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Abstract: Carbonate mounds clustering in three fields were characterized on the upper continental
slope of the northern Alboran Sea by means of a detailed analysis of the morphosedimentary and
structural features using high-resolution bathymetry and parametric profiles. The contemporary and
past benthic and demersal species were studied using ROV underwater imagery and some samples.
A total of 325 mounds, with heights between 1 and 18 m, and 204 buried mounds were detected
between 155 to 401 m water depth. Transparent facies characterize the mounds, which root on at least
six erosive surfaces, indicating different growth stages. At present, these mounds are covered with
soft sediments and typical bathyal sedimentary habitat-forming species, such as sea-pens, cerianthids
and sabellid polychaetes. Nevertheless, remains of colonial scleractinians, rhodoliths and bivalves
were detected and their role as potential mound-forming species is discussed. We hypothesized that
the formation of these mounds could be related to favorable climatic conditions for cold-water corals,
possibly during the late Pleistocene. The occurrence on top of some mounds of abundant rhodoliths
suggests that some mounds were in the photic zone during minimum sea level and boreal guest
fauna (e.g., Modiolus modiolus), which declined in the western Mediterranean after the Termination 1a
of the Last Glacial (Late Pleistocene).

Keywords: carbonate mounds; geomorphology; benthos; habitats; rhodoliths; Modiolus modiolus;
Alboran Sea

1. Introduction

Carbonate mounds are sedimentary seafloor elevations that have been detected world-
wide, rise up to a few meters and up to 380 m [1] (above the surrounding seabed) and
displaying different shapes (e.g., round, elongated), sizes (spanning from 10 s to 1000 s
m in diameter) and sedimentary composition [2–6]. They often cluster as extended fields
along continental shelves and slopes (from 100 to 1000 m water depth) comprising tens
and even <1000 mounds [7,8]. Carbonate mounds are formed by framework-building
calcareous organisms distributed according to various transport, depositional and ero-
sive processes [2,4,5]. Hence, they are firstly dependent on the biological activity of their
reef-forming organisms, which include colonial suspension feeding invertebrates, such
as cnidarians (e.g., scleractinians, stony hydrozoans and octocorals) [9,10], sponges [11],
serpulids [12] and bryozoans [13]. These framework-building organisms sometimes have
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branching forms, increasing the complexity and diversity of substrates, food sources and
associated sessile and mobile organisms, including those with calcareous skeletons (e.g.,
encrusting coralline algae, mollusks, cirripeds, etc.) [14–17]). Indeed, these associated
organisms with calcareous skeletons may also contribute to the accretion of the carbonate
mound. Thus, the heterogeneous composition of carbonate mounds includes fragments
of the habitat-forming species as well as other parautochthonous bioclasts, embedded in
hemipelagic and contouritic sediments [15–18].

One of the most common and dominant faunal groups forming carbonate mounds
are colonial cold-water corals (CWCs), which are dependent on different physicochemi-
cal parameters, such as temperature, salinity, dissolved oxygen concentrations, aragonite
saturation and water mass density [10,19–25]. Nevertheless, CWC growth is also linked
to the food availability (phytoplankton, zooplankton, particulate organic material), pro-
moted by enhanced surface productivity and by the local hydrodynamic regime (including
geostrophic currents, internal tides and waves, cascading and down-welling processes)
supporting the lateral advection of food particles to the sessile CWC [26–31]). In general,
CWCs develop reefs in areas with vigorous bottom currents (sometimes >50 cm s−1),
preventing them from smothering by sediments [10,27,28,32,33]. The three-dimensional
structure of CWCs can baffle suspended sediments entering their framework over time,
and the continuous interplay between this sediment baffling and CWC growth leads to
the formation of CWC mounds [18,20,33,34]. In general, CWC mounds maintain sustained
development through time if there is equilibrium between sediment and food supply;
often CWC mounds display an internal structure related to recurring periods of CWC
colonization, decline and renewed colonization related to environmental changes induced
by the Late Quaternary climatic cycles [18,35–39]. Periods of growth and/or decline of
CWCs have been linked to changes in the physicochemical properties and productivity of
the water masses [35,38,40–46]. Bottom currents can also create small erosional and depo-
sitional sedimentary structures and modulate the shape of the mound [47]), resulting in
flattened top mounds (within the storm wave base), cone-shaped mounds (quiet and deeper
waters) [4], elongated mound shapes (due to the preferred growth of the reef-forming or-
ganisms towards the main current) [48]), and mounds with current scours and moats
around them (in strong bottom deep water along slope bottom currents) [35,41,49–51].
Active CWC mounds are covered by thriving CWC reefs and background sedimentation
rate is generally lower than CWCs growth rate, however, contouritic and/or hemipelagic
sediments have generally been found as major structural components contributing to the
accretion of the CWC mounds (sometimes representing up to two-thirds of the mound
deposits) [18,52,53]. Favorable environmental conditions for CWC growth or increases of
background sedimentation in specific areas or time periods (e.g., sediment outputs from
meltwater during deglaciation, changes in bottom current regimes, sediment extrusion
in mud volcanoes, etc.) may promote the collapse and burial of the CWC reefs and their
associated biota, resulting in the stagnation of the CWC mounds [7,38,43,54,55].

The analysis of high-resolution geomorphological and sedimentary data obtained by
geophysical techniques since the 2000s has improved the knowledge about Quaternary
sedimentation in the Alboran Sea. Some of these studies highlighted the role of contourite
erosional and depositional processes in the formation of contourite terraces and drifts along
the Spanish and Moroccan continental slopes [6,56]. These contouritic terraces that shape
the continental slope are formed by turbulent processes (i.e., internal waves) occurring
at the interfaces between the Atlantic and Mediterranean waters through the Quaternary
glacio-eustatic sea-level changes [56,57]. In addition, other studies revealed a large scale
distribution of clustered mounds with circular to elongated footprints along the Alboran
Sea margins [43,55,58–61]. The clustering of mounds in extensive fields, especially along
the upper and middle slopes, has been recently documented in the southern and central
Alboran Sea, especially in the East [43,61] and West Melilla CWC mound provinces [46,55],
as well as in the Cabliers bank [62,63] (Figure 1A). Furthermore, three mound fields have
been located within the contouritic terraces of the northern Alboran Sea margin (south-



