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Abstract: Chlorophylls and carotenoids are two families of antioxidants present in daily ingested
foods, whose recognition as added-value ingredients runs in parallel with the increasing number of
demonstrated functional properties. Both groups include a complex and vast number of compounds,
and extraction and analysis methods evolved recently to a modern protocol. New methodologies
are more potent, precise, and accurate, but their application requires a better understanding of the
technical and biological context. Therefore, the present review compiles the basic knowledge and
recent advances of the metabolomics of chlorophylls and carotenoids, including the interrelation
with the primary metabolism. The study includes material preparation and extraction protocols,
the instrumental techniques for the acquisition of spectroscopic and spectrometric properties, the
workflows and software tools for data pre-processing and analysis, and the application of mass
spectrometry to pigment metabolomics. In addition, the review encompasses a critical description
of studies where metabolomics analyses of chlorophylls and carotenoids were developed as an
approach to analyzing the effects of biotic and abiotic stressors on living organisms.

Keywords: antioxidants; carotenoids; chlorophylls; extraction methods; novel analytical technologies;
metabolomics; mass spectrometry; metabolism; pathways; pigments

1. Introduction

Metabolomics is an essential approach that allows for the acquisition of knowledge
regarding the actual composition of complex mixtures of extracts from tissues of plant or
animal origin. The development of metabolomics is only feasible with a holistic methodol-
ogy, applying a multifaceted and interdependent sequence of experiments, techniques, and
computational tools [1]. Accordingly, the successful application of metabolomics depends
on the successful selection or development of extraction protocols; the arrangement of
the suitable analytical platform for analyses; the implementation of software for data
gathering, handling, and analysis of results, where an expert-curated learning attitude is
fundamental; and, finally, the application of statistics to extract the information within a
biological context [2]. Nevertheless, the importance of metabolomics lies in the information
regarding the physiology of an organism, tissue, cell, etc. Indeed, metabolomics is a source
that reflects a biochemical state or activity.

This review is focused on the metabolomics of chlorophylls and carotenoids, which
was named “pigmentomic”, as a tool for exploring their antioxidant features within the
secondary plant metabolism. The antioxidant properties of both families of pigments
have been deeply investigated and recently reviewed [3]. To gain an idea of the present
impact of this topic, we performed a reference search in the Web of Science (ISI Web of
Knowledge) databases, introducing “metabolomic*” and “chlorophyll*” as topics, and a
total of 380 results were obtained (Figure 1). Moreover, when the topics “metabolomic*”
and “carotenoid*” are selected, 499 results arise. However, the interesting point of both
surveys is their time evolution, as half of the manuscripts were published in 2019 or
thereafter, a clear signal of the exponential growth rate of metabolomics studies focusing
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on chlorophylls and carotenoids. This review includes metabolomics and metabonomics
studies, as the difference between both terms is author dependent, and each term was
defined as a subset of the other. It can be assumed that in metabolomics (stated by Fiehn
and collaborators in 2001) [4], studies are necessary to identify and quantify all endogenous
metabolites, while the metabonomics assessment (created by Nicholson et al. in 1999) [5]
aims to identify a metabolite fingerprint. In a broad sense, a metabolomics strategy utilizes
a mixture of separation techniques, such as HPLC or GC-MS, while in metabonomics
studies, the use of NMR spectroscopy is more frequent.
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We summarize the current understanding of how metabolomics describes fluctua-
tions in chlorophylls and carotenoids, which perform essential functions and actions in 
photosynthetic organisms and animals that incorporate them through diet. Their involve-
ment in plant biochemistry as key network components suggests that chlorophylls and 
carotenoids are key compounds involved in significant metabolic pathways. The review 
starts with a general description of the application of techniques for sample preparation 
and the acquisition of extracts suitable for analysis; a picture of the analytical platform 
and technologies applied for the identification and quantification of the pigment profile; 
and the workflow for data analysis, including software tools and the application of me-
tabolite databases and statistics. Next, we compile the works where the metabolomics of 
chlorophylls and/or carotenoids has proved extremely valuable in the recognition or tun-
ing of metabolic pathways correlated with responses to different abiotic and biotic factors; 
physiologic and biologic studies; and even applications to animal health. In this sense, the 
aim of the present review is to strengthen the potentiality of the metabolomics studies of 
chlorophylls and carotenoids. Moving on from an analytical determination, metabolomics 
is a powerful tool for comprehensive research, with multiple and diverse applications, as 
will be shown in this review. 
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Figure 1. Number of publications since 2011 in the Web of Science (ISI Web of Knowledge) databases,
introducing “metabolomic*” and “chlorophyll*” (green series) and “metabolomic*” and “carotenoid*”
(orange series) as topics. The year 2021 does not cover the whole year and takes into account
publications from January to September only.

We summarize the current understanding of how metabolomics describes fluctua-
tions in chlorophylls and carotenoids, which perform essential functions and actions in
photosynthetic organisms and animals that incorporate them through diet. Their involve-
ment in plant biochemistry as key network components suggests that chlorophylls and
carotenoids are key compounds involved in significant metabolic pathways. The review
starts with a general description of the application of techniques for sample preparation
and the acquisition of extracts suitable for analysis; a picture of the analytical platform and
technologies applied for the identification and quantification of the pigment profile; and
the workflow for data analysis, including software tools and the application of metabolite
databases and statistics. Next, we compile the works where the metabolomics of chloro-
phylls and/or carotenoids has proved extremely valuable in the recognition or tuning
of metabolic pathways correlated with responses to different abiotic and biotic factors;
physiologic and biologic studies; and even applications to animal health. In this sense, the
aim of the present review is to strengthen the potentiality of the metabolomics studies of
chlorophylls and carotenoids. Moving on from an analytical determination, metabolomics
is a powerful tool for comprehensive research, with multiple and diverse applications, as
will be shown in this review.

