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Globally coupled maps (GCMs) are prototypical examples of high-dimensional dynamical systems. Inter-
estingly, GCMs formed by an ensemble of weakly coupled identical chaotic units generically exhibit a hyper-
chaotic ‘turbulent’ state. A decade ago, Takeuchi et al. [Phys. Rev. Lett. 107, 124101 (2011)] theorized that
in turbulent GCMs the largest Lyapunov exponent (LE), λ(N), depends logarithmically on the system size N :
λ∞ − λ(N) ' c/ lnN . We revisit the problem and analyze, by means of analytical and numerical techniques,
turbulent GCMs with positive multipliers to show that there is a remarkable lack of universality, in conflict with
the previous prediction. In fact, we find a power-law scaling λ∞ − λ(N) ' c/Nγ , where γ is a parameter-
dependent exponent in the range 0 < γ ≤ 1. However, for strongly dissimilar multipliers, the LE varies with
N in a slower fashion, which is here numerically explored. Although our analysis is only valid for GCMs
with positive multipliers, it suggests that a universal convergence law for the LE cannot be taken for granted in
general GCMs.

I. INTRODUCTION

Scaling laws pervade physics. In particular, in the field of
chaos theory, universal routes to low-dimensional chaos with
specific scaling properties were already discovered long time
ago [1]. In contrast, high-dimensional chaos— observed in
systems with many “active” degrees of freedom— remains
only partly understood [2], and scaling laws are often based
on more or less heuristic arguments. Regarding discrete time
systems, certain scaling laws have been found for coupled-
map lattices [3–5] and globally coupled maps (GCMs) [6, 7].

Concerning GCMs, a rich repertoire of phenomena are
known [8, 9], including multistability, clustering, chimera or
turbulence. Here, we focus on the turbulent regime in GCMs
found at weak coupling. The study of turbulent GCMs extends
over several decades. An early striking discovery was the
nonstationarity of the mean field in the infinite size limit [9–
12]. Subsequently, several papers characterized the collec-
tive properties of chaos in turbulent GCMs [13–16]. Finally,
Takeuchi et al. [7] uncovered the delicate arrangement of the
Lyapunov exponents underlying turbulent GCMs: The Lya-
punov spectrum is apparently extensive, but “subextensive
bands” persist for arbitrarily large system sizes at both ends
of the Lyapunov spectrum. In the same work [7], see also
Chap. 11 of [17], a partially analytic treatment concluded that
the largest Lyapunov exponent (LE) λ converged to its asymp-
totic value λ∞ logarithmically with the system size N :

λ∞ − λ(N) ' c

lnN
. (1)

Here c is a positive constant, and the symbol' denotes equal-
ity after neglecting marginal contributions in N .

In this paper, we study turbulent GCMs with positive mul-
tipliers, finding that the LE converges to its infinite-size limit
in a strongly nonuniversal manner. We show that, depending
on the coupling strength and multipliers statistics, the LE can
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follow either a power law

λ∞ − λ(N) ' c

Nγ
with 0 < γ ≤ 1, (2)

or still a different, arguably slower, convergence law with N
in certain situations.

Our results have important implications for turbulent
GCMs with multipliers adopting both signs. The theoretical
approach developed in [7], and claimed to support the scaling
law (1), did not require any condition on the sign of the multi-
pliers. Still, for positive multipliers, we find a different scaling
law, given by Eq. (2). We solve this conflict by re-thinking the
theoretical analysis done by Takeuchi et al. [7] and pointing
out a loophole in their argumentation. In consequence, the
actual asymptotic scaling law of the LE for general GCMs
(i.e. with positive and negative multipliers) remains to be rig-
orously determined. At the light of our results, even the mere
existence of a unique scaling law for λ(N) turns out to be
uncertain.

II. GLOBALLY COUPLED MAPS

The dynamics of a population of N globally coupled one-
dimensional maps is iteratively governed by

yt+1
i = f

(
(1− ε) yti + εȳt

)
, (3)

where the index i ∈ {1, . . . , N} labels the i-th map and
ȳt ≡ N−1

∑N
j=1 y

t
j yields the all-to-all coupling. Here t is

a discrete index for time. For each map, yi is a scalar variable
and the nonlinear function f defines the map. f is chosen such
that yields chaotic dynamics for the uncoupled maps (ε = 0).
For small values of the all-to-all coupling ε the GCM (3) dis-
plays a fully turbulent phase [8] with N positive Lyapunov
exponents.

To calculate the LE Eq. (3) is linearized, thereby obtaining
the mapping rule for infinitesimal perturbations, vti ≡ δyti :

vt+1
i = f ′

(
(1− ε)yti + εȳt

)
×
[
(1− ε) vti + εv̄t

]
(4)

where f ′ stands for the derivative of f , and v̄t ≡
N−1

∑N
j=1 v

t
j . The time- and site-dependent factors f ′ are
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FIG. 1. (a) Skewed-Bernoulli map (6) with b = 4. (b,c) Two alter-
native forms of representing the LE of the SB-GCM as a function of
the system size N , see x-axis. Parameters are ε = 0.02, b = 4, and
the largest size is N = 409600. The goodness of the linear fittings
is indicated in each panel by the regression coefficient R2.

hereafter referred to as the multipliers of the tangent dynam-
ics. As time evolves, an arbitrary initial N -vector v0 =
(v01 , . . . , v

0
N ) converges to a statistically stationary configu-

ration vt, called the Lyapunov vector.
The LE is a scalar quantity that characterizes the aver-

age exponential growth rate of infinitesimal perturbations:
λ = limt→∞

1
t ln ‖vt‖. We may also obtain λ averaging the

instantaneous logarithmic growth rate of the Lyapunov vector:

λ =

〈
ln

(
‖vt+1‖
‖vt‖

)〉
. (5)

The bracket denotes the average over an infinite trajectory.
According to the multiplicative Oseledets theorem [17, 18],
the value of λ is (with probability one) the same for all ini-
tial perturbations vt=0, and all orbits starting in the basin of
attraction of the chaotic attractor, provided the system is er-
godic. Moreover, λ is an invariant that does not depend on the
coordinate system nor on the specific norm type used in (5).