Geosciences 2022, 12, 111 3 of 24

eastern Spain), in front of Marbella (around the Torrenueva submarine canyon), in front of
Málaga and southwest off Almería [6,58,59,64]. Sampling and direct observations of the
southern Alboran Sea carbonate mounds (East and West Melilla CWC mound provinces)
confirmed that CWCs were the main organism involved in their formation [15,43,46,55].
Nevertheless, some of those CWC mounds are nowadays partly or even completely buried
by contouritic and hemipelagic sediments [55,56,65]. The distribution and burial state of
the observed CWC mounds were explained by changes in water mass dynamics during the
Late Quaternary climatic cycles [15,43,46].
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Figure 1. (A) Overview map showing the three carbonate mound fields (B–D) on the northern
margin of the Alboran Sea described in this study and the location of cold-water corals (CWC) mound
provinces detected in the southern Alboran Sea (Cabliers, West Melilla (WMP) and East Melilla
(EMP) mound provinces [55,61–63]. The water mass circulation scheme is adapted from [56] based on
Legend: MAW, Atlantic Water; WIW, Western Intermediate Water; LIW, Levantine Intermediate Water;
WMDW, Western Mediterranean Deep Water; ShW, Shelf Water. Bathymetric map of (B) Alcántara
carbonate mound field; (C) Málaga carbonate mound field and (D) Aceitunas carbonate mound field
showing the location of dive tracks and sub-bottom parametric profiles (lines). Extension of the
mound fields are marked by white dotted contours. The black scales represent 2.5 km. Bathymetric
contours with 25 m spacing are shown as white lines.
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The northern Alboran Sea mounds were initially identified on high-resolution bathymet-
ric maps during the analysis of the main morphotectonic characteristics of this margin [58,59].
Subsequently, some of the mounds located in front of Málaga were investigated using a
Remotely Operated Vehicle (ROV) during a German expedition with the R/V POSEIDON
(POS385, led by MARUM) [60]. Later on, two multidisciplinary projects (MONCARAL and
RIGEL) from the Instituto Español de Oceanografía (IEO) provided a new opportunity for
exploring the different mounds of the northern Alboran Sea margin during two expeditions
with the R/V ÁngelesAlvariño (MONCARAL 0516 and RIGEL 1116). Both geological
and biological sampling was carried out, together with the acquisition of high-resolution
acoustic datasets (bathymetry and parametric seismic profiles) and of underwater images
using a ROV.

The main aim of the present study is to provide a detailed analysis of the morphosedi-
mentary features, internal structure and contemporary and past benthic and subordinate
organisms, including some habitat-forming species, of the three different mound fields
located in the contouritic terrace, developed along the upper continental slope of the north-
ern Alboran Sea [56–58]. The new datasets improve the knowledge of the morphology,
distribution and the present-day and past evolution of these mounds in relation to some
geological and oceanographic processes.

2. Regional Setting

The tectonic evolution of the Alboran Sea Basin (western Mediterranean Sea), linked
to the Betics-Rif orogeny, has generated a basin characterized by narrow continental shelves
and irregular, steep to gentle slopes, and a series of ridges and seamounts, of volcanic
and/or tectonic origin, such as Xauen, Djibouti Ville and Avempace, which increase the
seafloor complexity of the basin (Figure 1A) [6,66]. As mentioned previously, the upper
continental slope is characterized by a contouritic terrace [56].

In the Alboran Sea, intermediate and deep Mediterranean waters migrate to the
west through the Strait of Gibraltar, through which surficial Modified Atlantic Water
(MAW) enters and flows to the east [67]. The MAW forms two anticyclonic gyres in the
Alboran Sea (Western and Eastern Alboran Gyres) that extend to maximum depths of 150
to 200 m [68]. The Mediterranean water masses have been grouped by density [69] into
two large groups [56]: (i) Light Mediterranean Water (LMW) comprising the less dense and
salty intermediate waters that include the Western Intermediate Water (WIW), which flows
at depths between 150 and 200 mbsl, the Levantine Intermediate Water (LIW), between
200 and 500 m water depth, and the lighter top of the Tyrrhenian Deep Water which flows
below 500 m; and (ii) Dense Mediterranean Waters (DMW) including the lower part of the
Tyrrhenian Deep Water and the Western Mediterranean Deep Water that flow below 600 m
water depth. Both, the LMW and the DMW interact with the bottom of the basin: the LMW
flows preferentially along the northern Alboran margin generating an erosive terrace at its
interface with the MAW (around 150–300 m water depth) and a series of attached drifts
along the slope or around the seamount-like banks and ridges; while the DMW circulates
throughout the basin but ascends to shallower depths along the southern Alboran Sea
margin, controlling the formation of the Ceuta Drift [56].

The Alboran Sea is one of the most productive areas within the generally oligotrophic
Mediterranean Sea and its productivity is partially driven by local nutrient-rich upwellings
that occur along the edge of the Western Alboran Gyre and at the eastern limb of the
Eastern Alboran Gyre [68,70,71]. Some rivers discharge into the Alboran Sea, with the large
Moulouya river at the Moroccan margin and the Guadiaro, Guadalhorce, Guadalfeo and
Andarax rivers at the Spanish margin being the most important ones.

Due to the oceanographic and geological complexity of the Alboran Sea, a large variety
of habitats and associated species from different biogeographical regions occur in the basin,
representing a biodiversity hotspot for the European and northern African margins [72].
One of the most biodiverse habitats in bathyal depths of the basin is represented by reefs
dominated by CWCs, which have been detected on various seafloor structures including
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seamounts (e.g., Seco de los Olivos (Chella Bank), East and West Cabliers, Djibouti Ville),
mud volcanoes, submarine canyons and carbonate mounds [15,43,54,60,62,73,74]). Only
rare occurrences of CWCs are reported for the Alboran Sea during the Last Glacial, but dur-
ing the last deglaciation since the onset of the Bølling-Allerød warm interval, CWCs experi-
enced a marked proliferation, which resulted in enhanced mound aggradation as indicated
for several CWC mounds in the southern Alboran Sea [15,43,46]. The deglacial proliferation
of CWCs coincided with enhanced surface ocean productivity and a peak in meltwater
discharge originating from the northern Mediterranean borderlands, which caused a major
re-organization of the Mediterranean thermohaline circulation [43,75]. Enhanced mound
formation in the southern Alboran Sea lasted until the Early Holocene [15,43,46], which
was likely controlled by strong hydrodynamic conditions caused by internal waves that de-
veloped along the density gradient between the Atlantic and Mediterranean waters [43,46].
Internal waves generally promote the resuspension and transport of recently deposited
and/or fresh food particles at an increased velocity to the CWCs thriving on the mounds
and, thus, enhance the chance of the CWC polyps to capture these particles [18,27]. Since
the late Early to Mid-Holocene mound formation significantly slowed-down due to rela-
tively weak hydrodynamics and oligotrophic conditions, and eventually stagnated until
today with some of them becoming (partially to completely) buried by sediments [46].

3. Materials and Methods

In May 2009, during the expedition POS-385 on board the German R/V Poseidon [60];
two video transects (Dives 02 and 03 in Figure 1C) were performed crossing some of the
mounds off Málaga with the MARUM ROV Cherokee. The ROV was equipped with
four video cameras including a color video zoom camera and a digital still camera. The
cameras were further equipped with three laser pointers for scaling adjusted to 19.5 cm in
the horizontal direction and 12 cm in the vertical direction, and a hydraulically operated
manipulator for collecting fauna and rock samples. A total of 3.5 h of video footage were
recorded along more than 3000 m of seafloor tracks (Table 1). The ROV transects were
carried out at low speed and close to the seafloor.

Table 1. Metadata of the ROV video transects recorded during POS-385 (ROV Cherokke) and
MONCARAL 0516 (ROV Liropus 2000) expeditions in the northern Alboran Sea.