2. Biochemistry of Chlorophylls and Carotenoids
2.1. Chlorophylls

Chlorophylls comprise a homogeneous group of more than 100 different structures
with a unique configuration in nature. Their primary function is associated with photosyn-
thesis, being functionals during the charge separation in the reaction centers or transferring
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energy in the harvesting complex. Unfortunately, this essential role has masked, other
actions of chlorophylls in nature, including the interrelation with the general metabolism,
and has led to the underestimation of their physiologic functions.

Chlorophylls are tetrapyrroles with an additional fifth isocyclic ring (Figure 2). They
are coordinated generally with a central atom of magnesium, although this can be sub-
stituted by hydrogen or other divalent cations. In parallel, the propionic acid at C173 is
esterified with a phytyl chain (C20H39), but different chlorophyll structures arise from
esterification with multiple alcohols, and they can even occur in a non-esterified form (as
pheophorbides). Chemically, depending on the degree of unsaturation of the macrocycle,
chlorophylls could be classified as chlorin type (chlorophyll a and b among others), por-
phyrin type (chlorophyll c), or bacteriochlorin type (as certain bacteriochlorophylls), which
are responsible for a complex array of different chlorophyll metabolites. Moreover, during
natural (senescence or ripening) metabolism or food processing or storage, chlorophylls
can be oxidized to form new chlorophylls. Among the most common are 132-hydroxy-
chlorophylls, which are formed if the hydroxyl group is introduced at C132. In addition,
C151-hydroxylactone-chlorophylls are formed if a lactone group is formed at C151, and
pyroderivatives are formed if the carboxymethoxy group at C132 is lost.
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Figure 2. Main chlorophyll structures present in organisms or food due to natural metabolism or
during processing or storage.

Biochemically, the chlorophyll metabolism is divided among synthesis, the chloro-
phyll cycle, and degradation, and it is independently regulated. Few interesting reviews
have detailed the complete set of biochemical reactions, enzymes, and genes implicated
in their metabolism [6–9], and, consequently, we only delineate the main reactions for a
general outlook (Figure 3) in this review. Chlorophyll synthesis is initiated from the amino
acid metabolism, specifically from aminolevulinic or glutamic acids, depending on the
researcher. Different condensation, reductions, and decarboxylations generate protopor-
phyrin IX, which is the first colored chlorophyll metabolite. This point of the route is a
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hotspot, as it is where the branch toward heme metabolism occurs if Fe-chelatase inserts
Fe in the tetrapyrrole, or, similarly, where the branch toward the chlorophyll metabolism
occurs if Mg-chelatase catalyzes the reaction. Following Mg-protoporphyrin IX and af-
ter several reactions, protochlorophyllide a is formed. This compound is an interesting
metabolite because the subsequent reaction is light dependent in angiosperms and thus
responsible for the etiolated plants in dark conditions. After several reactions, chlorophylls
a and b are synthesized, with the functional capacity of interconversion through a plas-
tic chlorophyll cycle [9]. Such flexibility in the chlorophyll metabolism is based on the
capacity to modify the relative amounts of chlorophyll a and chlorophyll b depending
on the light intensity, modifying the proportion of antenna complexes and, consequently,
the photosynthetic apparatus. While chlorophyll synthesis is completely developed in
the chloroplast, the catabolic reactions start in the green organelle but run through the
cytosol, finishing in the vacuole (Figure 3). Chlorophyll a is degraded to pheophorbide
a in two reactions, liberating the magnesium atom and de-esterifying the phytol chain.
Recently, it was demonstrated that phytol yielded from chlorophyll catabolism is essential
for tocopherol synthesis [10]. Next, the macrocycle is oxygenolytically opened to form
the first linear chlorophyll catabolite, the so-called phyllobilins due to their resemblance
to the heme-derived bilins. At present, more than 40 different phyllobilins have been
described [11] with unknown functions, although an antioxidant role has been assigned to
them. After reduction, a fluorescent chlorophyll catabolite (FCC) is produced and exported
from the chloroplast to the cytosol. FCCs could be modified in the cytosol and imported
into the vacuole, where the acidic pH promotes isomerization to non-fluorescent chloro-
phyll catabolites (NCCs). Although a phyllobilin database for Arabidopsis thaliana [12] is
already available, a complete database containing all phyllobilins identified at present in
multiple species is necessary.
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As previously stated, in addition to their key role in photosynthesis, chlorophyll
compounds are implicated in different physiological actions and biochemical reactions. The
photodynamic properties of several chlorophyll metabolites allow them to be implicated in
the ROS response [13] and, consequently, as shown below, on different mechanisms, such
as defense, stress, and cell death. However, multiple pieces of evidence demonstrate the
antioxidant properties of chlorophylls [3]. Another example of the superficial valuation of
chlorophylls is the simple determination of chlorophylls as a simple symptom of senescence.
If we bear in mind the fact that the physical presence of chlorophylls a and b is necessary
for the assembly of the photosynthetic apparatus, it can be understood that organisms
named stay-greens (with a deficiency in senescence) have, in many cases, been identified
as mutants in chlorophyll degradation genes.

