference that characterizes the dendritic branches D1-D4.

In Fig. 3 (right top), we show the propagation of a 25 ps Gaussian optical pulse in the FMF at
different distances. After L=4.5 m (Fig. 3 right middle), the pulse has propagated through the
different modes of the fiber and the corresponding dendritic branches (shown in different colors).
The emerging multiple pulses are separated in time by ∆β(p)1 · L, where L is the propagation
fiber length. At this length and for the chosen FMF design, the four dendritic branches result
in output pulses in subsequent neighboring time frames of 25 ps each. Thus, delayed copies
of the input pulse information become available in these time frames, which can be exploited
as computational short-term memory. The temporal separation of the output pulses increases
linearly with the fiber length. Thus, if we double the FMF length to L=9 m (Fig. 3 right bottom),
the delayed copies of the information become more separated in time, although they do not cover
subsequent time frames. In this case, a longer memory could be exploited.

In this study, we consider the case of a FMF with L=4.5 m, and we implement a coincidence
detector using the available information in four neighboring time frames of 25 ps. In Fig. 4, we
illustrate the temporal propagation of a sequence of five optical Gaussian pulses of 25 ps duration
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each. After this propagation length, the temporal distribution of one input pulse lies within a
duration of 100 ps. For better understanding, we decompose the temporal output pattern that is
obtained at the end of the FMF, for each of the five input pulses, in a sequence of temporal frames.
Input pulse #1 results in the output frame #1, input pulse #2 results in the output frame #2, etc. In
this representation, we can visually evaluate the temporal overlap between the subsequent input
pulses at the output of the FMF. For example, in the time frame between 75 ps and 100 ps, the
longest dendritic branch of the input pulse #1 (output frame #1, purple color) coincides with the
shortest dendritic branch of the input pulse #4 (output frame #4, blue color), and also with the
intermediate group velocity dendritic branches of input pulses #2 and #3 (output frames #2 –
yellow color and #3 – red color, respectively). Input pulses that are separated by more than 100ps
will not temporally mix at the output (e.g. pulse #1 and #5, and the corresponding output frames
#1 and #5, respectively). In this case, fiber lengths longer than L=4.5 m need to be considered to
extend the coincidence time window.

Fig. 4. Temporal sequence of five 25 ps Gaussian pulses launched sequentially at the input
of the FMF (input panel). Each of the input pulses propagates along the FMF with four
different group velocities, emulating equal number of dendritic branches. Input pulse #1
results in the output frame #1, etc. Within a time window of 25 ps, the information of four
input pulses is mixed. The propagation length is L=4.5 m.

2.2. Modal intensity distribution

When an input optical beam is symmetrically coupled to the cylindrical axis of the fiber, the
overlap integral of the input distribution with the fundamental fiber mode is maximized and
almost the entire optical intensity propagates in the LP01 mode. Here, we aim to excite multiple
propagation fiber modes with similar power. This can be achieved by misaligning the input
optical beam with respect to the fiber propagation axis. The misalignment can be introduced
either by transverse displacement or by angular tilt of the input beam. Although this approach
results in a reduced overlap integral of the input distribution with the fundamental fiber mode,
it also redistributes the optical intensity between the different modes that are supported in the
fiber. In our ODU interpretation this is equivalent to activating different dendritic branches. In
Fig. 5, we show three examples of light coupling at the input of the FMF and the corresponding
optical power distribution to the different spatial modes. To obtain the ratio of optical power
coupled into each of the supported modes, we calculate the overlap integral of the input electric
field distribution of a linearly polarized Gaussian optical beam, with a waist of 12µm (Ei(x, y)),
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and the electric field supported by the corresponding mode (Ep(x, y)) [29]:

η =
|
∬

Ei(x, y)E∗
p(x, y)dxdy|2∬

|Ei(x, y)|2dxdy
∬

|Ep(x, y)|2dxdy
(3)

Fig. 5. Top: Transverse displacement of the optical beam coupled to the FMF core: (a)
0,0 (perfect alignment), (b) 4,4 and (c) 8,8, in µm. Bottom: Normalized optical power
distribution to the FMF modes, for the corresponding three displacement conditions (a-c).
The total power refers to the ratio of the optical power received at the output compared to the
input. The input optical beam waist is 12 µm. The white dashed line in (a-c) indicates the
position of the fiber’s core.