Expedition Mound Field Dive Track Length (m) Water Depth (m) Start
Coordinates

End
Coordinates

POS-385 Málaga 02 1128 243–233 36◦37.35′ N
04◦13.16′ W

36◦37.72′ N
04◦12.69′ W

POS-385 Málaga 03 1931 236–218 36◦37.48′ N
04◦13.10′ W

36◦37.78′ N
04◦12.91′ W

MONCARAL Alcántara 01 2512 309–317 36◦19.83′ N
04◦59.85′ W

36◦20.17′ N
04◦59.65′ W

MONCARAL Alcántara 02 353 291–297 36◦20.40′ N
04◦59.74′ W

36◦20.46′ N
04◦59.69′ W

MONCARAL Alcántara 03 1452 243–253 36◦21.35′ N
05◦01.46′ W

36◦21.56′ N
05◦01.46′ W

MONCARAL Málaga 04 1307 238–261 36◦37.20′ N
04◦12.13′ W

36◦37.34′ N
04◦12.01′ W

MONCARAL Málaga 05 1895 271–276 36◦36.90′ N
04◦11.73′W

36◦37.06′ N
04◦11.60′ W

MONCARAL Málaga 06 1586 225–230 36◦37.61′ N
04◦12.97′ W

36◦37.83′ N
04◦12.84′ W

MONCARAL Aceitunas 07 1348 180 36◦36.94′ N
02◦55.95′ W

36◦37.06′ N
02◦56.27′ W

MONCARAL Aceitunas 08 1192 194–200 36◦36.18′ N
02◦54.28′ W

36◦36.37′ N
02◦54.71′ W

In May 2016, the expedition MONCARAL 0516 on board R/V Ángeles Alvariño (IEO,
Spain) explored three mound fields of the northern continental slope of the Alboran Sea.
These three fields have been named in the present study, from west to east, as Alcántara,
Málaga and Aceitunas mound fields. Bathymetric data were obtained with a Kongsberg
EM710 multibeam echosounder system, covering a total area of 102 km2 between 142
and 408 m water depth (Figure 1B–D). At the same time, high-resolution parametric
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profiles were acquired using a TOPAS PS018. Multibeam data were imported in a single
project using CARIS HIPS and SIPS V. 11.1 software (© Teledyne) and were georeferenced
to create a gridded base surface of 5 m cell size. After that, it was integrated into an
ArcGIS v.10.8 (© ESRI) project where the geomorphological analyses were made. These
geomorphological analyses include morphometric characterization after computing main
size, slope and shape parameters, such as height, axis length and irregularity of the mounds
(Iri), which represents the contour complexity of the polygon of each mound [76] (Table 2),
as well as mound counting and Kernel density of the fields (mounds per km2). Parametric
profiles were loaded in Kingdom IHS Markit software for the interpretation of seafloor and
subseafloor structures.

Table 2. Location, number (N◦) and morphological features of the mounds and mound fields detected
in the northern Alboran Sea (Iri: Irregularity index, BA: Basal Area, H: Height).

Mound
Field Location Depth

Range (m)

N◦ of
Exposed
Mounds

N◦ of
Buried

Mounds

Length
Range (m)

Width
Range (m) Iri Range BA

(km2)
H Range

(m)
Mean

Slope (◦)

Alcántara North-western
Alboran Sea 239–297 18 26 131–966 84–361 1.3–3.1 0.82 3–14 2.5–6

Málaga North-central
Alboran Sea 220–273 64 58 79–831 57–313 1.03–4.7 1.33 2–18 2.5–16

Aceitunas North-eastern
Alboran Sea 155–401 243 120 6–630 5–295 1.03–3.5 3.08 1–15 2–20

All mound
fields 155–401 325 204 6–966 5–361 1.03–4.7 5.23 1–18 2–20

Eight video transects (Dives 01 to 08) were recorded using the ROV Liropus 2000 at
the three carbonate mound fields (Figure 1B–D) providing a total of 10 h of high-resolution
underwater imagery along almost 12,000 m of seafloor tracks (Table 1). The ROV transects
were carried out at low speed and close to the seafloor. This ROV was equipped with a
full HD camera, two laser pointers for scaling (10 cm between them) and two hydraulic
manipulators for collecting samples of rocks, sediment, fauna and remains of organisms.
Samples collected during the ROV dives were used for identifying seafloor features and
organisms observed in the underwater images. Qualitative analysis of video transects was
carried out using VLC Media Player 3.0.16 for Windows software. The video fragments
were viewed for identification of benthic and demersal species, substrate type categories
(i.e., mud, sand, gravel, bioclasts and consolidated rocks) and sedimentary bedforms (i.e.,
moats). Furthermore, eleven surface sediment samples (VV01-VV11) were recovered from
the three mound fields and adjacent bottoms between 173 and 317 m depth using a Van
Veen grab sampler (Appendix A).

Finally, in November 2016, the expedition RIGEL 1116 on board R/V Ángeles Al-
variño sampled the top and flanks of some of the mounds detected during the previous
expeditions. Nine surface sediment samples (VV16-VV24) using a Van Veen grab sampler
and nine sediment cores (TG16-TG24) using a gravity corer were obtained from the Málaga
and Aceitunas mound fields between 188 and 255 m and 171 and 248 m depth. The maxi-
mum recovery of the gravity cores was 38 cm at the mounds and 260 cm at the adjacent
seafloor. These samples were only used for in situ characterization of the top subseafloor
sediments/structures (Appendix A).