2.2. Carotenoids

Carotenoids are a family of naturally occurring yellow, red, and orange pigments chem-
ically derived from isoprenoids that group together ca. 1200 compounds [14]. Carotenoids
are lipophilic compounds synthesized in plastids. In chloroplasts, carotenoids have an
essential role in photosynthesis, assisting in harvesting light energy by transferring it
to the chlorophylls and protecting the photosynthetic apparatus by quenching triplet
excited states of chlorophyll molecules, singlet oxygen, and carboxy radicals [15]. Addi-
tionally, they are precursors to phytohormones and other signaling compounds [16,17].
These functions in photosynthesis, photoprotection, and key metabolic pathways make
carotenoids essential metabolites. However, the biosynthesis of secondary taxon-specific
carotenoids also occurs in chromoplasts, and it is linked with other roles and actions, such
as antioxidant activity not being related to photosynthesis and carotenoids serving as inter-
mediates in plant-animal interactions by furnishing flowers and fruits with fragrances and
colors [18,19]. Carotenoids with specific structural arrangements are precursors for vitamin
A, which has a direct impact on the function of these pigments in human nutrition [20].
Their action as antioxidants and other not yet fully understood activities in mammals have
prompted evidence for their role in human health [13]. Furthermore, there is a commercial
demand for carotenoids for the food, pharmacy, and cosmetics industries [21]. Altogether,
this explains the enormous interest in carotenoid biosynthesis and the possibility of ma-
nipulating and engineering the carotenoid biosynthetic pathway to answer fundamental
research questions and identify practical applications [22].

Carotenoid biosynthesis (Figure 4) starts with a series of isoprene condensations to
yield phytoene, a substrate that undergoes desaturation and isomerization steps (yielding
a group of intermediates) to form lycopene. These initial steps configure the basic structure
that characterizes plant carotenoids: the typical C40 skeleton with a central polyene system
that condenses the physicochemical properties of these pigments and conditions and the
subsequent enzymatic processes that continue the route [23,24]. From this point, cyclization
and subsequent oxygenation of the cyclic intermediates emerge as the breakthrough to
the origin of a considerable diversity of carotenoid structures [25]. Different combinations
of cyclic arrangements (type β and type ε) at one or both ends of the polyene system
generate the first branch in the route, while the introduction of hydroxyl, keto, epoxide, etc.
functions produces the classification of carotenoids in carotenes (pure hydrocarbons) and
xanthophylls (oxygenated products of carotenes).

At this point, the main issue to consider in metabolome-based studies of carotenoids
is the site of carotenoid biosynthesis and accumulation and the structural features that
characterize the precursors, products, and catabolites of this family of natural pigments.
First, carotenoids are synthesized in plastids and chloro- and chromo-plasts, meaning that
compartmentation approaches can be successfully used to focus metabolomics studies and
specifically analyze how the pathway operates in this separate location a priori without
unexpected competition. Second, the structure of the carotenoids is the premise of solving
the analytical challenge of their identification and quantification, while it includes the
possibility of expanding the analysis to both parent compounds and metabolic products.
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Carotenoids present a common basic skeleton (Figure 4), the polyene chain, and a combi-
nation of cyclic/linear arrangements at the ends of the skeleton with the introduction of
oxygen functions at specific carbon atoms expands the number of structural blends [26].
Moreover, these structural features seem to correspond exclusively to this family of natural
pigments. However, the correct identification is only feasible through the acquisition of sev-
eral layers of information from different technologies (UV-visible spectrophotometry, mass
spectrometry, nuclear magnetic resonance, and circular dichroism) combined with a variety
of derivatization processes and a comparison with reference standards. The presence of
geometric isomers, a frequent feature of carotenoids, complicates the identification task
and requires the introduction of secure workflow models and a combination of analytical
techniques for successful classification [27–30].
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3. The Praxis of Metabolomics: Essential Steps and Challenges for the
Experimental Design

When working with chlorophylls and carotenoids, as with other phytochemicals,
different metabolomic approaches can be developed (Figure 5). If the goal of a study can
be solved with observations and the quantification of a rather limited number of metabo-
lites, which are chosen based on previous literature reports or self-experience, targeted
metabolomics is performed. If we encounter a study without a previous hypothesis, then
we aim to obtain a global picture of the metabolome, measuring as many metabolites as
possible, which means that untargeted metabolomics are suitable. Using this strategy,
when samples are classified based on their metabolite profile, without identification of the
individual peaks, fingerprinting is carried out. On the contrary, when as many compounds
as possible are identified and subsequently quantified, metabolite profiling is carried out.
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Figure 5. An outlook of the planning of a metabolomics study including the selection of the workflow (hypothesis-driven
or hypothesis generation), examples of instrumental techniques, and data preprocessing and interpretation.