For a perfect alignment (Fig. 5(a)), 98% of the optical power is concentrated in the LP01 mode.
The remaining power is either guided in other modes or is lost through unguided, radiative modes.
This solitary mode indicates the existence of only one dendritic branch (D1). When displacing
the input beam by 4 µm in both transverse directions, the total optical power coupled into the
fiber is reduced to 75%, but five modes are supported (Fig. 5(b)). These modes activate three
dendritic branches (D1, D2, and D3), as dendritic branch D4 is associated with the two degenerate
modes of LP31 that have a negligible contribution to the optical power. By further increasing
the displacement of the input optical beam to 8 µm in both directions, the total optical power
coupled into the fiber is further reduced to 13%. However, the number of modes that carry the
optical power increase to seven and their power distribution is more balanced (Fig. 5(c)). These
seven modes activate all four dendritic branches (D1-D4). As it becomes evident, the transverse
displacement coupling parameter is critical to our investigations, since it determines the presence,
as well as the shape and the power distribution, of the spatial profile of each dendritic branch at
the output of the FMF.

3. Definition of benchmark tasks and ODU computing

In this section, we describe the operation of the proposed ODU as a linear classifier, applied on
two different digital tasks, where the input is a sequence of binary digits. The concept of the ODU
computing scheme is shown in Fig. 6 and is explained below. The bit "1" is represented by the
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presence of a 25 ps Gaussian optical pulse, while the bit "0" is represented by its absence. This
encoding is emulated by modulating the optical beam at the input of the FMF, at a rate of 40 Gb/s,
with the aforementioned Gaussian pulse. The ODU consists of the FMF segment of L=4.5 m
and follows the operation shown in Fig. 4. The first benchmark task is a 4-bit header recognition,
i.e. the correct classification of the 16 different possibilities of a 4-bit sequence. The target of the
4-bit header recognition task for the ith input bit (bi) is the output pattern yh

i = (bi−3, bi−2, bi−1, bi).
The second benchmark task is a bit ’1’ counter of this 4-bit sequence, where for each bit bi the
target is yc

i =
∑︁i

j=i−3 bj.

Fig. 6. Schematic of the FMF ODU computational concept. The two-colored striped pulses
of the output sequence, after FMF propagation, indicate the mixing of the input information
with the corresponding color. In the spatial domain, we obtain the output intensity pattern
distribution Ii(x, y) of each input bit bi. Here we show photodetection of the optical intensity
by a 2x2 array, which results into n = 4 feature values (F1 −F4) that are used by the classifier
to give the corresponding output yi.

To solve the above tasks, we first obtain the spatio-temporal intensity pattern at the output of
the FMF for each ith input bit, Ii(x, y). This is calculated by integrating over the pulse duration (25
ps) the intensity of the electric field at the output of the FMF. For example, the spatio-temporal
intensity pattern for the encoded bit #5 in Fig. 4 is equal to: I5(x, y) =

∑︁125 ps
t=100 ps |E(x, y, t)|2.

This intensity pattern, I5(x, y), contains information on only four bits, the current bit (#5)
and the previous three bits (#2 to #4). Therefore, only 24 = 16 possible intensity spatial
profiles can be obtained at the FMF output. Fig. 7 shows these spatial intensity profiles for a
transverse displacement between the optical input beam and the FMF core center of 8,8 µm. The
intensity profiles were normalized in the interval [0,1], with 1 (0) corresponding to the maximum
(minimum) intensity value of all 16 possible combinations.

To ensure that our numerical method is sufficiently robust, we add Gaussian white noise, with
an initial signal-to-noise ratio (SNR) of 30 dB, to our system. The noise origin is associated with
the spontaneous emission noise of the optical input source and the photodetection stage. We
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Fig. 7. Normalized spatial intensity distribution at the output of the FMF for all the 4-bit
header encoding combinations (bi−3, bi−2, bi−1, bi), except for the 0000 pattern that results
in zero optical intensity. Optical input beam waist: 12 µm. The transverse displacement
between the optical input beam and the FMF core center is 8,8 µm. The white line indicates
the core of the fiber.

generate 103328 symbols (each symbol has 4 bits) subject to this noise, of which 3328 symbols
are used in the training data set and the remaining 105 are used in the test set. Both data sets are
class-balanced.

