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Summary
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random and ZnO lasing. ZnO refractive index contrast was measured by ellip-
sometry with the help of Dr. R. Serna, from Institute of Optics-CSIC. Dynamic
measurements performed with the streak camera were done in the laboratory
of ultrafast spectroscopy at the Materials Physics Department-UAM with the
collaboration of Prof. L. Viña. Dynamic measurements performed with the opti-
cal gating technique are the result of an international scientific exchange of four
months in the Laboratory for non-linear spectroscopy in Florence (LENS) under
the supervision of Dr. D. S. Wiersma. The quantum dots used in chapter 4 were
provided by Dr. N. Gaponik from the Technical University of Dresden, also as
an international collaboration. Scanning electron microscopy from ZnO inverse
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P. D. Garcia, C. López, J. Appl. Phys. 99, 046103 (2006).

Tuning and optical study of the Gamma-X and Gamma-L photonic pseudo-
gaps in opals.
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Hunc igitur terrorem animi tenebrasque necessest non radii solis neque
lucida tela diei discutiant, sed naturae species ratioque

Este terror, pues, y estas tinieblas del esṕıritu, necesario es que las disipen, no
los rayos del sol ni los lúcidos dardos del d́ıa, sino la contemplación de la

naturaleza y la ciencia.

Our terrors and our darknesses of mind must be dispelled, not by the sunshine’s
rays, not by those shining arrows of the light, but by insight into nature, and a

scheme of systematic contemplation.

TITUS LUCRETIUS CARUS, De rerum natura, (I, 146-148)

DON’T PANIC!!

COLDPLAY, Parachutes.
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Chapter 1
Introduction

In the early 1800s, the double-slit experiments performed by Young and Fres-
nel provided strong evidence for wave-like nature of light [1]. This happened
more than a century before L. de Broglie established that all matter, in particu-
lar the electron, has also a wave-like behavior [2]. Despite the time delay between
both statements, solid state physics has motivated important goals in the field
of light transport though complex dielectric media. These materials are dielec-
tric structures in which the dielectric function varies on length scales comparable
to the wavelength of light. The analogy is carried out by substituting matter
waves for classical waves and electrostatic potential for dielectric function. Two
paradigmatic examples suggested by this analogy between photons and electrons
are photonic crystals [3, 4] and Anderson localization of light [5, 6, 7].

The control of light transport is crucial not only to solve fundamental ques-
tions but also to design and tailor new photonic devices for optical performance
in the same manner as governing electron transport gave rise to the semicon-
ductor and electronic technology. Nevertheless and contrary to what happens
with atomic crystals which are provided by nature very efficiently, optical science
and technologies had to exploit natural optical materials and engineer new de-
vices from them. In the last years a new frontier has emerged, with the goal of
controlling light propagation through interference in artificially engineered opti-
cal materials and metamaterials. An extraordinary progress has been made in
the fabrication of nano-photonic structures, with many novel optical properties.
While (ordered) periodic photonic media, i.e. photonic crystals, take advantage
of the periodicity in the dielectric constant and the consequent long-range corre-
lation to mold the flow of light, disordered ones, with no positional order, can still
strongly affect light transport [8]. Furthermore, photonic materials with struc-
tures between order and disorder have been for the first time accessible, and are
widely studied.

Figure 1.1a schematizes the interplay between order and disorder in dielec-
tric complex media. With the same building block, a dielectric sphere with size
comparable to the wavelength of light, two extreme systems can be built: a per-
fectly ordered arrangement (a so-called photonic crystal) and a completely ran-
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Photonic crystal Photonic glass

Single Mie scattering

cb

a

Figure 1.1: (a) Ordered and disordered packing of a single-scattering building block, a
dielectric sphere in this case. (b) and (c) Light speckle pattern arising from an ordered
fcc arrangement of dielectric microspheres and from a random arrangement of the same
spheres, respectively and collected on a far field screen.

dom arrangement of spheres (a so-called photonic glass). Figure 1.1b shows the
light speckle pattern from an ordered fcc arrangement of microspheres (photonic
crystal) and figure 1.1c shows the same physical phenomenon from a random
arrangement of the same microspheres (photonic glass). In the ordered case, the
speckle pattern adopts a particular distribution due to the underlaying lattice
structure.