4. Results
4.1. Alcántara Mound Field

The Alcántara mound field in the west is located at the western side of the Torrenueva
canyon system, 11 km off the coast, between 239 to 297 m water depth (Figure 1B). It is
the smallest mound field of the northern Alboran Sea and it is composed of 18 mainly
elongated mounds stretching NW-SE, NE-SW and N-S with a mean Irregularity index
(Iri) of 1.7. The mounds have heights of up to 14 m, with maximum slopes up to 18◦ and
diameters between 131 to 966 m (Figure 2). This field contains the most elongated mounds
of the northern Alboran Sea, and often these elongated mounds display higher reliefs (up
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to 14 m) than the circular ones that are generally lower and smoother (Table 2). In plain
view, this field shows a random spatial distribution of individual mounds. In general, the
mounds are highly separated with a low mound density (ca. 1 mound per km2) although
the central sector of the field contains a cluster of mounds with a higher density (up to 8)
(Figure 2D). Furthermore, the most elongated mounds seem to be composed of merged
smaller mounds and occasionally, those elongated mounds are surrounded by moats down
to 3 m in relation to the surrounding seabed (e.g., at the eastern sector of the Alcántara
mound field) (Figures 2A and 3).
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Figure 2. Spatial distribution and main morphological variables of the 325 carbonate mounds detected
in the three mound fields of the northern Alboran Sea. (A–C) 3D bathymetric images of the carbonate
mound fields with a vertical exaggeration of 6. (A) Alcántara mound field; (B) Málaga mound field
and (C) Aceitunas mound field. (D–F) Kernel density maps (mound per km2) of the mound fields
based on mound contours. The black scales represent 2.5 km. (G–J) Morphometric data of the
analyzed geomorphological features: (G) Bathymetric distribution of carbonate mounds in terms
of the number of mounds; (H) Main trends of length axes orientation of the carbonate mounds.
Histograms show (I) the length and (J) the basal area covered by the mounds.
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The three surface sediment samples VV01-04 recovered with the Van Veen grab from
some of the Alcántara mounds are overall characterized by mud and muddy sands with
high bioclastic content corresponding to the shells of dominant mollusks of bathyal muddy
bottoms, such as Nucula sulcata, Nassarius ovoideus, Abra spp., among others (Appendix A).
The main bottom sediments and benthic communities detected in Alcántara mound field
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were bathyal muds and muddy sands with burrowing megafauna, mainly displaying a
low-moderate number of burrows (1–5 burrows m−2) of large decapods, such as Munida
spp. and the Norway lobster (Nephrops norvegicus) (Dive 1; Figures 4 and 5). Small reducts
of bathyal muds with seapens (mostly Veretillum cynomorium), cerianthiids (Cerianthus spp.,
Arachnanthus sp.) and sabellids (Sabella pavonina) have also been detected in specific areas
of the mound field (Dive 3). Other benthic organisms detected at such sediment-covered
bottoms were the hydrozoan Nemertesia ramosa, the sedentary polychate Spiochaetopterus
sp., hermit crabs (Dardanus sp. and Pagurus sp.) and some pandalid shrimps (Plesionika
spp.) as well as the gastropods Fusiturris similis and Aporrhais serresiana. Common fishes in
this field are unidentified species of Myctophids, the horse mackerel Trachurus spp., the
dogfish Scyliorhinus canicula, the Mediterranean silver scabbardfish Lepidopus caudatus and
the boar fish Capros aper. Remains of solitary scleractinians (mainly Caryophyllia spp.) were
also detected in the sediment. The main indicators of human anthropic activities were
bottom-trawling marks on the seafloor of different sectors of the Alcántara mound field.
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Figure 4. Some examples of present-day bottom sediments and benthic and demersal fauna detected 
at the Alcántara (M), Málaga (A–E,L,N) and Aceitunas (F–K) carbonate mound fields of the northern 
Alboran Sea. (A) the burrowing decapod Munida sp.; (B) the pandalid shrimp Plesionika heterocarpus; 
(C) Hermit crabs using Xenophora crispa shells; (D,E) Cerianthus sp. (Ce) individuals, with one of 
them located close to two sabellidpolychaete tubes (Sa) and the decapods Munida sp. (Mu) and 
Macropodia sp. (Ma); (F,G) the seapen Virgularia mirabilis; (H) the soft bottom octocoral Alcyonum 
palmatum; (I,J) an aggregation of an unidentified solitary anthozoan, including a close-up of one 
individual; (K,M) tubes of the polychaete Spiochaetopterus sp. colonized by small hydrozoans; (L) 
the sabellid polychaete Sabella pavonina; (N) the squid Illex coindetii. All underwater images obtained 
with ROV LIROPUS 2000, Instituto Español de Oceanografía (Spain). 

Figure 4. Some examples of present-day bottom sediments and benthic and demersal fauna detected
at the Alcántara (M), Málaga (A–E,L,N) and Aceitunas (F–K) carbonate mound fields of the northern
Alboran Sea. (A) the burrowing decapod Munida sp.; (B) the pandalid shrimp Plesionika heterocarpus;
(C) Hermit crabs using Xenophora crispa shells; (D,E) Cerianthus sp. (Ce) individuals, with one of them
located close to two sabellidpolychaete tubes (Sa) and the decapods Munida sp. (Mu) and Macropodia
sp. (Ma); (F,G) the seapen Virgularia mirabilis; (H) the soft bottom octocoral Alcyonum palmatum;
(I,J) an aggregation of an unidentified solitary anthozoan, including a close-up of one individual;
(K,M) tubes of the polychaete Spiochaetopterus sp. colonized by small hydrozoans; (L) the sabellid
polychaete Sabella pavonina; (N) the squid Illex coindetii. All underwater images obtained with ROV
LIROPUS 2000, Instituto Español de Oceanografía (Spain).
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Figure 5. Some examples of present-day bottom sediments, fossil remains and anthropic activity 
indicators detected for the Alcántara (A,B), Málaga (C–H) and Aceitunas (I,J) carbonate mound 
fields of the northern Alboran Sea. (A,B) Muddy bottoms with some typical bathyal species, such 
as the gastropod Aporrhais serresiana (Ap) and the polychaete Lanice conchilega (La); (C) Bathyal 
muddy bottoms with burrowing megafauna (mainly Munida spp. and Nephrops norvegicus); (D–H) 
rhodoliths and bivalve remains detected in several mounds; (I) a cloth sack over Spiochaetopterus sp. 
tubes and (J) a bottom-trawling mark. All underwater images obtained with ROV LIROPUS 2000, 
Instituto Español de Oceanografía (Spain), except figure E obtained with ROV CHEROKEE, Marum, 
Bremen (Germany). 

  

Figure 5. Some examples of present-day bottom sediments, fossil remains and anthropic activity
indicators detected for the Alcántara (A,B), Málaga (C–H) and Aceitunas (I,J) carbonate mound fields
of the northern Alboran Sea. (A,B) Muddy bottoms with some typical bathyal species, such as the
gastropod Aporrhais serresiana (Ap) and the polychaete Lanice conchilega (La); (C) Bathyal muddy
bottoms with burrowing megafauna (mainly Munida spp. and Nephrops norvegicus); (D–H) rhodoliths
and bivalve remains detected in several mounds; (I) a cloth sack over Spiochaetopterus sp. tubes
and (J) a bottom-trawling mark. All underwater images obtained with ROV LIROPUS 2000, Insti-
tuto Español de Oceanografía (Spain), except figure E obtained with ROV CHEROKEE, Marum,
Bremen (Germany).
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4.2. Malága Mound Field

The central Málaga mound field is located 35 km southeast off Málaga, between 220
and 273 m water depth (Figure 1C). This field consists of 64 mounds with mainly circular
to elongated shapes, with the elongated mounds mainly displaying NW to SE extensions
and a mean Iri of 2.1. The mounds have heights of 2 to 18 m, and diameters between 79
and 831 m with maximum slopes of 14◦. The most elongated mounds generally display the
largest heights (up to 18 m) as well as the steepest flanks and a mean Iri of 1.8 (Table 2).
This field contains the largest number of mounds with the largest basal area (Table 2).

The spatial distribution of the mounds shows two different trends: mounds clustered
in the western sector of the field with mound density values of 11 per km2, and scattered
mounds with much lower mound densities (less than 2) in the eastern sector (Figure 2E).
In addition, even further to the west, another cluster of mounds could be identified on
the hillshade map (Figure 1C) but the scarce data resolution did not allow its detailed and
comparative analysis.

The sediment surface samples VV05-08 and VV22-24 taken from the Málaga mound
field consisted of mud and muddy sand with some bioclasts, mainly rhodoliths and
fragmented bivalves and polychaete tubes, such as Aporrhais serresianus, Nassarius ovoideus,
Neopycnodonte cochlear, among others, together with fossilized shells of Modiolus modiolus
and debris of scleractinian corals (e.g., Caryophyllia) (Appendix A). Three cores were taken
from this mound field with one core (TG22) collected from the top of a mound revealing a
very low recovery of ~5–38 cm and only containing rhodoliths, while the two gravity cores
(TG23-24) collected from the seabed adjacent to the Málaga mounds yielded core recoveries
of more than 2 m only containing soft muddy sediments (Appendix A).