3.1. Material Preparation and Extraction Protocols

In metabolomics studies, frequent potential sources of bias are as follows: an unclear
selection of the development stage at harvesting time, a lack of references to provide
guidance on the light period and harvest duration, and a lack of a record of environmental
variables and growth conditions [31]. This is crucial when working with chlorophylls and
carotenoids, because the type of sample handling and applied treatments are critical to
avoiding alterations to the metabolites. Additionally, it should be kept in mind that fluxes
and accumulation rates are different depending on the class of metabolites (chlorophylls or
carotenoids) or the metabolic process (for example, metabolites involved in the photosyn-
thesis, antioxidant activity, catabolism of degradation products during ripening, and tissue
senescence) that is focused on [32].

If the analysis of metabolites does not need the pre-processing of the tissue, then the
direct flash freezing of the sample in liquid nitrogen stops metabolic conversions, and the
frozen sample is homogenized into a fine powder to enhance and standardize metabolite
extraction. A significant research effort has been made to refine the protocols for specific
chlorophyll and carotenoid extraction, minimizing the sources of errors and increasing the
reliability of the data [33]. The experimental design of most protocols aims to reduce the
processing time while increasing the efficiency of the extraction. In addition, factors such as
economic viability and sustainability have been introduced in the experimental design of
those protocols. Therefore, different “green extraction techniques” can be applied, such as
supercritical fluid extraction, microwave-assisted extraction, ultrasound-assisted extraction,
pulsed electric field extraction, and extraction assisted by enzymes. These techniques have
been applied mainly for carotenoid extractions, although several assays were developed for
chlorophyll extractions [34]. Supercritical fluid extraction presents several advantages, such
as its high purity of the extraction, simplicity, safety, and moderate temperatures [35,36]. On
the contrary, it is essential to optimize the temperature and pressure conditions for a specific
sample. Better results seem to be obtained when taking advantage of microwave irradiation
and when applying microwave-assisted extraction [37,38]. The direct generation of heat
within the matrix increases the recovery of the pigments. The studies using ultrasound-
assisted extraction showed a significant reduction in the extraction time and an increase in
the pigment extraction yields [39]. Pulsed electric field extraction was also used to improve
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pigments extractions [40,41], but its effectivity depends greatly on the intensity, amplitude,
duration, number, and frequency of repetitions. However, besides the excellent results
obtained with these protocols, the application of ionic solvents could be considered the most
modern extraction methodology at present. An ionic solvent can be defined as compounds
completely composed of ions with a melting point below 100 ◦C. However, additional
steps of purification are required when similar structures and/or polarities are present.
Therefore, an additional improvement is the set-up of the liquid-liquid extraction process
using aqueous solutions of tensioactive ionic liquids and vegetable oil as an alternative
to the conventional extraction processes [42], with excellent results for chlorophylls and
carotenoids. However, these modern extraction protocols require a considerable amount
of time to be generalized, while solvent extraction techniques are the universal protocol
applied to obtain chlorophylls and/or carotenoid extracts. The high recovery and stability
of the extracted compounds should be poised, and several different solvents are suitable
to achieve this aim (methanol, ethanol, acetone, and mixtures at different ratios of water
vs. organic solvent(s) at an acidic pH), with the help of sonication and vortex mixing.
The selection of the solvent should be made considering the wide range of the polarity of
compounds if untargeted metabolomics are pursued, while some solvent mixtures could
be tested to extract those compounds of interest selectively for targeted metabolomics. In
this case, the appearance of sample matrix effects in the subsequent instrumental analysis
diminishes, while interference due to the matrix during analysis and quantification could
be a serious issue in the case of metabolite profiling, which requires an almost complete
extraction of metabolites.

3.2. Technologies: Instrumental Techniques for the Acquisition of Spectroscopic and Spectrometric Data

Once the extract is ready for analysis, the instrumental technique performs the ac-
quisition of a set of data, whose complexity is related to the selected strategy for the
metabolomic study (Figure 5). Fingerprinting is typically performed with 1H-NMR, ignor-
ing the problem of making individual assignments of peaks [43]. Here, the main issue is to
work with signals that are typically evident as multiple peaks, hindering the analysis of
data. To overcome this problem, the acquisition of 13C-NMR spectra with modern probes
and systems purposely created to increase the sensitivity has been noted [44]. With these
approaches, the aim is to find a group of marker compounds, which are inferred from shifts
of different nuclei that characterize skeletons, aromatic rings, heteroatoms, and typical
structural arrangements but are not fully identified. Subsequently, statistical analysis is
conducted to classify the samples and draw conclusions based on discrimination, aggrupa-
tion, or differentiation of selected variables [45,46]. Technical improvements were made
in the last two decades to make definitively the combination of NMR spectroscopy with
LC a successful arrangement [47,48] if metabolite profiling or targeted metabolomics is
the strategy of the metabolomic study. Metabolite profiling and targeted metabolomics
make use of GC, while LC can be applied to targeted and untargeted metabolomics. These
techniques of analysis are coupled with one or several detection systems to achieve both the
compound separation and detection, collecting spectroscopic and/or mass spectrometric
data on individual components of the extract.