In general the Lyapunov vector components may fluctuate
between positive and negative signs. However, if f ′ takes only
positive values, then all the Lyapunov vector components have
the same sign (in other words, this is an absorbing configura-
tion).

III. PRELIMINARY NUMERICAL EVIDENCE

As a prototype of map with positive f ′ (multipliers) we
choose the skewed-Bernoulli (SB) map:

fSB(x) =


b x if 0 ≤ x ≤ 1

b
bx− 1

b− 1
if

1

b
< x ≤ 1

(6)

FIG. 2. Empirical values of the exponent −γ for the SB-GCM as a
function of the map parameter b. The coupling constant is fixed at
ε = 0.02. The red dashed line corresponds to the theoretical result
for the RM model with bi-delta multipliers and the same parameter
values.

Parameter b controls the chaoticity of the map. Figure 1(a)
shows fSB(x) for parameter b = 4. The LE of a single un-
coupled map depends on b as λ1 = ln b− (1− 1/b) ln(b− 1),
which takes the reference value λ1 = 0.5623 . . . for b = 4.
We adopt b > 2, since for b = 2 (skewness-free case) the
dynamics is trivially chaotic with no intermittency.

Hereafter, the GCM made up of SB maps is referred to
as SB-GCM for abbreviation. The coupling constant ε in
Eq. (3) is chosen small, as this ensures a fully turbulent dy-
namics. The reference value ε = 0.02 was selected in [7] and
in Chap. 11 of [17]. The numerical value of the LE for the
SB-GCM with (b, ε) = (4, 0.02) and different system sizes
is represented in Figs. 1(b) and 1(c). In each plot a different
scaling with N is assumed. In Fig. 1(b) we represent 1/ lnN
in the x-axis, and a linear fit yields λ∞ and the slope −c. For
comparison in Fig. 1(c) a power-law scaling of the LE, see
Eq. (2), is assumed instead, such that the data are fitted to a
straight line in log-log scale: ln[λ∞ − λ(N)] = k − γ lnN .
Our strategy was to determine what value of λ∞ yields an op-
timal linear fit to our data. For the particular choice of the cou-
pling strength ε = 0.02 and b = 4 we obtain γ = 0.36. The
fitting is apparently superior with the power law than with the
logarithmic law. However, in the former case we have three
fitting parameters instead of two.

In order to increase the numerical evidence we measured
the LE for several values of b (fixing ε = 0.02) and deter-
mined the exponent γ following the procedure outlined above.
Figure 2 shows the measured value of γ as a function of b. A
significant variation in the value of γ is apparent. The main
goal of this paper is ascertain the power-law convergence of
λ(N) to λ∞, and explain the dependence of the exponent γ
on parameters.
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IV. MAIN RESULTS

Before presenting our theoretical results, and more numer-
ical simulations, it is convenient to anticipate which are the
main results of this paper. In [7] the logarithmic law (1)
was linked to the power-law tail of the distribution of Lya-
punov vector components. More specifically, in the thermo-
dynamic limit the decay was claimed to be an inverse square
law: P (v � 1) ' c/v2. Here, in contrast, we find that the tail
can obey a more general expression: P (v � 1) ' c/v1+α,
where the tail index α depends on the model parameters. We
distinguish three different regimes —labeled I, II and III—, in
which the convergence of the LE to λ∞ is different:

1. A first regime (I) with α ≥ 2 in which, the LE exhibits a
robust power law, given by Eq. (2) with exponent γ = 1.

2. A second regime (II) in which 1 < α < 2 and the
exponent γ varies in the range (0,1) with a smooth de-
pendence on the parameters.

3. A third regime (III), which is only present when the
values of the multipliers are very broadly distributed.
This regime is much more complicated to analyze in
detail, as α takes the value 1 (or smaller). This fact
renders the analysis much more cumbersome and the
main properties of this regime remain, in spite of our
efforts, largely unknown. Our numerical simulations
are consistent with a generalized logarithmic scaling
λ∞−λ(N) ' (lnN)−δ , but we must be cautions upon
drawing general conclusions in this case.

V. RANDOM MULTIPLIER MODEL

Given that direct numerical results with GCMs will be al-
ways inconclusive, we turn our view to a minimal model that
can be theoretically analyzed. This is a stochastic model of the
tangent-space dynamics of GCMs proposed in Ref. [7]. The
model simply replaces the local multipliers f ′ in Eq. (4) by in-
dependent identically distributed random numbers µti. Hence
we have

vt+1
i = µti

[
(1− ε)vti + εv̄t

]
. (7)

Note that ignoring correlations between the multipliers is tan-
tamount to ignoring the collective dynamics of the mean field
ȳt present in actual GCMs. As in [7], we assume weak cor-
relations induced by the collective dynamics do not alter the
final result. Our analytical results are entirely based on the
random multiplier (RM) model (7).

Before starting the analysis of (7), we briefly introduce the
three multiplier densities used to assess the validity of our re-
sults. Our first case study is the bi-delta density:

ρBD(µ) =
1

b
δ(µ− b) +

b− 1

b
δ[µ− b/(b− 1)]. (8)

This form for ρ(µ) corresponds to the binary occurrence of f ′

for an unperturbed SB map with parameter b.

The second example is the log-normal distribution:

ρLN (µ) =
1√

2πaµ
e−(lnµ)

2/(2a2). (9)

This distribution was originally considered in [7] for the ab-
solute value of the multiplier |µ|. It is implemented by taking
the exponential of uncorrelated zero-mean Gaussian random
variables ξtj : µ

t
j = exp(ξtj). The variance of ξtj being a2.