The bottom sediments and benthic and demersal communities of the Málaga mound
field were similar to the ones detected in the Alcántara mound field, and included bathyal
muds with burrowing megafauna (mainly Munida spp.), intermixed with seapens (mainly
V. cynomorium and Virgularia mirabilis) and soft octocorals (Alcyonum palmatum), together
with cerianthiids (Cerianthus spp.) and sabellid polychaetes (Sabella pavonina) (Dive 4;
Dive 6) (Figures 4 and 5). Other benthic organisms detected were the hydrozoan N. ramosa
and the soft bottom gorgonian Spinimuricea sp., the polychate Spiochaetopterus sp., decapods
(Dardanus arrosor, Monodaeus couchii, Macropodia sp. and Plesionika spp.) as well as the
gastropod Xenophora crispa and cephalopods (Illexcoindetti). Common fishes in this field are
also similar to the ones detected in the Alcántara mound field and included unidentified
species of Myctophids, the horse mackerel Trachurus spp., the dogfish S. canicula, small
gobiids (Lesueurigobius spp.) and the monk fish Lophius sp. The fossil record included
remains of solitary (mainly Caryophyllia spp.) and colonial scleractinians (Dendrophyllia
cornigera), abundant remains of fossilized rhodoliths and of some bivalves (mainly Gly-
cymeris glycymeris and Modiolus modiolus) (Figures 4 and 5). Bottom-trawling marks in this
mound field represent human activities.

4.3. Aceitunas Mound Field

The Aceitunas mound field in the east has the largest extension and is located 10.5 km
off Almería (north-westwards of Chella Bank), between 155 and 401 m water depth
(Figures 1D and 2C). It is the most heterogeneous field and is composed of 243 mounds
(Table 2). Most mounds have circular to subcircular shapes, but few of them have also
elongated shapes (Iri > 1.8) showing a NW-SE orientation (Table 2). The mounds have
heights up to 15 m and diameters between 6 to 630 m (Table 2), with maximum slopes
of 20◦. The mounds with steep flanks are located at the base of Chella Bank, developed
on the flank of the rim depression surrounding the seamount (Figure 2C). In general, the
circular mounds of this field are smaller (mean diameters: 123 m) and are generally located
deeper (224 to 366 m) compared to the elongated mounds (lengths: 280 to 630 m; water
depth: below 210 m). In the Aceitunas mound field, the distribution of the individual
mounds follows a scallop pattern, with the largest mounds located at the western sector of
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the field (with a mound density of 18 mounds per km2) and the smallest ones located in
the easternmost sector (with mound densities between one and five mounds per km2).

The sediment surface samples VV09-21 were collected from different mounds in the
Aceitunas mound field and consisted of fine muddy bioclastic sand with some pebbles,
including some remains of bivalves and polychaetes. At the northernmost part of the
Aceitunas mound field, the sediment contains more sand, showing diverse bioclastic
fragments. Six gravity cores (TG16-21, with recoveries of 2 to 30 cm) retrieved from the
top and flanks of the mounds of the Aceitunas field are characterized by bioclastic muddy
sands, with some fragments of scleractinian corals (i.e., Caryophyllia spp.) (Appendix A).

In the Aceitunas mound field, the main bottom sediments were bathyal sandy muds
and muddy sands and benthic and demersal communities were dominated by burrow-
ing megafauna (mainly Munida spp.), intermixed with seapens (mainly V. cynomorium
and Virgularia mirabilis) and octocorals (Alcyonumpalmatum), as well as with cerianthi-
ids (Cerianthus sp.) (Dive 7). Other benthic organisms include unidentified hydrozoans,
decapods (Dardanus sp. and Plesionika spp.) as well as the gastropod Xenophora crispa.
Common fishes in this field are also similar to the ones detected in the Alcántara and
Málaga mound fields and included unidentified species of flatfishes and gobiids, the
dogfish S. canicula and the blackbelly rosefish Helicolenus dactylopterus. In some mounds,
remains of rhodoliths and of the seagrass Posidonia oceanica were commonly observed on the
underwater images and were also detected in the collected sediment samples. Anthropic
activity indicators were represented by several bottom-trawling marks, some of them being
very well defined, as well as by remains of plastics and fabrics.

4.4. Subseafloor Features and Seismic Facies of the Mound Fields

The high-resolution seismic profiles revealed that the mounds are embedded in the
Quaternary contouritic terrace deposits of the northern Alboran Sea margin. These deposits
are made up of the vertical stacking of seaward tilted subparallel stratified facies with
reflections of variable acoustic amplitude. These deposits show seismic discontinuities of
wide lateral continuity that represent irregular erosive surfaces outstanding by their high
acoustic reflectivity (Figure 3). These unconformities are sharp surfaces and are locally
covered by an extensive (<80 km long) but thin (few millisecond (ms) thick) layers of
transparent and chaotic reflections, whose top forms a surface of high reflectivity with
irregular morphology. Locally, terrace deposits are affected by some ancient faults (Late
Pleistocene in age, [77] that in the Alcántara mound field are sealed by the most recent
erosive surface (Figure 3A).

The seismic sections of the mounds protruding at the seafloor show conical shapes
with two main types of morphologies: single mounds with gently inclined flanks and
clusters of mounds of different heights. Their basal parts are >300 m to <2 km long, with
total heights varying from >5 to about 30 ms. These mounds root on at least three different
erosive surfaces (i.e., with different ages; named lower, middle and upper in Figure 3).
The transparent and chaotic level overlying the lower erosive surface resembles levels of
similar, but much smaller within the mounds (Figure 3B). Some mounds continued to form
since their initiation at the lower erosive surface, while others disappeared and new ones
formed at the middle and upper erosive surfaces. The hummocky level overlying the lower
erosive surface resembles levels of similar, but much smaller mounds due to their facies
and morphology (Figure 3B). This suggests that the larger mounds build up as isolated
features rooted on the erosive surfaces and also grew on extensive patches with multiple
smaller mounds where locally, prominent mounds stand out and eventually protrude at
the seafloor. In both cases, below the prominent mounds, acoustic anomalies, such as
velocity pull-up (Figure 3B) and column-shaped blanking that mask completely or partially
the underlying deposits (Figure 3) are observed. The mounds rooted on the most ancient
surface are commonly those with the highest dimensions.

In general, the irregular topography created by the mounds elevating from the seafloor
is infilled by stratified deposits (Figure 3). Their reflections seem to continue along the
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sides of the mounds suggesting that most of them are at least covered by a variable thin (a
few meters) layer of recent sediments. The mounds are internally defined by transparent
facies. High reflectivity internal surfaces, vertically and laterally stacked are identified in
some single cases. In the mound clusters, those surfaces are grouped with complex patterns
(Figure 3B, C). Mounds with asymmetric cross sections are characterized by a relatively
longer and steeper side with prolonged echoes, and a gentler flank showing wedges of
stratified deposits at their foot (Figure 3A). Additionally, at the basal part of some Alcántara
mounds, contourite moats (tens of meters wide, few ms in height) or moat-drift systems
(few hundred meters in length) could be identified (Figure 3A).