GC coupled with mass spectrometry (MS) is a robust chromatographic instrumental
technique (Figure 5) with a high compound separation efficiency (peak widths of 2–5 s)
that yields reproducible retention times. This feature allows the quick building of spectral
libraries of reference analytes that boost the identification of a compound profile in the
extract, with a high level of certainty in identification [49]. However, GC is only able for
the analysis of thermally stable and volatile compounds (directly from the extract, or once
the extract is derivatized to produce volatile products), such as carotenoid degradation
products (Figure 4) or phytol (arising from chlorophyll degradation, Figure 3). Additionally,
the availability of standards of carotenoid and chlorophyll volatile metabolites is still very
limited, so the great advantages of the reproducibility of GC retention times and direct
matching with mass spectral libraries are fully usable in metabolomic studies of primary
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metabolites, which have commercially available standard compounds [50–52], but not in
pigmentomic studies. Despite these limitations, GC-MS is a suitable technique for the
identification of the links between carotenoids, their putative signaling molecules (aroma
profile), and the antioxidant potential during fruit ripening, as shown in melon [53], red
pepper [54], citrus, and tomato [55], or during the processing of black tea [56] and Mentha
species [57]. However, the applications remain scarce in the case of chlorophylls [58].

LC emerged from the principles of classic chromatography and the instrumental
advances designed for GC, typically used for chlorophylls and carotenoids (Figure 5). The
number of possible combinations for mobile phase composition, the increasing amount of
packing materials for column building, and the high speed of the cumulative working pres-
sure have definitively improved the efficiency and resolution of this technique, which could
be easily combined with a wide range of detection systems in a single workflow [59–61].
Liquid chromatography in the classic high-pressure arrangement or the modern ultra-
performance technology is typically coupled with different detectors based on optical
detection (UV-visible, diode array, fluorescence, evaporative light-scattering, and differ-
ential refractive index detectors) applied to carotenoids and chlorophylls in foods [62,63]
and biological samples [64,65], or in electrical detection (conductivity, electrochemical,
and Corona-charged aerosol detectors), as was shown for the measurement of carotenoid
bioavailability [66] and antioxidant potential [67] and in vitamin A equivalence studies [68]
in humans. However, while the application of electrochemical detectors for chlorophyll
analysis is rather limited [69], the holistic strategy that features metabolomics requires the
application of further instrumental techniques to obtain as much information as possible
from a single run, so the above-noted detection systems have begun to be combined with
infrared, Raman, and NMR spectroscopies. This is the case of the metabolite profiling of
microalgae species [70] and vegetable purees [71]. Soft-ionization techniques (electrospray
ionization, ESI; atmospheric pressure chemical ionization, APCI) that yield protonated
(positive mode) or de-protonated (negative mode) molecular ions are appropriate for the
analysis of the most relevant groups of plant secondary metabolites [29,72,73], which are
mainly separated with a reversed-phase column providing an efficient retention time and
separation index, with a particular emphasis on the detection of isomeric compounds.
Usually, APCI is used for carotenoids [74–76] and non-polar chlorophylls (chlorophylls and
pheophytins) [77–79], and ESI is used in the analysis of polar chlorophylls (pheophorbide
and chlorophyllide) and phyllobilins [80,81]. However, different configurations of both
the ion source and mass analyzer have been implemented, including ion mobility [82] and
MALDI [83,84].

To increase the reliability of data in the case of metabolite profiling/targeted metabolomics,
where (tentative) identification of pigments is the aim, the acquisition of MS in a high-
resolution mode, in combination with tandem MS, is almost a pre-requisite. This combina-
tion of working conditions and online experiments allows the analyst to obtain different
pieces of information that are conveniently arranged in pairs of independent and orthog-
onal data of physicochemical properties, facilitating the implementation of workflow
protocols for the characterization of chlorophyll and carotenoid metabolic profiles tailored
to the selected strategy implemented in the study (targeted metabolomics, fingerprinting,
or metabolite profiling) [85].
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3.3. Application of Different Approaches to Pigment Metabolomics

Table 1 contains some representative work dealing with mass spectrometry in the
analysis of chlorophylls and carotenoids that we examine in detail in this section. These
studies may serve as the starting point to follow current strategies that successfully enhance
the analysis of these plant pigments (Figure 5). The aims of these studies were diverse, so
the difficulties and bottle-neck issues that were faced boosted the application of method-
ological approaches and solutions. Hegeman et al. [86] applied the stable isotope-assisted
assignment of elemental composition to constrain the number of potential positive hits
for a mass peaking procedure in the identification of chlorophyll derivatives. Similarly,
Giavalisco et al. [87] provided a comprehensive multi-isotope labeling-based strategy in
combination with a fractionated metabolite extraction protocol to perform unambiguous
qualitative and quantitative metabolomics using A. thaliana leaf and root extracts.