The last case study is the log-uniform distribution, in which
the multipliers are chosen as the exponential of a uniform ran-
dom variable in the interval [−m,m]. The multiplier density
in this case has the form

ρLU (µ) =

{
1

2mµ if e−m < µ < em

0 otherwise
(10)

VI. THE ASYMPTOTIC LYAPUNOV EXPONENT λ∞

Restricting to positive multipliers allows us to obtain ana-
lytical expressions for the LE. First, we average both sides of
Eq. (7):

v̄t+1 = (1− ε)µvt + εµ̄tv̄t, (11)

where µvt ≡ N−1
∑N
j=1 µ

t
jv
t
j . The positiveness of the vector

components makes their average equal to the taxicab norm;
or more formally, v̄t = ‖vt‖1 = (1/N)

∑N
i=1 v

t
i . From

Eq. (11) we obtain the ratio between consecutive perturbation
averages:

v̄t+1

v̄t
= µ̄t

[
ε+ (1− ε) µv

t

µ̄tv̄t

]
, (12)

and, according to Eq. (5), the LE equals the average of the
logarithm of the above formula:

λ(N) =
〈
ln µ̄t

〉
+

〈
ln

[
ε+ (1− ε) µv

t

µ̄tv̄t

]〉
. (13)

We wish to determine here the value of the LE in the ther-
modynamic limit λ∞ = λ(N → ∞). Of the two terms
contributing to λ(N) in Eq. (13), the first one is trivial since
the sample average of the multipliers converges to its mean:
limN→∞ µ̄t = 〈µ〉. To recognize the asymptotic behavior of

st ≡ µvt

µ̄tv̄t
(14)

in Eq. (13) is crucial to complete the result.
As a preliminary step we prove first that the expected value

of st equals 1, just assuming the all the Lyapunov vector
components are statistically equivalent. First, we rewrite
st =

∑
j µ̃

t
jv
t
j/(
∑
vtj), where µ̃tj = µtj/µ̄

t. Now the ex-
pected value of s is

〈st〉 =

〈∑
j µ̃

t
jv
t
j∑

j v
t
j

〉
=

〈
N∑
j=1

µ̃tjv
t
j

〉
=

N∑
j=1

〈
µ̃tj
〉 〈
vtj
〉

= 1,

(15)
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where we have chosen the normalization
∑
j v

t
j = 1 in the

second equality, used the independence of µ̃j and vtj , and sub-
stituted 〈µ̃tj〉 and 〈vtj〉 by 1 and 1/N , respectively. Now, we
consider the thermodynamic limit of Eq. (13). Due to the con-
vexity of the logarithm, the expected value of ln[ε+(1− ε)st]
is not larger than ln[ε+ (1− ε)〈st〉], we obtain that

λ∞ ≤ ln〈µ〉. (16)

The previous constraint turns into an equality with a few ad-
ditional assumptions. Let us assume that, given a certain norm
(e.g. v̄ = 1), each Lyapunov vector component is uncorre-
lated from the rest and it is drawn from a stationary probability
density Ps(v). If such a Ps(v) really exists is discussed later
on. As the multipliers and the vector components are uncor-
related, we have a quite robust trivial result: limN→∞ st = 1,
provided the expected value of v exists, see e.g. [19]. We get
thus the simple relation:

λ∞ = ln〈µ〉. (17)

This value of λ∞ is larger than λ1 = 〈lnµ〉, the LE for a sin-
gle uncoupled map. This means that an extreme ‘coupling
sensitivity of chaos’ [20] shows up in the thermodynamic
limit. The identity in Eq. (17) is valuable for the numerical
validation of the theory with the RM model since λ∞ is not a
fitting parameter anymore (in contradistinction to the general
case of GCMs).

VII. THE LYAPUNOV VECTOR AND ITS LOCALIZATION

Before addressing our main question (i.e., the size depen-
dence of the LE), it is necessary to suitably describe the Lya-
punov vector in the thermodynamic limit (N → ∞). Indeed,
as shown later, the localization strength of the Lyapunov vec-
tor is intimately related with the convergence of the LE with
N .

First of all, we note that in the thermodynamic limit Lya-
punov vector components are expected to be distributed as
a stationary density if the exponential amplification is re-
moved [17]: P (v, t) = P (v e−λ∞t, 0) [21]. The norm of
the Lyapunov vector is irrelevant as it can always be scaled
out. Hence we only need P (v, 0) = Ps(v). Takeuchi et al. [7]
addressed the problem resorting to a Hopf-Cole transforma-
tion and then solving the stationary solution of Fokker-Planck
equation. We replicate part of their mathematical treatment in
the following lines. We note, however, that the conclusions of
our analysis are radically different.

First of all, we make the Hopf-Cole transformation of the
vector components:

uti = ln vti . (18)

As we are assuming positive multipliers µtj > 0, the vti remain
above zero at all times, hence no absolute value is required to
take the logarithm [22].

In terms of the u variables the evolution equation of the RM
model (7) becomes:

ut+1
j = utj + lnµtj + ln(1− ε) + ln

(
1 +

εv̄te−u
t
j

1− ε

)
. (19)

For simplicity of notation, we keep v̄t instead of writing eut.
Replacing a discrete difference in time by a time deriva-

tive, the corresponding Fokker-Planck equation for the den-
sity P̃ (u, t) in the co-moving reference frame at velocity λ∞
is

∂tP̃ (u, t) = −∂u[(λ0(u)− λ∞)P̃ (u, t)] +
D

2
∂uuP̃ (u, t),

(20)
where

λ0(u) = 〈lnµ〉+ ln(1− ε) + ln

(
1 +

εv̄e−u

1− ε

)
, (21)

and the constant D is the variance of the noise, which is given
by

D = var(lnµ) (22)

If the constant λ∞ is the LE in the limit N →∞, a stationary
solution, P̃s(u), of (20) exists and is given by the solution of

d

du
[(λ∞ − λ0(u))P̃s(u)] +

D

2

d2

du2
P̃s(u) = 0. (23)

We do not need the exact solution of this equation, only the
asymptotic (large u) decay of P̃s(u) will be of our interest.
The solution of (23) exhibits an exponential decay:

P̃s(u→∞) ' k e−αu, (24)

where α = 2[λ∞ − λ0(u → ∞)]/D measures the Lyapunov
vector localization strength. Recalling Eqs. (21) and (22) we
can express α in terms of ε and the statistical properties of µ:

α = 2
λ∞ − 〈lnµ〉 − ln(1− ε)

var(lnµ)
. (25)

This formula relates the Lyapunov vector localization index
α with λ∞, the multiplier density, and the coupling strength
ε. As intuitively expected α grows with ε, i.e., the vector be-
comes less localized as the coupling is increased.