Mounds are not exclusively found on the present seafloor. Seismic profiles from
the Alcántara and Málaga mound fields show buried features similar in morphology
and dimensions to the seafloor mounds (Figure 3B), pointing to additional, older mound
formation periods. These older buried mounds and their surrounding contouritic sediments
appear seismically very similar to the younger ones and, thus, indicate that mounds have
been developed intermittently in the same areas during a long time period. The buried
mounds also root on (at least up to 4) erosive surfaces (Figure 3B). The Alcántara and
Aceitunas fields comprise 26 to 58 identified buried mounds, respectively, whilst in the
Málaga field, more than 120 buried mounds are identified, which may represent the most
ancient ones as some of them root on the deepest erosive surface (Figure 3).

5. Discussion
5.1. Potential Main Framework-Building Organisms of the Mounds

The present study could not confirm which framework-building organisms induced
the formation and further development of the mounds of the northern Alboran Sea, but
samples collected in the mound fields included remains of solitary and colonial sclerac-
tinians (e.g., Caryophyllia spp., Dendrophyllia cornigera), rhodoliths and large bivalves, with
subordinate organisms. Organisms inducing mound formation generally include different
groups with different biological traits, ranging from cyanobacteria and calcareous algae
(mostly in mounds built in photic areas during ancient times) to heterozoans (mostly colo-
nial scleractinians) without photoautotrophic symbionts (during past and modern times)
but dependent on external food particles transported by bottom currents [2,4,5,26,30,33,78].
The morphologies and internal structures of the studied mounds in the northern Alboran
Sea are similar to those reported for mounds detected in the southern Alboran Sea (East and
West Melilla CWC mound Provinces) [43,46,55,61]. These southern Alboran Sea mounds
are clear examples of carbonate mounds built by framework forming cold-water corals
(CWCs) (mainly Madrepora oculata and Desmophyllum pertusum, the latter known as Lophelia
pertusa until [79], so it is likely that CWCs could represent the dominating contributors for
mound development in the northern Alboran Sea mounds. CWC mounds, either active
(covered by thriving CWC reefs) or buried in soft sediments have been previously reported
from many parts of the Mediterranean Sea (e.g., Apulian margin in the Ionian Sea -Santa
Maria di Leuca CWC province, Corsica Channel-Tuscan Archipelago slope) [17,80–85] and
the adjacent Gulf of Cádiz (e.g., [7,85–89]). Seismostratigraphic analysis and radiometric
dating suggested that some of these mounds (e.g., EMP, WMP) experienced their most
recent formation period during the last deglaciation until the Early Holocene most likely
related to enhanced marine productivity [43] while older mound formation periods are
placed (e.g., during the last interglacial [63]. The demise and subsequent burial of some
Mediterranean CWC mounds since the Early to Mid-Holocene generally coincided with
substantial changes in the environmental conditions driven by changes in climate water
mass distribution [44,55,79,90], and water mass interfaces sculpting the regional contouritic
erosive terraces [56]. These terraces have been created through time by turbulent oceano-
graphic processes (e.g., internal waves) related to the water mass interfaces, and their
vertical and lateral variations during the Late Quaternary sea-level variations [56,91].

In this sense, some southern Alboran Sea CWC mounds (e.g., WMP) significantly
slowed down their aggradation during the Mid-Holocene due to relatively weak hydrody-
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namics and oligotrophic conditions and, finally, stagnated until today with some mounds
becoming buried and/or partially buried by sediments [46]. This contrasts with the high
proliferation and aggradation rates of the southern Alboran Sea CWC mounds during the
Bølling–Allerød interval, possibly related to enhanced surface ocean productivity and a
peak in meltwater discharge originating from the northern Mediterranean borderlands,
which caused a major reorganization of the Mediterranean thermohaline circulation [43,75].
Indeed, significant environmental changes on the continental slope decrease onshore sedi-
ment inputs to the continental slope due to landward migration of the coastline [6,92,93].
Hence, the mounds could be controlled by changes in the sediment focusing, resulting in
lateral sediment supply and changing deposition on the mounds, as supported in [53] and
also changes in the current bottom-current regimes. Considering all these observations,
it is possible that changes in the water mass circulation and water column structure, pro-
ductivity, near-bottom currents and sediment supply may also have induced the demise
of the studied northern Alboran Sea mounds as detected in the southern Alboran Sea
CWC mounds.

The studied carbonate mounds from the northern Alboran Sea are mostly buried by
mud and muddy sands, over a thick layer of calcareous algae (mainly rhodoliths), with
subordinate remains of solitary and colonial scleractinian (e.g., Dendrophyllia cornigera) and
bivalve shells, including the horse mussels (Modiolus modiolus). In fact, several gravity
cores were recovered from the mounds but they could just retrieve a maximum length
of 38 cm of sediment, with the lowest 5 cm section of the cores containing rhodoliths,
while gravity cores collected from the adjacent seabed only recovered soft sediments.
Rhodolith beds occur commonly in the photic and mesophotic zones, generally at less than
ca. 40 m water depth in the NE Atlantic and above ca. 120 m in the Mediterranean Sea in
different coastal and offshore environmental settings [16,94]. Rhodolith beds can display
considerable variation in thickness, with thicker beds occurring in settings with strong
hydrodynamics [14]. In these settings, rhodolith beds can even display wave ripples or
mega ripples (e.g., in Galway Bay, Stravanan Bay) [95,96]. In low energy settings, rhodoliths
can conform minireefs made of the fusion of rhodoliths with other sessile organisms
(e.g., Fernando de Noronha Island, Rocas Atol, Vitoria Trindade Chain, Brazil) [97,98].
Furthermore, some mobile organisms (e.g., the tilefish Malacanthus plumieri) can create small
mounds of rhodoliths [97,98]. Nevertheless, no records of large mounds built by rhodoliths
have been found in the literature, thus, it is more plausible that the rhodoliths developed
just on top of the already existing carbonate mounds and, therefore, contributed to a minor
extent to their aggradation. Rhodolith beds occur nowadays in the Alboran Sea (20–120 m)
on the summits of Chella Bank (75–120 m) and of the Alboran ridge (20–100 m) [99,100].
Considering that rhodoliths may have been formed on top of the carbonate mounds when
sea level was minimal during the Last Glacial because some of the studied carbonate
mounds were located at suitable depth for rhodolith growth (ca. 53–110 m) during that
period (Appendix A).