The characteristic isotopic pattern of the copper chlorophyll derivatives is selected as
a fast and specific procedure to characterize precisely the presence of metallo-chlorophyll
complexes applied to improve the green coloration of food products [88]. A novel strategy
that combines UPLC coupled with traveling wave ion mobility (TWIN) and UV-visible
detection is proposed to improve the characterization of chlorophylls and carotenoids
analyzed in complex biological matrices [82]. A workflow strategy to perform targeted
metabolomics of chlorophyll catabolites is applied to data analysis obtained by HPLC/ESI-
hr-QTOF-MS from leaf and fruit senescent tissues [81,89]. Automated data analysis using
multivariate curve resolution algorithms to study multi-component systems that follow
additive bilinear models (pure spectrum and related time profile) is also an appropriate
strategy for the analysis of pigment metabolites. With this method, Wehrens et al. [90,91]
examined the metabolite profiles (carotenoids, tocopherols, and chlorophylls) of grapes
(Vitis vinifera) and cassava (Manihot escullenta). Watanabe et al. [92] described a combination
of analytic tools that can be used to obtain comprehensive metabolite profiles in the
A. thaliana plant model. Another interesting approach in the metabolomic studies of
chlorophylls is the determination of phytol, a direct metabolite produced by chlorophyll
degradation [93] that is analyzed by GC-MS. The incorporation of Bayesian approaches
to cluster accessions of Brassica rapa of different morphotypes and origins allows for the
acquisition of association mapping between different markers and metabolites, including
chlorophylls and carotenoids [94]. Authors correct for kinship and population structure
with the main aim of reducing the rate of false-positive associations. The implementation of
alternative separation procedures, such as supercritical fluid extraction/chromatography
coupled with MS, which reduce the extraction time and analysis run time, is an increasingly
applied option to achieve a reduction in inter-sample variability and the setting of batch-
type applications [95,96].
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Table 1. Brief description of representative works addressing mass spectrometry in the analysis of chlorophylls and carotenoids.

Raw Material Extraction Solvent Instrumental Techniques Strategy for Metabolomic Study Ref.

A. thaliana MeOH:H2O (8:2) LC/ESI-TOF Metabolite profiling based on isotope
labeling-assisted elemental composition [86]

A. thaliana MeOH:MTBE:H2O (1:3:1) and subsequent
separation with MeOH:H2O (1:3)

Multiplatform approach (UPLC-FT-MS
and MS/MS, GC-MS, nUPLC-QTOF-MS,

and MS/MS)

Metabolite profiling based on isotope
labeling-assisted elemental composition [87]

Olive oil, canned green vegetables N,N-dimethylformamide LC/APCI-ESI/hr-QTOF-MS Metabolite profiling based on isotopic pattern [88]
Microalgae EtOH:hexane (2:1) and H2O:hexane 1:2 UPLC-UV-TWIM-MS Untargeted metabolomics [82]

Lemon (Citrus lemon L.) Acetone LC/ESI/hr-QTOF-MS Targeted metabolomics [89]
A. thaliana Ethanol UPLC/TOF-MS Targeted metabolomics [92]

Wheat (Triticum aestivum) Methanol:acetonitrile:water (4:4:2)
Multiplatform approach (GC-MS,

GC-QTOF-MS, LC-MS, and
LC-QTOF-MS)

Targeted and untargeted metabolomics [93]

Tamarillo fruits (Solanum betaceum) CO2:MeOH (95:5 or 90:10) SFE-SFC-MS Untargeted metabolomics [96]
Tomato (Solanum lycopersicum L.) MeOH followed by hexane:acetone (1:1) LC-APCI-QTOF-MS Metabolite profiling [97]

A. thaliana

Chloroform:MeOH:H2O (2:6:2) and
derivatization with methoxyamine

hydrochloride and
N-methyl-N-(trimethylsilyl)

trifluoroacetamide

GC-TOF/MS Metabolite profiling [98]

S. lycopersicum L. MeOH or MeOH:H2O (75:25) LC-QTOF-MS and LC-PDA-FD Metabolite profiling [99]

Zea mays

MeOH and dH2O with ribitol;
derivatization with methoxyamine,

N,Obis(trimethylsilyl)trifluoroacetamide,
and trimethylchlorosilane

GC-TOF-MS and spectrophotometry Metabolite profiling [100]

S. lycopersicum L.

MeOH and dH2O with ribitol;
derivatization with methoxyamine,

N,Obis(trimethylsilyl)trifluoroacetamide,
and trimethylchlorosilane

GC-TOF-MS and LC-PDA Metabolite profiling [101]

Cucumis melo L. Hexane:acetone:ethanol (50:25:25) LC-PDA Metabolite profiling [102]
Daucus carota, Brassica oleracea, S.

lycopersicum L.
MeOH:chloroform:Tris-buffer (1.25:1:1.25,

50 mM, pH 7.5)
LC-PDA, LC-PDA-QTOF-MS, GC-MS,

and 1H-NMR Targeted and untargeted metabolomics [71]

Cuminum cyminum L.
N,N-dimethylformamide; trichloroacetic
acid; chloroform:MeOH:phosphate buffer

(1:2:0.9, pH 7.5)

Multiplatform approach
(spectrophotometry, LC-PDA, LC-MS,

and GC-MS)
Metabolite profiling [103]

Potato (Solanum tuberosum) MeOH:H2O (87.5:12.5) LC-ESI-QTOF-MS Metabolite profiling [104]
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4. Metabolome-Based Studies of Chlorophylls and Carotenoids

During the initial development of metabolomics, compounds such as amino acids,
organic acids, and carbohydrates were the focus of the studies. However, “pigmentomic
analysis” is increasing exponentially, as researchers noticed the metabolic significance
of chlorophylls and carotenoids in photosynthetic organisms. Indeed, they are valuable
compounds for cells, with physiologic and economic implications. Next, we describe the
main applicability areas where the metabolomics of chlorophyll and carotenoids contributes
to deciphering a metabolic response. In some cases, the studies integrate metabolite
and physiological data with transcriptional information to confirm both molecular and
metabolic modifications. Figure 6 presents different pathways that might emerge during a
metabolomics study related to chlorophylls and carotenoids.
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4.1. Application in Abiotic Factors Studies