This introduction will briefly show the principles of light scattering with
nanostructured dielectrics. Contrary to common introductions, which provide
a state of the art in nanophotonics, this introduction wants to give the basic
tool and a general view to the field of light scattering with ordered and disor-
dered complex systems. Fundamental concepts related to single light scattering
as the scattering matrix and the scattering cross section will be shown firstly.
In this thesis the fundamental building block is the dielectric sphere; for this
reason, the solution to the Maxwell equations for such scatterer will be briefly
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explained. Then, we will move into the more complicated topic of multiple scat-
tering, both through disordered and ordered nanostructures. In the first case, we
will approach this complicated issue with a diffusion approximation, neglecting
interference effects in a first approximation, which accounts fairly well for the
systems analyzed in this thesis. On the contrary, lith interference is at the heart
of multiple scattering of light in photonic crystals. It will be seen how this fact
has strong consequences on the light dispersion relation and the electromagnetic
density of states, which can be engineered very efficiently in photonic crystals to
perform the desired optical performances. Light emission and light transport are
strongly affected by this facts.

The aim of this thesis, its motivation, is to obtain and to show how disordered
dielectric nanostructures are also able to control the flow of light but, at the
same time, how the introduction of disorder in an, otherwise, perfectly ordered
structure in a controlled manner increases it performances. The interplay between
order and disorder in dielectric nanostructures is at the basis of this thesis.

1.1. Single light scattering

Light propagates along straight lines from the luminous body to the body illumi-
nated and bends or breaks those lines (scatters) when passing out of one medium
into another [9]. As pointed by Newton, light scattering is a basic phenomenon
in light transport. Furthermore, it is nearly impossible to observed the light di-
rectly from its source. Most of the light emitted by a source is spread out due
to scattering and reaches our eyes in an indirect way. The straight propagation
of light is disturbed by inhomogeneities or a change in the speed of light. The
speed of light in a medium is characterized though the refractive index n, which
is defined as the ratio between the speed of light in vacuum and in the medium.
An interface between two media gives rise to a deviation in light direction of
propagation, due to the different refractive index of the media. A scatterer is an
inhomogeneity in an overall homogenous medium. The interaction of light with
a scatterer is a scattering event, which in this thesis will be only considered to
be elastic: the scattering event only changes the light wavevector but not light
energy.

The regime in which light interacts only once with a scatterer is called single
scattering. When a (sound, electromagnetic, matter, etc) wave scatters with an
object, the whole physical process can be express as follows:

ψscatt(−→r ) = Sψ0(−→r ) (1.1)

where the scattering matrix, S, transforms the incident wave into the scattered
wave. The elements of the scattering matrix, the so-called scattering amplitude
functions si, are all complex functions that depend on the directions of incidence
and scattering and on the particle size and morphology. The scattered wave in
the far field is a spherical, outgoing wave which amplitude can be expressed in
terms of the scattering amplitudes as:
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Escatt(−→r ) = s
eikr

r
E0(−→r ) (1.2)

and also for the magnetic field components whose states that light emitted from
the scatterers is a superposition of spherical waves. The, so-called, Stokes pa-
rameters (I,Q, U, V ) are a complete set of quantities expressed in terms of the
components of the EM fields which completely characterize the intensity and state
of polarization of a light beam. In particular, the first stoke parameter, I, is the
intensity of the field, the energy flow per unit area. Any given transformation
process of the field as, for example, a scattering process, can be expressed as:

(I,Q, U, V ) = F(I0, Q0, U0, V0) (1.3)

where F is a transformation matrix which elements are expressed in terms of those
of the scattering matrix, S. Without entering in detail about the relationship
between Fi,j and si (which, otherwise, can be found in [10]), in the particular
case of spherical particles, the off-diagonal scattering matrix elements are null
and the scattered intensity can be written as:

Iscatt =
dσ

dΩ
I0 =

Σi|si(θ, φ)|2
2k2r2

I0 (1.4)

Under energy conservation, let the total energy scattered in all directions
be equal to the energy of the incident wave falling on the area σ, the so-called
scattering cross-section:

σ =
1

2k2

∫
Σi|si(θ, φ)|2dΩ (1.5)

where the differential cross-section is, then:

dσ

dΩ
=

Σi|si(θ, φ)|2
2k2

(1.6)

This magnitude is of paramount importance since it contains all the informa-
tion related to the scattering process, it indicates in which directions the wave
scattering is more efficient.