Moreover, as we already know λ∞, via Eq. (17), the value
of exponent α in Eq. (25) becomes completely determined:

α = 2
ln〈µ〉 − 〈lnµ〉 − ln(1− ε)

var(lnµ)
. (26)

This formula relates the localization strength of the Lyapunov
vector, i.e. its tail index α, with known quantities. As a nu-
merical check, the empirical P̃s(u) is represented in Fig. 3 for
specific parameters of the RM model with bi-delta multiplier
density. The observed decay rate at large u is in good agree-
ment with the result of Eq. (26): α = 1.44. The asymptotic
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FIG. 3. Probability density P̃s(u) obtained form numerical simu-
lations of the RM model with bi-delta density (8) and parameters
ε = 0.02, b = 3. The system size is N = 409600, and the compo-
nents of the Lyapunov vector were retrieved at 100 different times,
fixing v̄ = 1, to estimate P̃s(u). The straight lines correspond to
the exponential ∝ e−αu, with α = 1 (red), as predicted in [7], and
α = 1.44 (blue), as obtained from our theory in Eq. (26), see also
Table I.

slope predicted by Takeuchi et al. is −2 (i.e., α = 1), which
is in clear disagreement with the data.

Reverting the Hopf-Cole transformation in (18), Eq. (24)
translates into a power-law tail of the stationary density of the
vector components:

Ps(v →∞) ' k′ v−1−α. (27)

We can go one step forward and use Eq. (26) to generate phase
diagrams for the three multiplier probability distribution types
introduced in Sec. V. In Fig. 4 we show the phase diagrams for
the bi-delta, log-normal, and log-uniform multiplier densities
in panels (a), (b) and (c), respectively. The ranges of ε de-
picted in Fig. 4 can be particularly large since the RM model
is always representing the turbulent regime. In actual GCMs,
turbulence typically ceases to exist already for ε ∼ 0.1.

The level lines α = 2 and α = 1 are specially interesting, as
they mark the boundaries between different regimes, depend-
ing on the statistical properties of the random multipliers and
coupling strength. In particular, the line α = 2, Fig. 4(c), is
the boundary that separates models for which the probability
density of vector components, Ps(v), exhibits a finite variance
from those where it does not. The effect of model parameters
on the asymptotic scaling properties of the LE with the system
size will be analyzed in detail in Sec. VIII.

The existence of these boundary lines depends on the ran-
dom multipliers specific statistics. Note, for instance, that
the level line α = 1, does not exist for the bi-delta multi-
plier distribution, and coincides with ε = 0 for the log-normal
distribution (see Figs. 4(a) and 4(b)). However, for the log-
uniform multiplier distribution this line is indeed present at
finite ε values, see Fig. 4(c). We stress here that, in the green
shaded region, Fig. 4(c), our previous theory breaks down,
since it predicts α < 1. This possibility is forbidden because
for any finite population, such a density leads to a paradoxical

result, as we explain in the following. In a finite population
we can fix v̄ = 1, and the largest component vmax cannot be
larger than N . However, if one draws the vector components
from a density with a tail decaying as v−1−α inconsistencies
arise. The probability for one vector component being larger
than N is Pr(v > vmax = N) =

∫∞
N
Ps(v)dv ∼ N−α;

and the probability all components are below N is roughly
(1 − N−α)N ' 1 − N1−α, which approaches 1 if α > 1.
If α < 1, some components will exceed the largest allowed
value vmax = N almost surely as N grows. In the marginal
case α = 1, the situation is exactly at the edge.

In the next section we analyze the regular case, α > 1, and
derive a power-law convergence for the LE. The study of the
anomalous green region in Fig. 4(c), is postponed to Sec. IX.

VIII. REGIMES I AND II: POWER-LAW CONVERGENCE
OF THE LYAPUNOV EXPONENT

The convergence of the LE to λ∞ whenever α > 1 is an-
alyzed next, performing a perturbation expansion of Eq. (13).
We start replacing all µ̄t by 〈µ〉 in Eq. (13). This approxima-
tion is sensible provided that the multipliers are not fat-tailed
distributed, what we forbid. Time fluctuations of µ̄t yield de-
viations of order N−1, e.g. ln µ̄t ' ln〈µ〉 + O(N−1). These
O(N−1) terms can be safely neglected, as the convergence of
λ(N) to λ∞ is dominated by the statistics of the vector com-
ponents as verified a posteriori. Keeping in mind that terms of
order O(N−1) are neglected, Eq. (13) yields the approxima-
tion

λ(N) ' λ∞ +
〈
ln
[
ε+ (1− ε)st

]〉
. (28)

Now, given that limN→∞ st = 1 and 〈st〉 = 1, we Taylor
expand the logarithm up to second order:

λ∞ − λ(N) ' (1− ε)2

2
var(st). (29)

To proceed further with the calculation we can resort to Eq. (3)
in Ref. [19]. Nevertheless, the interested reader can find the
detailed calculation in the Appendix. The final result for the
leading order correction to λ∞ is:

λ∞ − λ(N) ' (1− ε)2var(µ)

2〈µ〉2

〈 ∑N
j=1(vtj)

2(∑N
j=1 v

t
j

)2
〉
. (30)

In the Appendix the goodness of the approximations are tested
for the bi-modal multiplier density. Unfortunately, even for
moderate values of b, say above 4, to achieve the asymptotic
regime is computationally too demanding for our current nu-
merical capabilities.

With Eq. (30) the problem reduces to properly estimate the
average in the right hand side. Writing that equation in this
form:

λ∞ − λ(N) ' (1− ε)2var(µ)

2〈µ〉2N

〈
v2
t

(v̄t)
2

〉
, (31)
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FIG. 4. Phase diagrams of the RM model for three multiplier densities: (a) Bi-delta, Eq. (8); (b) Log-normal, Eq. (9); (c) Log-uniform,
Eq. (10). Level lines of α = 1, 2, obtained from Eq. (26), enclose regimes I, II and III.

TABLE I. Statistical properties of the three multiplier probability density types we study in this paper. The last column is the theoretical
prediction for the tail index α describing the asymptotic decay of the Lyapunov vector components distribution for each RM model, according
to Eq. (26). (*) In the case of the log-uniform density the result is valid only for α > 1.