Depending on the photodetection approach that we adopt, n output features may be obtained
from the spatial intensity profile that can be used for training the logistic regression classifier.
Specifically, when we detect the entire spatial area of the output intensity profile with a single
photodetection element, the overall integral is calculated, and a single value of intensity is
available for training the classifier. This results in a single output feature (n=1). However,
more detailed information can be obtained at the detection stage by considering segmented
photodetection, i.e. a rectangular photodetection array with multiple sections. For example,
a 2x2 photodetection array (Fig. 6 and Fig. 7, case 0001, dashed white frames), also known
as quadrant photodetector, divides the intensity profile Ii(x, y) into four non-overlapping and
equal-area sections. The intensity integration is performed in each section. This approach results
in n=4 output features that are now available to train the classifier and obtain the output target
yi. When considering a 3x3 photodetection array (Fig. 7, case 1000, dashed white frames) the
intensity profile is divided into nine non-overlapping sections, increasing the number of output
features to n=9.

The tasks described require computing systems with memory. In our case, the ODU has
finite-time memory of previous states due to the different group velocities of the spatial modes.
For tasks requiring memory, reservoir computing has recently become quite popular, whose
– conceptually unlimited – fading memory originates from recurrent neural networks [30],
dissimilar to our approach. Similar finite-time memory has been obtained by using tapped-delay
neural network architectures [31]. In contrast, our FMF approach has the advantage that it does
not require any delay-tapping.
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4. Results

First, we address the 4-bit header recognition task. We consider a transverse displacement
condition between the optical input beam and the FMF’s front facet that activates all four dendritic
branches. We use the example presented in Fig. 5(c), with 8 µm displacement in x and y directions.
We consider first a single photodetection unit and integrate over the overall spatial profile of
the output intensity and the temporal duration of one pulse (25 ps). In this case, the spatial
distribution of the intensity is not taken into account in the computation. Thus, n = 1 feature is
used in the classifier, leading to symbol error rates (SER) above 10−2 in the pattern estimation
of the 4-bit header, for all displacement conditions. The reason is that multiple pairs of header
sequences, such as 0100,1100 or 0001,1001, result in almost the same output intensity integral.
To improve the classification performance, we consider a photodetection array with a 2x2 grid
distribution (Fig. 7, case 0001, dashed white frames). We consider that each panel of the array
grid has a dimension of half of the fiber diameter, i.e. 7 µm x 7 µm. The overall spatial intensity
profile is now segmented into four sections, and more information becomes available to the
classifier’s input. The corresponding integrated optical intensity in each panel of the 2x2 grid,
over the 25 ps temporal window, is shown in Fig. 8. When the 4-bit header includes more "1"s,
the overall power in all grids is higher. By applying the logistic regression classifier, we obtain
an error-free symbol classification for the 4-bit header recognition task in the test set. Since we
consider 105 symbols in the testing data set, error-free classification means that the error rate is
below the resolution of our computation, which is 10−5.

Fig. 8. Normalized optical intensity for all the 4-bit header encoding combinations, except
for the 0000 pattern that results in zero optical power, obtained from the spatio-temporal
patterns of Fig. 7, when integrated in four panels of the 2x2 photodetection array, over a 25
ps window.

In the previous evaluation, a specific condition for the transverse misalignment of the input
coupling was considered (8 µm displacement in both x and y directions). In the following, we
study the impact of different transverse displacement conditions on the classification SER of the
4-bit header recognition task. We also use the same methodology to evaluate the classification
capabilities of the ODU in the counter of "1"s task. In Fig. 9, we show the classification
performance for these two tasks, for different photodetection approaches, versus the coupling
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displacement between the input optical beam and the FMF in the (x, y) directions. The variation
of the displacement is performed in steps of 1 µm, in both dimensions. A value of SER=10−5

indicates one or zero errors in the classification performance.

Fig. 9. Symbol error rate of the 4-bit header recognition task (a-c) and error rate of the
counter of "1"s task (d-f) vs. the transverse displacement of the input optical beam with
respect to the FMF core center. The optical intensity at the output is obtained via a single
photodetector (a,d), a 2x2 photodetection array (b,e), and a 3x3 photodetection array (c,f).
The displacement resolution step in both x and y axes is 1 µm. The contour circle line (0.1)
indicates the displacement that results at the output 10% of the input optical power. Larger
displacements lead to lower output power, due to higher coupling losses.