According to the relative ratio between the scatterer size and the light wave-
length (λ), different scattering scenarios can be described. If the scatterer size
is much smaller than λ, the Rayleigh scattering amplitudes depend only on the
particle polarizability (α) and on light frequency, ω, as:

σ =
2
3
ω4

c4
|α|2
4π

(1.7)

where c is the vacuum speed of light. A detailed discussion about this kind of
scattering can be found in [10].

When the scatterer size is comparable to λ, the scattering is in the, so-called,
Mie regime and can be solved analytically in the case of a spherical scatterer.
Scattering in this regime is resonant and anisotropic and, since all the scatterers
analyzed in this thesis are Mie dielectric spherical scatterers, it is of paramount
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importance to understand, at least briefly, the fundamentals of the solution pro-
posed by Mie to the Maxwell equations. In the following, by Mie sphere it should
be understood a dielectric sphere scatterer with size comparable to the wavelength
of light.

For completeness it will be mentioned that the final scattering regime is that
one called geometrical optics, when the scatterer size is much larger than the
light wavelength. Geometric optics, or ray optics, describes light propagation in
terms of rays which are defined to be perpendicular to the wavefronts of the actual
optical waves. Geometric optics provides rules for propagating these rays through
an optical system, which indicates how the actual wavefront will propagate. This
is a significant simplification of optics, and fails to account for many important
optical effects such as diffraction and polarization.

1.1.1. Mie solution to the Maxwell’s equations

The main scatterer analyzed in this thesis is a dielectric sphere. It will appear
in random arrangements as well as in ordered structures. It is capital, therefore,
to understand the underlying physics of light-sphere interaction before going a
step beyond into the ensemble. The Maxwell equations in absence of free charges
of currents may be expressed as:

∇× H(r, t) − 1
c

∂D(r, t)
∂t

= 0, ∇ · B(r, t) = 0

∇× E(r, t) +
1
c

∂B(r, t)
∂t

= 0, ∇ · D(r, t) = 0 (1.8)

A complete and comprehensive derivation of the Mie solution to these equa-
tions can be find in [10]. Here, the basic results will be briefly shown. The modes
of a spherical dielectric particle were first investigated by Mie at the beginning of
the 19th century, in the context of light scattering from small spherical metal par-
ticles [11]. These optical modes are confined by continuous total internal reflection
at the sphere-air interface and are often referred to as whispering-gallery modes.
This description was originated from the problem of the whispering-gallery which
Lord Rayleigh published in early 20th century [12] describing the phenomenon of
acoustical waves he had observed propagating around the interior gallery of the
Saint Paul’s Cathedral dome. When plane-polarized light of frequency ω is inci-
dent on a dielectric sphere, a resonant situation is possible whenever ω matches
the frequency of an EM eigenmode of the sphere. These eigenmodes are spherical
waves labelled by two integer numbers, just as in the case of electronic quantum
orbitals in atoms, and are generally electric or magnetic oscillating multipoles.
Sourceless Maxwell equations for harmonic EM fields can be calculated exactly
for the spherical scatterer by solving the fully retarded vector Helmholtz equation
in spherical coordinates.

(∇2 + n2k2)Φ = 0 (1.9)

where n is the refractive index, k = ω/c is the wavevector, Φ represents either
the electric field E or the magnetic field H. A common route to obtain a general
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solution to the vectorial equation is to obtain a solution to the scalar Helmholtz
equation, ψ, and then generate two independent, zero-divergence and orthogonal
solutions as:

Uψ = ∇× (rψ)

Vψ =
∇× Uψ

nk
(1.10)

The generating function ψ, solution to the scalar Helmholtz equation ob-
tained with the variable separation method, is a linear combination of Legendre
polynomials, P lm(cos θ), and spherical Bessel functions, zm(x):

ψl,m =
(

cos(lθ)
sin(lθ)

)
P lm(cos θ)zm(nkr)

(1.11)

where l and m are integer numbers which satisfy l ≥ m ≥ 0.
Finally, two possible solutions to the Maxwell equations can be generated by

a linear combination of vector harmonics Uψ as:

E = Uψ + iVμ

H = n(−Uμ + iVψ)
(1.12)

The problem to find solutions to the Maxwell equations in this specific case
reduces to the simpler problem of finding two solutions, ψ and μ, to the scalar
Helmholtz equation. The full solution is analytic but expressed in the form of
infinite series of spherical harmonics.