Biological tolerance is a complex process that includes not only physio-biochemical
modifications but also molecular changes. Such metabolic adjustments are required to re-
spond to environmental signals. Consequently, metabolite profiling brings an opportunity
to understand the fundamentals of tolerance by searching for modified or different signa-
tures associated with tolerance ability. In this sense, the adaptations of the chlorophyll and
carotenoid metabolism of cells exposed to different stresses have been investigated regard-
ing cesium [105], nitric oxide [106], cadmium [107,108], graphene oxide [109], iron [110],
nitrogen depletion [111–113], and extreme irradiation environments [114,115]. Another
research field where the metabolomics of chlorophylls and carotenoids finds successful
applications is the study of nanotoxicology, which aims to determine the toxicity of metals
and micro- and nano-particles to environmental organisms and how the latter respond to
the former. In this regard, it was studied how copper oxide nanoparticles, CuO micropar-
ticles, and copper ions perturb the metabolism of aquatics organisms [116] and even the
effect of ZnO nanoparticles on the cultivation of terrestrial plants [117]. The most striking
advance made in these studies is that the experimental design based in metabolic flux
measurements might point out specific responses, which include chlorophyll breakdown
and the tuning of carotenoids’ metabolism. These responses reveal metabolomic-based
strategies to allow acclimation of the organisms to the factor under study.
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As chlorophylls and carotenoids are photosynthetic pigments, there are numerous
metabolomics studies regarding the influence of light in the physiology of organisms. In
this sense, the metabolomics approach has been applied to investigate the effect of light
and dark cycles on the lipid metabolome [118], lineage-specific pathways [119], irradiation-
induced stress [120], and photo-regulatory processes [121]. Moreover, metabolomics studies
were developed to investigate the influence of LED light on the modulation of the fruit
metabolome [122] or the porphyrin and chlorophyll metabolism itself [123]. These studies
make use of state-of-the-art comprehensive omics analysis, together with a holistic effective
treatment of data, although the translation of the results to the productive field requires
further testing.

Another line of research is drought stress, considered to be one of the most important
limiting environmental factors for agriculture and responsible for great losses of global
food production. Once cells detect water stress, a cascade of signals activates multiple
biochemical pathways (Figure 6): hormone induction, gene expression regulation, reactive
oxygen species scavenging, carbohydrate and energy metabolism, nitrogen assimilation
and amino acid metabolism, fatty acid metabolism, etc. Consequently, high-throughput
“omics” techniques are essential to gain a holistic panoramic view of the plant response.
In general, transcriptome and metabolite profiling reveals that plants respond to drought
by modulating several secondary metabolic pathways and particularly by modifying the
production of carotenoids or chlorophylls [124–128], including the extreme example of the
adaptation to desiccation, as exhibited by resurrection plants [129].

Regarding salinity, plants have developed several mechanisms to adapt to this stress
caused by osmoregulation, such as vacuolar H+-ATPases, which are key in cytosol detoxifi-
cation, as they create an electrochemical H+ gradient across the membranes [130]. Transcrip-
tome and metabolome analyses revealed the crucial biological pathways involved in the
fast-adaptive response to salt stress, including carotenoid biosynthesis and the metabolism
of porphyrin and chlorophyll [131–134]. An additional multi-omics analysis was used to
unveil thermal adaptation strategies of extremophile bacteria [135] and plants [136,137],
where the lipid or carotenoid metabolism seems to be implicated. The main effort that
requires multi-omics analysis is to select complementary signals in the experimental design,
so that the studied signals allow for a deeper understanding of the molecular adaptation of
the organism to stress.

A completely different research area where pigment metabolomics was applied is
the study of the environmental metabolome, which elucidates the relationship between
living organisms and their ecosystem. Through the characterization of the metabolites
obtained from the environment, paleometabolites (diagenetic products of chlorophylls and
carotenoids derived from photosynthetic algae and bacteria) can be identified [138]. In
addition, this technique can be used to determine the toxic effects of organophosphates
on the species in freshwater ecosystems [139]. The above compilation is an example of the
increasing research areas where chlorophyll and carotenoid metabolomics are involved.
This growing trend is broadening our horizons in new, diverse disciplines with a variety
of research focuses, such as the determination of metabolic turnover [140], the effects of
biostimulants on the metabolome [141,142], and sustainable soil control [143]. All of them
are examples of research areas where the metabolomics of chlorophylls and carotenoids
has revealed as a successful approach to gather essential information.

4.2. Application in Biotic Factor Studies

The interrelation between organisms is a subject that has been scarcely studied, surely
due to its complexity. However, it is in this subject where metabolomics could successfully
contribute to advances in knowledge because of the inherent capacity of this approach of
studying several physiological pathways, responses (Figure 6), and behaviors at the same
time. Therefore, through metabolomic studies of chlorophylls and carotenoids, significant
advances have been achieved with regard to the interplay between biotic stressors; the
effect of single- vs. multiple-pest infestations on the biochemistry of plants [144]; the
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fluctuation of the leaf metabolome in response to arbuscular mycorrhizal fungi [145]; the
microbial networks established during the assemblage of symbiotic microbials, such as
in lichens [146]; the ecological interactions that occur at algal surfaces within microbial
communities [147]; and the study of the evolutionary origin of symbiosis [148]. In parallel,
metabonomic studies have also investigated the interplay between biotic and abiotic
stresses, such as the effect of selenium treatments on the oxidative stress response of
plants when infected [149] by the enhanced content of chlorophylls and carotenoids and
related enzymatic activities. It should be highlighted that this application is very complex,
such as the response to interrelation changes at the organ level, while triggering different
biosynthetic pathways to down- or up-regulate them.