Together with the rhodoliths, remains of horse mussels (M. modiolus) were collected
in some surface samples and were also detected in some underwater ROV images from
the Málaga mound field. Graveyards of this mytilid have been found in other parts of the
Alboran Sea, mainly at Chella Bank [96] and at the Alboran ridge (between 100–120 m) [99].
Graveyards of other mytilids have been detected in upper Miocene out cropped carbonates
in a NE–SW trending belt (42 km long and 1.5–8 km wide) along the so-called El Alcor
topographic high (Guadalquivir Basin, S Spain) [101]. In the M. modiolus graveyards of the
Alboran Sea, remains of other bivalve species were detected, including Panomya norvegica
and large individuals of Mytilus edulis [99]. The former species, together with M. modiolus,
represent examples of boreal guests that occurred in the Alboran Sea during the Last
Glacial, while today the distribution of these species is restricted to latitudes north of the
English Channel in the NE Atlantic. A study [102] indicated that M. modiolus occurred
intermittently in the Western Mediterranean Sea and adjacent Gulf of Cádiz from the late
Pleistocene until the substantial warming accompanying Termination l of the Last Glacial
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(ca. 13,000 years B.P.). Individuals of M. modiolus are best described as being adapted to
live semi-infaunally with endobyssate attachment to the substrate, which ranges from soft
or coarse sediments to rhodolith beds and hard substrata [103–105]. Generally, M. modiolus
can be found on the lower shore in rock pools or in laminarian holdfasts but more common
subtidally down to ca. 280 m depth [105]. This bivalve occurs singularly, in clumps, or
in high-density and species-rich biogenic reefs in boreal and temperate regions around
the world [106,107]. Some of the M. modiolus beds can extend ca. 349 ha (e.g., The North
Lleyn reef, in the UK) and display undulating reliefs up to 1–2 m high, which are generally
orientated perpendicular to the current [108]. Considering this, it is very unlikely that
the carbonate mounds of the northern Alboran Sea, with heights of up to 18 m, would
have been built up solely by the aggradation of M. modiolus beds, which generally are less
than 2 m high, and no records of large mounds formed by this mytilid have been found in
the literature. So, it is likely that these bivalves lived on top of some carbonate mounds
together with the rhodoliths before they declined during Termination 1a of the Last Glacial,
in accordance with [102].

5.2. Carbonate Mound Location and Environmental Setting

A large number of mound structures with acoustically transparent features presented
in this study are interpreted as carbonate mounds, probably built by CWCs, considering the
striking morphological and seismic similarities, such as their conical shape and the rooting
on different seismic horizons, with other similar exposed and/or buried CWC mounds
previously described in the Gulf of Cádiz [7,89], in the Porcupine Seabight [109,110] and in
the southern Alboran Sea [55,61].

In general, larger and elongated mounds were detected in the shallowest areas whereas
smaller mounds were detected in the deepest areas of the northern Alboran Sea mound
fields. This is in accordance with the observations made by [55] for the WMP in the
southern Alboran Sea, where smaller mounds were more frequent along the distal and
deeper sectors of the mound field. The authors attributed this depth-related distribution
pattern to a lower hydrodynamic energy setting and reduced food supply for CWCs in
those deeper waters. Moreover, [46] detected stagnation of the southern Alboran Sea CWC
mounds with the onset of the Mid Holocene, because they were located in an oligotrophic
setting. This contrasts with the strong hydrodynamic setting promoted by internal waves
developed along the water mass interface between the MAW and the LIW during the
Bølling–Allerød (B/A) interstadial and the Early Holocene [46]. If water mass properties
and internal waves (developed along the water mass interface) controlled the proliferation
of CWCs and hence the development of CWC mounds, it is likely that the larger elongated
mounds were more exposed to these internal waves with an efficient food delivery than
the small mounds located deeper. Since for the northern and central Alboran Sea, the
interval waves are currently reported from the interface between MAW and LIW at ~250 m
water depth [111], the studied mounds, which occur in a relatively narrow depth range,
should be influenced by internal waves in the same way. The elongated mounds located
in the shallowest sectors of the studied fields could also have been benefitted more from
food particles generated through the nutrient-rich coastal upwelling waters of the northern
Alboran Sea [68]. Thus, the interaction between enhanced productivity and hydrodynamic
energy settings in the shallowest areas probably has provided more suitable conditions for
CWC growth and carbonate mound aggradation, allowing individual small mounds to
merge to more complex structures conforming to larger, elongated CWC mounds as also
found in other areas [112–114].

In the northern Alboran Sea, the carbonate mounds of the shallowest sectors are
elongated with a predominant downslope extension of their length axis, mainly following
NW-SE directions rather than parallel to the bathymetric contours of the continental slope.
This probably might be related to the activity of internal waves developed along the
water mass interface between the MAW and the LIW which could influence the shape
and orientation of the mounds as assumed for carbonate mounds of the Gulf of Cádiz [7].
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Furthermore, these internal waves and the generated strong hydrodynamic energy setting
could also have played a big role in shaping the contourite terraces where the studied
mound fields are located [56]. The sustained effect of a strong hydrodynamic energy setting,
as observed by extended contourite deposition at several sites in the Alboran Sea [56,115],
is clearly displayed in the present-day topography of the studied carbonate mound fields
with many of the mounds being aligned by extensive moats, which are more pronounced
around the Alcántara mounds, implying a more vigorous bottom current regime there
(Figure 2A). This fact can be related to the constriction and acceleration of Mediterranean
water masses near the Strait of Gibraltar [116].

The morphometric analysis of the studied carbonate mounds at the upper slope of the
northern Alboran Sea revealed a total of 325 exposed carbonate mounds and 204 buried
ones, extending over the three areas of almost 5.5 km2 and resulting in a mean mound
density of 62 mounds per km2 for the northern Alboran Sea. In the Aceitunas mound
field, the mean mound density reaches up to 78 mounds per km2, hence being much larger
than in the Málaga and Alcántara mound fields (Figure 2D–F). Such mound densities are
much higher than the ones detected for other CWC mound fields from the Mediterranean
Sea, with 3–5 mounds per km2 were observed [55], and from the Moroccan margin, with
2–12 mounds per km2 [89,117]. The high number of carbonate mounds observed for
various mound provinces in the Atlantic and Mediterranean [4,7,8,50,81,118], and now, in
the Alboran Sea, point to their role as common seafloor morphological features usually
occurring in intermediate water depths, which should be considered for future seafloor
classification studies.

Furthermore, the high-resolution seismic investigations provide evidence that striking
regional and high acoustic amplitude erosional surfaces represent the base of the mounds,
as has been also observed in the Gulf of Cádiz [88]. Based on seismic stratigraphy works
using high-resolution seismic profiles in the Alboran Sea, we can tentatively suggest that
those surfaces formed from latest Pleistocene to Holocene [56,93,119]. Their formation
would have formed during phases of erosion shaping the contouritic terrace and during
periods of relatively higher energetic bottom currents, related with climatic variability [56].
Consequently, these erosional surfaces likely provided hard substrates (e.g., lag deposits)
that could have allowed initial colonization by CWC and subsequent reef formation,
favored by topography-enhanced bottom currents.