Density ρ(µ) λ∞ = ln〈µ〉 〈lnµ〉 var(lnµ) Tail index∗ α

Bi-delta, Eq. (8) ln 2 1
b

ln b+ b−1
b

ln
(

b
b−1

)
(b−1) ln2(b−1)

b2

2b[b ln( 2
1−ε )−(b−1) ln( b

b−1 )−ln b]
(b−1) ln2(b−1)

Log-normal, Eq. (9) a2

2
0 a2 1− 2 ln(1−ε)

a2

Log-uniform, Eq. (10) ln
(
sinhm
m

)
0 m2

3

6[ln( sinhm
m )−ln(1−ε)]
m2

it becomes apparent that the expected convergence rate of the
LE would be N−1 if the Lyapunov vector was completely de-
localized, i.e., all components taking comparable values on
average. However this is not the case because, as seen above,
the components of the Lyapunov vector are distributed with a
power-law tail (in the thermodynamic limit). Therefore, we
must examine the average in Eq. (30) more carefully.

A. Exponent γ

Actually, calculating the average

TN ≡

〈 ∑N
j=1(vtj)

2(∑N
j=1 v

t
j

)2
〉

(32)

that appears in Eq. (30) turns out to be a formidable task. We
haveN non-independent Lyapunov vector components evolv-
ing in time. To proceed further we assume that the distribu-
tion of v in the thermodynamic limit is all we need to estimate
Eq. (32) at leading order. Correlations originating from the
finiteness of the population are regarded as higher-order ef-
fects, which we shall ignore within our approximation. Thus,
we assume vector components vj are independent (identically
distributed) random variables. Under this natural assumption
analytical results are available in the mathematical literature.
For distributions with a Pareto-type decay and tail index α,
i.e. Eq. (27), the asymptotic dependence of TN on N is ana-
lytically known to scale as [23, 24]:

TN ∼

{
Γ(2− α)`(N)N1−α for 1 < α < 2

〈v2〉N−1 for α > 2
(33)

Here `(N) is a “slowly varying function” satisfying
limN→∞ `(N)/ ln(N) = 0, and we have fixed 〈v〉 = 1 to
make the expressions less convoluted. According to Eq. (33),
the statistic TN decays as a power of N for all α values, and
so does λ∞ − λ(N) by virtue of Eq. (30). Specifically, if
α > 2, the probability Ps(v) in Eq. (27) has finite variance
and the trivial exponent, corresponding to a delocalized vec-
tor, is immediately recovered. In contrast, if 1 < α < 2 the
exponent adopts a nontrivial value: γ = α−1. For the sake of
clarity, we find it convenient to cast these results into a single
expression:

γi.i.d. = min(α− 1, 1), (34)

where α > 1 has a known dependence on the distribution of
the multipliers given by our theory through Eq. (26). The sub-
script i.i.d. indicates that the hypothesis of independent vector
components is assumed. Remarkably, the stronger the local-
ization of the Lyapunov vector the slower the convergence of
the Lyapunov exponent, i.e. γ → 0+ as α→ 1+.

Here concludes the proof of our main result in Eq. (2), sup-
plemented by Eqs. (34) and (26). The correctness of our
prediction for the exponent γ relies on the validity of the
assumption of complete independence of the vector compo-
nents. This is a reasonable approximation, albeit not fully
justified. Nonetheless, the main result summarized in the
power law in Eq. (2) is probably quite robust. For com-
parison, let us mention that the behavior of TN when the
vj’s are drawn in a deterministic way —selecting values at
which the cumulative distribution function equals (j−1)/N—
is also a power law with a slightly different exponent [23]:
γdet = min(2 − 2/α, 1). As γi.i.d., also γdet equals 1 for
α ≥ 2 and vanishes as α → 1. The difference between γdet
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FIG. 5. RM with bi-delta density. Numerical estimate of the power-law exponent −γ and comparison with the theory, Eqs. (26), and (34),
see also Table I for b = 4 in (a), and ε = 0.02 in (b). The background shading in both panels indicates parameter values inside region II of
Fig. 4(a).

and γi.i.d. is no more than 0.17 (the maximum difference is
achieved at α =

√
2). Expressing some caution, we believe

this may give an idea of the degree of accuracy of the results
based upon the i.i.d. hypothesis above.

B. Numerical results

In this section we test the validity of our results for the RM
model with the three multipliers density types summarized in
Table I. Actually, a thorough numerical verification of the pre-
dicted phase diagrams in Fig. 4 is far too demanding. Alter-
natively, we can determine numerically the exponent γ along
selected sections of the phase diagrams. For specific param-
eter values, λ(N) is measured for several system sizes (up to
N = 409600), and the value of −γ is the slope obtained from
the linear fit ln[λ∞−λ(N)] = k−γ lnN , where λ∞ is known
to be ln〈µ〉.

1. Bi-delta multiplier density

Irrespective of the particular values of b and ε, the Lyapunov
exponent converges to λ∞ = ln〈µ〉 = ln 2. In Figs. 5(a)
and 5(b), the numerical estimations of −γ are represented at
fixed b and fixed ε, respectively. For comparison, the theoreti-
cal prediction of γ, via Eq. (34), and the α value in Table I are
plotted as solid lines. As can be seen in both panels of Fig. 5,
the exponent γ strongly depends on parameters. In panel (a)
the elbow at ε ≈ 0.09 is not accurately captured by the data,
but the general behavior of γ is successfully reproduced. In
Fig. 5(b), γ significantly departs from the theory as b grows
above 4. This is not surprising, as our numerical tests— see
Fig. 12 in the Appendix— already revealed the slow conver-
gence to the asymptotic regime for moderate b values. In any
case Fig. 5(b) exhibits a trend of γ similar to the SB-GCM in

FIG. 6. RM model with log-normal density with a = 1. Numeri-
cal determination of the exponent γ as the coupling ε is varied and
comparison with our theoretical prediction.

Fig. 2 with the same ε value. In our view, this confirms the
validity our analysis.