4.3. Application in Physiologic and Molecular Biology Studies

Metabolomics is a powerful tool that can be used not only to analyze the response
of photosynthetic organisms to external abiotic or biotic stressors but also to conduct
an in-depth investigation of their physiology in the widest meaning of the term. This
promising research line with economic consequences is, nevertheless, a complicated area
of study, taking into account the multiple variables that are accounted for. Examples of
the potentiality of this implementation include the study of the mechanisms controlled by
the circadian clock [98] and the effects of the auto-tetra-polyploidy on the balance between
the primary and secondary metabolisms [150]. However, the main area of applicability
is the behavioral patterns in the accumulation of metabolites (chlorophylls, carotenoids,
etc.) paired with specific ripening stages, harvesting periods, cultivars, traceability, and
plant tissue functions. Sometimes, such correlations are successfully established despite
the genetic background or in a timeline fashion [101,151–156]. Additionally, it is possible to
distinguish different genetic backgrounds with chemotaxonomic purposes [157], establish-
ing species- and lineage-specific metabolites in marine microalgae [158], and differentiate
chemotypes of selected accessions [159]. The metabolomics of chlorophylls and carotenoids
could also be used to analyze the effects of postharvest treatments on the metabolism
of edible plants [160–164] or for the identification of fast and unequivocal biochemical
markers in breeding programs [165,166].

Another field of application is the utilization of metabolomics as a tool to investigate
the biochemical pathways implied in the biosynthesis and degradation of these pigments
(Figures 3 and 4), identifying pathway cascades [167,168] and revealing the effects of
specific genes [169–173]. As a further step, the metabolomics study of pigments could
be used as a platform for the development of strategies to engineer fluxes in complex
biosynthetic networks [174–176]. A subset of pigment-targeted metabolomics is synthetic
biology, which combines known molecular components and genes for the implementation
of different molecular pathways displaying novel functions and dynamic behavior that
do not occur naturally [177]. A workflow that combines gene expression and quantitative
metabolomics with mathematical modeling to identify strategies in order to increase
production yields of nutritionally significant pigments has even been proposed [178]. This
overall approach, although highly informative and practical, could become difficult to
apply as a routine method. Lastly, metabolomics is a common and useful approach for
identification purposes [57,85,179,180] and the detection of food processing [71,181,182].

4.4. Application in Human Health (Health Status, Cancer, Hypertension, and Digestive Efficiency) Studies

In addition to all of these applicability areas, pigment metabolomics has also been ap-
plied to the investigation of human health. This is possible thanks to the fact that the concept
of health status has moved from just “a state” to “the ability to adapt”, which was denoted
as phenotypic flexibility. In this context, metabolomics and proteomics were adopted to
correlate micronutrients with the characteristics of metabolic parameters and, ultimately,
to health-related processes [183]. A poorly scientifically explored research area is the poten-
tial bioactivity of metabolites yielded via the catabolism of chlorophylls and carotenoids.
The wide array of catabolic products (Figures 3 and 4), including phyllobilins (bilin-type
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catabolites of chlorophylls) [184], volatile and non-volatile apocarotenoids arising from the
asymmetric cleavage of carotenoids [185], and the carotenoid-derived hormones abscisic
acid and strigolactones [186], deserve attention, because they perform antioxidant activities
in their natural environment. Additionally, metabolomics was also proposed as a non-
invasive and reliable screening technology as an alternative for cancer detection. Currently,
diagnostic procedures are costly and invasive, and novel methodologies that could reduce
such features of evaluation tests for patients are urgently required [187,188]. Alternative
strategies to address the study of cancer are the identification of new compounds against
the proliferation of selected cancer cells [189] and the review of the validity of established
biomarkers of dietary intake and the identification of novel ones [190]. These studies are
still in the hypothesis testing stage and although they embrace a great potential, the focus
should be to establish the complex map of cancer-related activities before pointing out a
direct link, either positive or negative, between carotenoids and chlorophyll metabolites
and cancer effects.

5. Conclusions

Chlorophylls and carotenoids, known antioxidants, are often evaluated in metabolomics
studies with regard to the matter under scrutiny (abiotic/biotic stress) and not as a marker
of the metabolic status of the organism. Moreover, the evaluation of these plant pigments is
performed with instrumental techniques that yield a global profile count rather than via an
in-depth description of both the qualitative and quantitative aspects of the pigment catabo-
lites. This review suggests that the assessment of processes for both primary and secondary
metabolisms should consider chlorophylls and carotenoids as key contributors to metabolic
study and not simply as “signaling” compounds to determine easily whether something
is going wrong or well. Thus, the recently increasing number of published papers, sum-
marized in this manuscript, addressing photosynthetic pigments and metabolomics is
generating strong expectations for significant advances in our knowledge of metabolomics
as a central piece of functional genomics. Indeed, the study of chlorophyll and carotenoid
metabolites requires the development of a wide range of protocols, technical applications,
and methodologies. This fact reflects the key role of photosynthetic pigments in the plant
metabolism, chemotaxonomy, food technology, and animal health.
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