5.3. Current and Past Sedimentary Environment Affecting the Mound Fields

Nowadays, the studied carbonate mounds can be considered inactive mound fields
with no living CWCs and with most of the mounds buried in soft sediments as detected
in other carbonate mounds of the NE Atlantic and Mediterranean Sea [33,55,120]. The
associated communities in all three fields are very similar regarding their megafauna,
mainly due to the fact that there are no extreme changes in the sediment type and depth
among them, which generally represent two of the most important factors inducing species
replacements in megabenthic communities. The detected megabenthic communities are
very widespread in the northern Alboran Sea and are often exposed to bottom trawling
activities because they attract valuable commercial fisheries resources [72]. Indeed, several
trawling marks were detected in the underwater images obtained from the studied carbon-
ate mounds. The bottom sediments and associated benthic communities on the mounds
are similar to those detected on the seafloor adjacent to the mounds, indicating a very
low present-day benthic heterogeneity between the studied mounds and the surrounding
seabed. Generally, mound formation requires mound growth to be faster than background
sedimentation, and baffling of hemipelagic sediment is a major component contributing
to mound growth (especially in branching mound-forming organisms; [5,18,20,33,34,53].
Thus, the burial of carbonate mounds appears to be a consequence of the cessation of
active reefs and, thus, mound growth induced by the deterioration of living conditions for
the respective mound-forming organisms [5]. In the southern Alboran Sea, stagnation in
mound formation occurred since the Mid-Holocene and some of these mounds became
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buried by sediments. In the present study, it is not possible to place the development of
the northern Alboran Sea mounds into any temporal framework or know precisely when
the burial of the mounds took place. The burial induced extreme changes in the seabed
and associated communities, from complex and highly diverse CWC and rhodolith bed
communities, which probably formed since/during the Last Glacial Maximum, to current
soft sediments with burrowing organisms and the specialized soft-bottom suspension
feeders of the typical bathyal communities of the northern Alboran Sea [17].

The arrangements of the three erosive surfaces observed in the sub-bottom profiles
(Figure 3), as well as on the stratigraphic relationships between the buried mounds and the
stratification of the sedimentary deposits allow us to conclude that active sedimentation
generated stratified deposits overlying the carbonate mounds. Laterally, the continuity of
the deposits seems to be interrupted by the mounds themselves, once they are inactive.
This suggests that the mounds were formed shortly after the major erosional event that
created the hardground mound base common for the three fields and developed quickly,
likely promoted by favorable oceanographic and climatic conditions, before strong drift
sedimentation started [109]. Such mound-controlled processes have already been suggested
for other CWC mound provinces off Ireland [113,120]. The inferred age of the lower rooted
surface at the base of the mounds is late Pliocene to early Quaternary, so the stage of
formation of the mounds would date from the early Quaternary.

6. Conclusions

Based on these observations, we consider that the occurrence pattern of the northern
Alboran Sea mounds could be related to favorable climatic conditions for CWC mound
formation, possibly during the Quaternary and before Termination 1a of the Last Glacial
due to the occurrence of boreal guest fauna on top of the mounds. This contrasts with the
findings of [15,43,46] who detected that the most recent mound formation period started
during the last deglaciation in some southern Alboran Sea mounds (e.g., WMP). Although
direct observation of the typical CWCs involved in mound formation (e.g., Madrepora
oculata, Desmophyllum pertusum) could not be carried out in the present study, it is very
plausible that CWCs represented the main mound-building organisms due to the morpho-
logical similarities and internal structure of the studied mounds. Further studies may focus
on obtaining long cores using extracting methods (e.g., drilling) that are more efficient
than gravity coring in order to improve the knowledge on the internal composition of the
mounds as well as in performing seismostratigraphic analyses and radiocarbon dating of
the rhodolith outer surface. In addition, bathymetry and high-resolution seismic profiles
could be obtained with equipment operating closer to the seafloor, such as autonomous
underwater vehicles (AUVs). This would allow us to obtain detailed bathymetry, backscat-
ter and seismic profiles to study the internal structure of the mounds and to correlate their
morphostructure with long sediment corers in order to advance the knowledge of the
formation and evolution of the northern Alboran Sea mounds.
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Appendix A

Table A1. Metadata of the surface sediment Van veen grab samples (VV) and gravity cores (TG)
recovered during MONCARAL_0516 and RIGEL_1116 expeditions in the northern Alboran Sea.

Expedition Mound Field Sample
Code

Core
Length (cm) Water Depth (m) Latitude N (◦) Longitude W (◦) Description

MONCARAL Alcántara VV01 241 36◦21.52′ 05◦01.40′ Muddy sand with Nucula sulcata
and Nassarius ovoideus shells

MONCARAL Alcántara VV02 251 36◦21.36′ 05◦01.45′ Muddy sand with Nucula sulcata
and Euspira fusca shells

MONCARAL Alcántara VV03 317 36◦19.83′ 04◦59.86′ Sandy mud with Abra spp. and
Nassarius ovoideus

MONCARAL Alcántara VV04 313 36◦19.85′ 04◦59.80′ Muddy sand

MONCARAL Málaga VV05 231 36◦37.70′ 04◦12.90′
Bioclastic sandy mud with

rhodoliths and Modiolus modiolus
shells fragments

MONCARAL Málaga VV06 260 36◦37.20′ 04◦12.10′
Bioclastic sandy mud with

Neopycnodonte cochlear shells and
Caryophyllia spp. fragments

MONCARAL Málaga VV07/08 271 36◦37.01′ 04◦11.60′ Sandy mud with Nassarius ovoideus
and Aporrhais serresiana shells

MONCARAL Aceitunas VV09 192 36◦36.50′ 02◦54.50′ Muddy fine sand with Posidonia
oceanica remains

MONCARAL Aceitunas VV10 201 36◦36.20′ 02◦54.30′ Bioclastic sand with
rhodoliths fragments

MONCARAL Aceitunas VV11 173 36◦37.00′ 02◦56.20′ Bioclastic sand with
rhodoliths fragments

RIGEL Aceitunas VV16 223 36◦36.37′ 2◦56.61′ Bioclastic muddy sand

RIGEL Aceitunas VV17 233 36◦35.36′ 2◦53.61′ Bioclastic muddy sand with
Caryophyllia spp. fragments

RIGEL Aceitunas VV18 244 36◦35.14′ 2◦52.79′ Sandy mud
RIGEL Aceitunas VV19 188 36◦36.20′ 2◦53.48′ Sandy mud
RIGEL Aceitunas VV20 196 36◦36.31′ 2◦54.88′ Sandy mud
RIGEL Aceitunas VV21 231 36◦38.52′ 4◦10.16′ Sandy mud
RIGEL Málaga VV22 238 36◦37.66′ 4◦11.94′ Bioclastic sandy mud
RIGEL Málaga VV23 255 36◦37.59′ 4◦11.17′ Sandy mud with polychaetes
RIGEL Málaga VV24 232 36◦37.82′ 4◦12.85′ Sandy mud
RIGEL Aceitunas TG16 7 171 36◦37.04′ 2◦56.18′ Bioclastic muddy sand
RIGEL Aceitunas TG17 5 172 36◦37.05′ 2◦56.19′ Bioclastic muddy sand
RIGEL Aceitunas TG18 30 191 36◦36.25′ 2◦54.46′ Bioclastic muddy sand

RIGEL Aceitunas TG19 5 194 36◦36.19′ 2◦54.38′ Bioclastic muddy sand with
Caryophyllia spp. fragments

RIGEL Aceitunas TG20 26 193 36◦36.38′ 2◦54.78′ Bioclastic muddy sand with
Caryophyllia spp. fragments

RIGEL Aceitunas TG21 2 233 36◦35.36′ 2◦53.61′ Bioclastic sandy mud

RIGEL Málaga TG22 38 231 36◦38.52′ 4◦10.16′ Sandy mud with N. cochlear shells
fragments and rhodoliths

RIGEL Málaga TG23 260 248 36◦37.34′ 4◦12.12′ Bioclastic sandy mud
RIGEL Málaga TG24 105 231 36◦37.82′ 4◦12.85′ Bioclastic sandy mud
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