The spherical components of both fields in the far field (r → ∞) can be
expressed as a combination of spherical harmonics:

Eθ(r, θ, φ) = s2(θ)
eikr

kr
E0 cosφ = s2(θ)

eikr

kr
E0
θ (r, θ, φ)

Eφ(r, θ, φ) = −s1(θ)e
ikr

kr
E0 sinφ = s1(θ)

eikr

kr
E0
φ(r, θ, φ)

Er(r, θ, φ) = 0
(1.13)

and analogously for the components of the magnetic field H. According to equa-
tion 1.2, si(θ) are the scattering amplitudes:
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s1(θ) =
∞∑
m=1

2m+ 1
m(m+ 1)

[amζm(cos θ) + bmξm(cos θ)]

s2(θ) =
∞∑
m=1

2m+ 1
m(m+ 1)

[bmζm(cos θ) + amξm(cos θ)]

(1.14)

where am, bm, ζm and ξm are also linear combinations of Legendre polynomials
and Bessel functions [10]. In particular, am(x, y), bm(x, y), where the arguments
x = πd/λ and y = πnd/λ (d is the sphere diameter) define the dependence of
the EM modes on the ratio nd/λ. These modes, defined by El,m(r, θ, φ) and
Hl,m(r, θ, φ), are the EM eigenmodes of a dielectric sphere. Figure 1.2 shows the
modulus of the scattered EM field for a sphere with diameter d at two different
energies (λ � d) [13]. These resonant electromagnetic modes in dielectric spheres
are analogous to electronic orbitals in atoms [14]. The field confinement in the
sphere depends on the ratio d ·n/λ and is stronger when d ·n/λ increases (higher
energies). It is worth to mention that when increasing the refractive index of the
sphere, also the EM field confinement increases.

The total scattering cross section can be calculated from equation 1.5 and
1.14 as:

σtot =
1

2k2

∫
S(θ, φ)dΩ =

2π
k2

∞∑
m=1

(2m+ 1)�(am + bm) (1.15)

which is the analytical solution to the scattering problem of a plane-wave and a
dielectric sphere.

nd/ = 1.1� nd/ = 5.6�

Figure 1.2: Modulus of the scattered EM field for a sphere diameter d = 1100 nm and
refractive index n = 3.4 in the case of low (d/λ = 0.33) and high energy (d/λ = 1.65).
The confinement of the mode in the spheres increases with the field energy.
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1.2. Multiple light scattering in random systems

In the previous section we have treated the problem of single light scattering
in the particular case that the scatterer is a dielectric sphere. As pointed by
Newton, when light propagates from the source to the detector it does it in a
straight line (apart from general relativity corrections). In that case, light prop-
agation is said to be straight or ballistic and is the characteristic propagation
regime through a homogenous medium. Nevertheless, when light travels through
a very disordered system it is multiply scattered. Straight or ballistic propagation
cannot accurately describe the transport of light. The multiple scattering pro-
cess can be intuitively distinguished from the ballistic transport in the following
example. When light propagates though the two systems shown in figure 1.3, it
undergoes two different regimes of transport. In the first case (1), apart from
a small absorption (inelastic scattering) revealed in the change of color of white
light impinging the system, light does not scatter with the medium. The bound-
aries between medium (1) and air are the unique source of elastic scattering. If
we, for example, place a piece of paper with something written there, we are able
to read it if we place the paper on the other side of medium (1). Light is said to
follow a ballistic transport since it does not change its direction of propagation.
On the contrary, when light propagates through the second medium (2), it per-
forms a very complicated multiple scattering process before escaping the system.
It undergoes a random walk and, if the scattering strength is not very high (rel-
atively low refractive index contrast between the materials which compose the
system) the whole transport regime can be accurately described as a diffusion
process. In that case, interference effects can be obviated in a first approxima-
tion. Light entering in such medium is scattered numerous times and when it
emerges from the material conserves of the color of the incident light, whatever
the incident direction. Since ambient light is visible (contains all the wavelengths
of the visible spectrum), the diffusive medium appears white. All white materi-
als owe their color to multiple light scattering. We will here briefly review the
standard diffusion model used to quantitatively describe light transport in an
isotropic random dielectric medium.