First we study the impact of the output detection approach for the 4-bit header recognition task
(Fig. 9, top panels). When considering a single photodetection element (Fig. 9(a)), we do not find
any displacement condition that leads to zero errors in the test dataset. When considering a 2x2
photodetection array (Fig. 9(b)), we obtain zero errors for displacements above 8 µm in both axes.
We observe that, by increasing the displacement further, this performance is preserved, although it
is obtained via a gradually reduced optical power. Eventually, when the detected power becomes
very small, the SNR of the system degrades significantly and the system performance is affected
by the photodetection noise. In contrast, when the displacement is small – as shown in Figs. 5(a)
and 5(b) – some dendritic branches are not activated and the ODU does not have the required
short-term memory to solve this task. As a result, the classification performance is poor. Thus,
the sweet spot of best performance requires sufficient SNR and sufficient power in the different
dendritic branches. In Fig. 9(c) we evaluate the SER of the 4-bit header task with the 3x3 array
detection scheme. A better performance is achieved, when considering smaller input coupling
displacements compared to the 2x2 grid. A displacement of at least 6 µm in both axes is now
enough to obtain SER values below the 10−5 resolution.

In a similar way, we evaluate the error rate of the ODU for the counter of "1"s task (Fig. 9,
bottom panels). When considering a single photodetection element, the classification performance
is poor for all displacement conditions (Fig. 9(d)). When considering the 2x2 photodetection array
(Fig. 9(e)), we find now a much narrower parameter space that provides zero errors, compared
to the 4-bit header recognition task. By considering a 3x3 photodetection array (Fig. 9(f)), the
classification shows zero errors for displacements of at least 7 µm in both axes.
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Finally, we evaluate the performance of these two tasks, by considering lower SNR conditions.
In Fig. 10 we show the lowest error rate obtained for different values of the output SNR, for the
two tasks, and for considering the 2x2 and 3x3 photodetection arrays. Each error rate value is
obtained by considering ten repetitions of 105 test samples and is calculated as the mean value
(white-filled triangles). With the error bars, we indicate the highest and lowest error among all
repetitions. For the SNR cases in which no errors are found, the mean error value is indicated with
color-filled triangles, at the resolution level of the computation (10−5). Moreover, the error rate
values correspond to those displacement conditions in the x, y axes that result in the lowest error.
In all cases, the 3x3 photodetection array offers better classification, as more useful information
can be processed by the classifier. The 4-bit header recognition task is easier to solve in the
presence of noise, as a detected signal with SNR of 20dB is enough to result in zero classification
errors. This performance is also achieved for the "1"s counter task, but only for a higher SNR.

Fig. 10. Classification performance of the 4-bit header recognition and the counter of "1"s
tasks vs. the SNR of the detected signals, for a 2x2 and a 3x3 photodetection array. Ten
repetitions of 105 symbols of the testing data set were considered. The error bars indicate
the maximum and the minimum error rate, among all repetitions. The white-filled triangles
indicate the mean error rate of the total number of symbols. The color-filled triangles
indicate that no errors are found at the resolution level of each computation (10−5).

Scaling up the segmentation of the detection array allows obtaining an accurate classification
with smaller input displacements, and thus higher optical power in the ODU. The compromise
in this approach is using a more complex detection architecture. For more difficult tasks – e.g.
header recognition with a higher number of bits – more dendritic branches in the FMF (or MMF)
and an extended detection array are needed, such that the classifier accesses more information
from the output spatial intensity profiles. For example, the spatio-temporal patterns could be
experimentally detected via temporally resolved imaging by differential analysis [32] or via
spatially resolved temporal imaging [33].
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5. Conclusions

In this work, we demonstrated a FMF as an equivalent ODU with four dendritic branches, that
operates as a spatio-temporal coincidence detector. Temporal information of 40 Gb/s rate was
encoded at the input and dispersed along the FMF propagation, introducing multiple delay paths
with short-term memory. We showed that the spatio-temporal information at the output of a
short-length FMF can be efficiently used to solve different linear computation tasks. With the
appropriate fiber parametrization and length, the number of branches can be scaled up, as more
modes with different modal dispersion become available. An increased number of dendritic
branches and ODUs will allow the implementation of more complex tasks, such as header
recognition of longer patterns.

The ODU, as introduced here, builds on the analogy with biological neurons. This analogy
could be taken further by introducing nonlinearities in the optical path as suggested in [34] and,
importantly, adaptation in the input-to-output optical transformation. Since adaptation (plasticity)
in biological neurons often works on slower timescales than the rate of the input information
[35], one could introduce optical elements such as spatial light modulators or digital micromirror
devices to adapt the input-to-output spatio-temporal transformation to the desired functionality.
These optical elements have been successfully employed in other optical computing approaches
[6,36], showing the potential of this strategy.
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