2. Log-normal multiplier density

In Fig. 6, we monitor γ as a function of the coupling pa-
rameter for a = 1. The numerical results and theory are in
reasonable agreement, in our opinion, and the general trend
of γ is fairly reproduced. As a side note, we point out that
including the exact value of λ∞ = ln〈µ〉 in the fittings is cru-
cial. The actual values of the multipliers are affected by the
accuracy of the Gaussian random number generator, such that
the difference between the numerical value of ln〈µ〉 and the
expected value a2/2 = 1/2 is of the order of 10−3.
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FIG. 7. RM model with log-uniform density. Numerical results for
the exponent γ as a function of parameter m for a coupling strength
ε = 0.02. The background shading indicates parameter values inside
regions II (blue) and III (green) of Fig. 4(c).

3. Log-uniform multiplier density

Figure 7 shows the empirical values of γ as a function of m
for ε = 0.02. As m grows, the values of the random multipli-
ers become increasingly scattered and, as already discussed,
the boundary of the power-law behavior (corresponding to
α = 1) is located at the critical value mc = 1.422 . . .. As
anticipated, strong finite-size effects in the simulations hin-
der the convergence of γ to zero, as m approaches mc. Said
that, we estimate the theory works reasonably well, given the
complexity of the problem.

IX. REGIME III

The goal of describing the Lyapunov dynamics in regime
III requires a non trivial refinement of our theory. We advance
that theoretical and computational obstacles have not allowed
us to accomplish that goal so far. Nonetheless, it may be in-
structive to devote this section to enumerate the main difficul-
ties we have encountered, and to discuss some partial results.

In contrast to regions I and II, in region III the components
of the Lyapunov vector are strongly scattered, such that the
limit vmax proportional to N cannot be ignored. Roughly
speaking, the finiteness of the system is always relevant, and
it is not even obvious if a density Ps(v) is meaningful in the
thermodynamic limit.

A. Vanishing diffusion coefficient

In order to confirm that the chaotic dynamics is self-
averaging in the thermodynamic limit we computed the diffu-
sion coefficient, characterizing the intermittency of chaos [17,
25]. Before introducing our numerical results we briefly sum-
marize a few basic notions. Let λ(τ, t0;N) be the finite-time

FIG. 8. Numerical results for the diffusion coefficient defined by
Eq. (36) as a function ofN for the RM model with log-uniform mul-
tiplier density and parameters ε = 0.02 and m = 2.

Lyapunov exponent of a system of size N .

λ(τ, t0;N) =
1

τ
ln
v̄t0+τ

v̄t0
. (35)

This quantity depends on the time interval τ , and on the state
of the system through t0. The LE is recovered in the limit
λ(N) = limτ→∞ λ(τ, t0;N). The diffusion coefficient d is
an invariant that quantifies mean quadratic deviations from
the average exponential growth of infinitesimal perturbations
[17]:

d(N) = lim
τ→∞

〈
(λ(τ, t0;N)τ − λ(N)τ)2

〉
τ

(36)

In a generic chaotic system d is nonzero. In our RM model, d
departs from zero, due to the fluctuations of the FTLE caused
by µ̄t and st, see Eq. (13). To ascertain whether this fluctua-
tion persists in the thermodynamic limit, we computed d(N)
for several system sizes and fixed parameter values well in-
side region III (m = 2 and ε = 0.02). The numerical result
in Fig. 8 shows that the decay of d(N) to zero is consistent
with the inverse of the logarithm squared: d(N) ' c/ ln2N .
To our surprise, this decay is robust over several decades. The
fact that d(N →∞)→ 0 implies that there exist a co-moving
reference frame in which the Lyapunov vector is stationary in
the thermodynamic limit.

B. The Lyapunov vector

In view that a stationary density P̃s(u) exists in the ther-
modynamic limit, we decided to measure it numerically for a
large system size. In Fig. 9 we can see the distribution of the
(log-transformed) vector components from an average over 50
states. Notably, the tail decays with a slope that gives ap-
proximately α = 0.85, which is appreciably steeper than the
prediction from Eq. (26): α = 0.7276 . . .. As previously dis-
cussed, values of α below 1 eventually yield too large vector
components, above the maximal allowed value umax = lnN
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FIG. 9. Numerical probability distribution of log-transformed vector
components uj = ln vj for the log-uniform RM model for a popula-
tion of sizeN = 214×100 ≈ 1.6×106. Parameters arem = 4 and
ε = 0.02. The histogram is an average over 50 vector configurations
with v̄ = 1. The red and blue straight lines are exponentials∝ e−αu
with α = 1 and 0.85, respectively.

(for v̄ = 1). For the example, in Fig. 9 one can appreci-
ate that the vector components are spread up to that limit:
umax = 14.3 . . .. We suspect that the slope progressively
decreases as N grows, approaching to −1 in the thermody-
namic limit. Another possibility is the existence of a pref-
actor in the power law density. With an abuse of language:
P̃s(u) ∼ f(N)e−αu, with f(N) ∼ N−1+α. An extensive
and systematic numerical exploration might eventually clarify
this issue.

C. Numerical exploration of the Lyapunov exponent

One important consequence of the decay to zero of the dif-
fusion coefficient in regime III is that the constraint for λ∞
in Eq. (16) becomes the identity in Eq. (17) (as in regimes I
and II). The knowledge of λ∞ = ln〈µ〉 persuaded us to ex-
plore the dependence of λ(N) numerically. Our guess is that
the dependence must be logarithmic, as in the case of d(N).
For comparison, it is known that, in one-dimensional spatio-
temporal extensive chaos, λ(L) and d(L) depend on the sys-
tem size L algebraically as L−1 [4] and L−1/2 [26, 27], re-
spectively. By analogy, we attempted to accommodate our
LE to a generalized logarithmic scaling

λ∞ − λ(N) ' c

lnδ N
(37)

Comparatively, our results in Fig. 10 are much less robust than
those for d(N) in Fig. 8. As the system size increases the
effective exponent δ grows as well. We achieved systems sizes
up to N ≈ 4×105 in Fig. 10. For each value ofm, all of them
in region III, a different value of δ flattens the curves at large
N (notice the scaling with lnδ N in the y-axis). As previously
mentioned, in all cases there is a systematic increase of δ as
N grows. From our numerical results, we cannot discern if δ
takes a common asymptotic value or not.