1.2.1. Diffusion approximation

The multiple scattering of light has a very complicated solution in terms of
Maxwell equations when many scatterers have to be taken into account. A model
to solve this problem is the radiative transfer equation of the dilute medium where
phase and light interference are neglected. The solution of the radiative transfer
equation can be considerably simplified by introducing further approximations.
The diffuse approximation considers a random walk of photons and imposes a
continuity equation for the light intensity I(r, t) disregarding interference effects.
Propagation of light can, therefore, be viewed as a diffusion process such as gasses
diffuse in a partial pressure gradient. The most important parameter is the scat-
tering mean free path, s, which is the average distance between two consecutive
scattering events. This parameter sets the limits of the diffusive approximation
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as: λ << s << L (many scattering events occur before the light leaves the
system, where L is the system size, hereafter sample thickness) and k · s >> 1
(limits the approximation to a dilute medium, where k is the light wave vector).
After several scattering events, the light propagation is completely randomized.
The transport mean free path, t, is defined as the average distance after which
the intensity distribution becomes isotropic and is the characteristic length in
the regime of multiple scattering. The transport of ballistic or unscattered light
in such a medium in space (r) and time (t) is dictated by Lambert-Beer equa-
tion, I(r, t) = I(0, t) · exp(−r/s), while diffuse light propagates according to the
diffusion equation as follows:

∂I(r, t)
∂t

= D∇2I(r, t) − νe
i
I(r, t) + S(r, t) (1.16)

where S(r, t) is the light source, ve is the velocity of the energy [66, 67] and i is
the absorption length, over which light is attenuated by a factor e−1. The diffu-
sion equation is a very general and practical description of numerous transport
processes in physics: an ink droplet in a glass of water, the particles of a gas in
a pressure gradient, the neutrons in a nuclear reactor. In the particular case of
light diffusion, it describes how light intensity spreads through the system with a
rate of transport dictated by the diffusion constant, D. The larger the diffusion
constant, the faster the transport process. The whole diffuse transport may be
truncated by absorption, which is introduced in the diffusion equation through
the inelastic scattering term τi = νe/i, where the inelastic or absorption time τi
is the characteristic time over which light is absorbed in the sample.

As previously explained, usually, disordered media are opaque and white, i.e.
non dispersive. In such a disordered medium, the group velocity can only be
associated with the ballistic (or unscattered) component, and therefore cannot

1

2

Figure 1.3: Ballistic light transport (1) and multiple scattering transport (2) are shown in
this figure.



10 1. Introduction

be applied to describe the transport of energy, which, for large enough optical
thicknesses, is governed by the scattered light. When this regime of diffusive
propagation is set up, not only phase but also group velocity fail to give an account
of light transport and a new quantity describing the transport of energy in the new
diffusive regime is required. The velocity of the scattered light propagation inside
disordered media needs to be defined by the velocity of the transported energy
and is given by the ratio of the energy flux to the energy density in any point of the
sample. This, in general, is very complex and given neither by the group velocity
nor the phase velocity [66, 67]. Transport parameters and, in particular, energy
velocity must be drastically altered in the presence of scattering resonances: in an
extreme case of light diffusion in a cold atomic cloud, the atomic energy spectrum
can be so resonant to the incident light, that the energy velocity can be as low
as few thousands meter per second (ve/c ∼ 10−5) [144].