FIG. 10. Rescaled LE difference [λ∞ − λ(N)] lnδ N for the log-
uniform RM model with ε = 0.02 and several values of the map
parameter m. For each m value, a different value of δ seems to be
required to reach a plateau at large N .

D. Rationale for a logarithmic law

The lack of diffusion in the thermodynamic limit, as well
as a numerical check (not shown), indicates that st in Eq. (13)
fluctuates around 1 with a decreasing amplitude as N grows.
As before, this allows us expanding the logarithm in Eq. (28),
and subsequently deriving the expression

λ∞ − λ(N) ∝ var(µ̃)TN , (38)

where TN is given by Eq. (32), and µ̃ was defined in Sec. VI.
According to McLeish and O’Brien [23], TN ∼ (lnN)−1 if
the tail index α equals unity. This dependence would prop-
agate up to λ(N). Note, however, that the result in [23] is
fragile and breaks down under a change in the drawing rule
of the vector components: If they are selected deterministi-
cally, then TN ∼ (lnN)−2. In the case of the Lyapunov vec-
tor, components are indeed not completely independent as the
bound vj < N (if v̄ = 1) immediately introduces certain cor-
relations. Should we expect a convergence as (lnN)−δ for
the LE with 1 ≤ δ ≤ 2? Is the numerical value of δ unique,
or varies with the parameters? Unfortunately, we cannot give
a proper answer to these questions at this stage, and they are
left as open problems.

X. DISCUSSION

A. Positive Multipliers: Regimes I, II, and III

Our theoretical findings, built upon the random multiplier
model proposed by Takeuchi et al. [7], support the existence of
three scaling regimes for turbulent GCMs with positive mul-
tipliers. This result immediately contradicts the very expec-
tation of a unique universal scaling law for the LE for this
problem. Regimes I and II exhibit power law behavior with
different exponents. For regime III, however, we could not
determine the actual scaling properties, although everything
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indicates it converges slower than a power law. Having the
exact value of λ∞ allowed us to explore the conformity with
a generalized logarithmic law, Eq. (37). But, clearly, more
theoretical work is needed to better characterize GCMs in this
regime.

B. Implications for the general case: Positive and negative
multipliers

Our results do not apply to turbulent GCMs in which posi-
tive and negative multipliers participate in the tangent dynam-
ics. Nonetheless, our work immediately reveals that part of
the analysis in [7] is flawed. Let us enumerate, point-by-point,
the key points leading us to this important conclusion:

1. The theoretical approximation in [7] does not require
any condition on the sign of the multipliers. As already
explained, the lack of sign-defined multipliers translates
into Lyapunov-vector components with both signs. To
cope with this, in [7], the Hopf-Cole transformation
simply includes an absolute value: uti = ln |vti |. Exclu-
sively positive multipliers is a best-case scenario, since
the Hopf-Cole transformation is invertible. If not, the
problem is somehow brushed “under the carpet”.

2. For positive multipliers the density of the Lyapunov
vector components rapidly decays to 0 as v → 0 (or
as u→ −∞), see Figs. 3 and 9. This is consistent with
the asymptotic behavior of the stationary solution of the
Fokker-Planck Eq. (23). After straightforward calcula-
tions we get: P̃s(u → −∞) ∝ e−u

2/D as u → −∞.
This abrupt decay is perceived as a lower wall in the
density. Such a lower wall is invoked by Takeuchi et
al. [7], see also Chap. 11 of [17], although in their
reasoning finite-N and infinite-N perspectives are in-
termingled. In deep contrast, if positive and negative
multipliers exist there is no lower wall. In the empir-
ical distribution shown in Fig. 11 for a particular case
(see caption), we observe P̃s(u → −∞) ∝ eu, imply-
ing Ps(v → 0) = const. This is not consistent with
the Fokker-Planck equation. The case of positive mul-
tipliers is, again, in better agreement with the ideas in
[7].

3. In spite of the apparent validity of the Fokker-Planck
equation (at least, for positive multipliers), the predicted
logarithmic scaling law in [7] is in conflict with our re-
sults, which also relay on the Fokker-Planck equation.
The origin of the discrepancy is elucidated next.

4. In the work by Takeuchi et al. the scaling law (1) is
exclusively derived from the Fokker-Planck equation.
This entails moving back and forth between finite and
infinite N cases. In particular, Takeuchi et al. assumed
that for finite N the Fokker-Planck Eq. (20) remains
essentially true replacing λ∞ by λ(N). This assump-
tion is crucial, but questionable, since the growth rate
of the Lyapunov vector suffers fluctuations (i.e., diffu-
sion), and there is not a co-moving reference frame (for

FIG. 11. Probability density P̃s(u) obtained form numerical sim-
ulations of the RM model with positive and negative multipliers
distributed according to a bi-delta density: ρBD±(µ) = 1

b
δ(µ −

b) + b−1
b
δ[µ + b/(b − 1)]. This density corresponds to an iso-

lated skewed-tent map. The parameters are the same as in Fig. 3:
ε = 0.02, b = 3. For small u = log |v|, P̃s(u) ∝ eu, or equivalently
Ps(|v| → 0) = const.

finite N ). In Ref. [7], changing λ∞ by λ(N) modi-
fies P̃s(u) as the decay rate α becomes N -dependent.
The reasoning proceeds noticing that if N is finite the
maximal vector component is about umax such that∫∞
umax

P̃s(u)du ∼ N−1. For this scaling relation to
hold true it is required that

λ(N)− 〈lnµ〉 − ln(1− ε) ' D

2
(1 + c/ lnN). (39)

Unfortunately, this prediction is already erroneous at
leading order. It implies λ∞ and D are linked through
λ∞−〈lnµ〉− ln(1− ε) = D

2 , and this yields α = 1 for
N → ∞, irrespective of the parameter values. These
implications are at odds with the numerical evidence,
see e.g. Fig. 3.

5. In our work, we have used the Fokker-Planck equation
only to get the tail index α of Ps(v) in the thermody-
namic limit. The value of λ∞, and an analytic formula
relating λ(N) with α and the multipliers’ statistics are
both derived here independently of the Fokker-Planck
equation. This was possible thanks to the positiveness
of the multipliers.

6. Our theory predicts the value of λ∞, which reduces the
number of fitting parameters and makes us to be confi-
dent with the numerical tests of the theory.

7. It might be argued that, apparently, the numerical re-
sults in [7] support the logarithmic scaling law (1).
There, however, λ∞ was a fitting parameter, what, in
our experience, introduces a substantial uncertainty and
makes it impossible to really distinguish a logarithmic
law from a power-law with small exponent γ. When
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λ∞ is theoretically known, as we have shown here, the
power-law scaling can be established— with an expo-
nent that is model parameter dependent— in regimes
I and II, or even a more involved functional form in
regime III.

All in all, we conclude that the actual scaling law (or laws)
for turbulent GCMs with multipliers adopting both signs re-
mains an open problem. For comparison, we note that in
standard one-dimensional coupled-map lattices the sign of
the multipliers does not play a significant role. In fact, for
an asymptotically small coupling ε, the LE always varies as
c/ ln ε [5]. If the sign of the multipliers changes or not only
alters the scaling factor c. In addition, the convergence of the
LE with the system size N generically scales as N−1. Re-
markably, the theory is based on a mapping of the tangent
dynamics to a simple stochastic partial-differential equation,
in which all the Lyapunov vector components have the same
sign [4, 28].

Should we expect similar insensitivity of the LE with the
multipliers sign in GCMs? This is an open problem that de-
serves a careful scrutiny. At this point our results constitute
new evidence of the complex behavior of deceptively simple
GCMs.
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APPENDIX: DERIVATION OF EQ. (30) AND NUMERICAL
TESTS

For simplicity, we start approximating µ̄ by 〈µ〉 in Eq. (28),
and re-write it in terms of the deviations from the expected
muliplier value δµtj = µtj − 〈µ〉:

λ(N) ' λ∞ +

〈
ln

[
1 +

1− ε
〈µ〉

∑N
j=1 δµ

t
jv
t
j∑N

j=1 v
t
j

]〉
(A1)

IfN is large we can Taylor expand the logarithm: ln(1+x) =
x−x2/2 + · · · , where the first order of the expansion is zero,

and we truncate at second order:

λ∞ − λ(N) ' (1− ε)2

2〈µ〉2

〈(∑N
j=1 δµ

t
jv
t
j∑N

j=1 v
t
j

)2〉
(A2)

The numerator of the average in the right-hand side can be
further simplified. Given that the δµtj are completely uncor-
related and have zero mean, we can expand the square and
cancel out all (covariance-like) cross-products. Doing so we
get this expression:

λ∞ − λ(N) ' (1− ε)2

2〈µ〉2

〈∑N
j=1 (δµtj)

2(vtj)
2(∑N

j=1 v
t
j

)2
〉

(A3)

The average in the right-hand side, denoted Ψ for short, is far
from trivial. As a first check, we represent in Fig. 12(a) the
two sides of this equation with data obtained from numerical
simulations of the RM model with the bi-delta density. Sev-
eral values of parameter b were selected as well as a common
coupling constant ε = 0.02. For the larger b values we may
appreciate deviations from the bisectrix, which can only be
attributed to the slow convergence of the Taylor expansion of
the logarithm. Indeed, our numerical tests of Eq. (A1) yield
a quasi perfect agreement between theory and data for all b
values. This evidences the risk of relying on numerical sim-
ulations alone, given that the asymptotic regime shows up at
prohibitively large system sizes for some parameter values. In
the particular case of the bi-delta density, it is already difficult
to observe the asymptotic decay for b above 4.

FIG. 12. Numerical tests of Eq. (A3) (a) and Eq. (30) (b) for the bi-
delta RM model with ε = 0.02 and b = {3, 4, 6, 8, 16}. (a) The label
Ψ in the x-axis stands for the right-hand side of Eq. (A3). The data
progressively deviate from the bisectrix (dashed line) as b increases.
For each value of b the left most point corresponds to the largest size
N = 102400 (b) The same as (a), but now Υ in the x-axis denotes
the right-hand side of Eq. (30).

If the multipliers do not exhibit large fluctuations we can
approximate (δµtj)

2 by the variance of µ, and obtain Eq. (30)
In Fig. 12(b) we test Eq. (30) setting ε = 0.02 and the bi-delta
density (8) for several values of b. The results are comparable
to those in Fig. 12(a), evidencing that putting the variance of
µ out of the average does not deteriorate the accuracy of the
approximation.
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[16] K. A. Takeuchi and H. Chaté, Collective Lyapunov modes, J.
Phys. A: Math. Theor. 46, 254007 (2013).

[17] A. Pikovsky and A. Politi, Lyapunov exponents (Cambridge
University Press, 2016).

[18] V. I. Oseledets, A multiplicative ergodic theorem. Lyapunov
characteristic numbers for dynamical systems, Trans. Moscow
Math. Soc. 19, 197 (1968).

[19] H. Cohn and P. Hall, On the limit behaviour of weighted sums
of random variables, Z. Wahrscheinlichkeitstheorie verw. Gebi-
ete 59, 319 (1982).

[20] H. Daido, Coupling Sensitivity of Chaos, Prog. Theor. Phys. 72,
853 (1984).

[21] This is tantamount assuming that the diffusion coefficient ac-
companying chaotic amplification vanishes in the large size
limit. This is a plausible assumption, since so far this has been
found to be violated only for some Hamiltonian lattices [29].

[22] In [7], the transformation uti = ln |vti | is taken without paying
much attention to the absolute value. This is not completely un-
reasonable if one considers that in spatio-temporal chaos the ab-
solute value causes no effect in the universality class and there-
upon the associated critical exponents [4].

[23] D. L. McLeish and G. L. O’Brien, The expected ratio of the
sum of squares to the square of the sum, Ann. Probab. 10, 1019
(1982).

[24] H. Albrecher and J. Teugels, Asymptotic analysis of a measure
of variation, Theory Probab. Math. Stat. 74, 1 (2007).

[25] H. Fujisaka, Theory of diffusion and intermittency in chaotic
systems, Prog. Theor. Phys. 71, 513 (1984).

[26] P. V. Kuptsov and A. Politi, Large-deviation approach to space-
time chaos, Phys. Rev. Lett. 107, 114101 (2011).
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