Multiple scattering increases the interaction between light and the system.
When the material which composes the system presents absorption, its effect is
increased in a diffusive propagation. The inelastic absorption length, i, is the
average depth which light propagates ballistically (straight forward) in an homo-
geneous medium before being attenuated by a factor e. The diffusive absorption
length, a, is the distance light propagates diffusively before being absorbed. In-
side a diffusive and absorbing material, a is the penetration depth of the diffuse
light. Diffuse light propagates a greater distance than in a homogeneous material
to reach the same depth. For this reason, a is shorter than i. However, both
are not independent functions but are related to t as [8]:

a =
√

(t · i)/3 (1.17)

The experimental systems treated in this work have a slab geometry which
imposes certain boundary conditions on the diffusion equation: the system can
be considered infinite for x and y directions and limited between z = 0 and
z = L. An incident plane wave is originated at z = −∞ and, due to multiple
scattering, decays exponentially inside the system according to Lambert-Beer
equation. Dirichlet Boundary conditions to the diffusion equation are:

I(z) = 0 at

{
z = −ze1
z = L+ ze2

(1.18)

where ze1,2 are the extrapolation lengths, of the order of s, which are the positions
where the diffusive light intensity would be zero if the light source would be placed
inside the system and, eventually, may be different at the front and back surfaces
(if their reflectivities are different).

1.2.2. Stationary solution

Within the diffusion approximation, only diffusive light can be handled and
therefore, an incident plane wave can not be inserted as source in the diffusion
equation: it decays exponentially inside the system. The incoming coherent flux
is replaced by a source of diffusive radiation at the plane z = zp, where zp is the so-
called penetration length. A common phenomenological way to introduce a source



1.2. Multiple light scattering in random systems 11

[15] is to consider or an exponentially decaying one, S(z) = S(0) · exp(−z/zp) or
a delta one, S(z) = S(0) · δ(z − zp).

The solution of the stationary diffusion equation with boundary conditions
1.18 and for a delta source leads to the total transmission of light through a
photonic glass slab given by [16]:

I(z) = I(zp)

{
sinh[α(ze + z)]/sinh[α(zp + ze)] z < zp

sinh[α(L+ ze − z)]/sinh[α(L+ zp + ze)] z > zp
(1.19)

where

I(zp) =
S(0)
αD

sinh[α(zp + ze)]sinh[α(L+ ze − zp)]
sinh[α(L+ 2ze)]

ze =
1
2α

ln[
1 + αz0
1 − αz0

]

z0 =
2
3
t(λ)

(
1 +R

1 −R

)
(1.20)

In the solution, α = 1/i is the inverse absorption length and R is the po-
larization and angular averaged reflectivity of the boundaries [17]. Figure 1.4
reproduces the solution to the stationary diffusion equation, I(z), assuming an
exponential source (full line) and a delta source (dashed line) for a slab geometry
system with the parameters related to the diffusion equation such as ze and zp,
which are typically set to be identical (ze = zp).

A very important function to take into account is the total transmission of
light integrated over all the angles, which is defined as the total flux at z = L
divided by the incident flux S(0) [16]:

T (L, λ) =
1 −R

α

sinh[α(zp + ze)] sinh[αze)]
sinh[α(L+ 2ze)]

(1.21)

Figure 1.4: Plot of the light intensity vs. distance in a slab of a photonic glass. The full
line represents the solution to the diffusion equation assuming an exponential source at
z = zp whereas the dashed line represents the solution assuming a delta source placed
at the same position. Extrapolation length ze and penetration length zp are shown.
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In absence of absorption and taking into account L 	 t, the total light
transmission 1.35 can be approximated as:

T (L, λ) � 2ze
L+ 2ze

∝ t
L

(1.22)

where ze ∼ t. The total light transmission through a multiple scattering slab in
the absence of absorption is directly proportional to the transport mean free path,
t, and inversely proportional to the slab thickness, T (λ) ∼ t(λ)/L. As in elec-
tronic transport and in the absence of absorption, the optical conductance (trans-
mission) is inversely proportional to the (optical) conductor thickness. Doubling
the thickness of the (optical) conductor halves the transmission. This is known
as photonic Ohm’s law. The diffusion of light in a disordered dielectric slab
and, in particular, a multiple scattering medium leads, therefore, to the photonic
Ohm’s law. With static measurements of the total light transmission through a
given slab with known thickness it is possible to obtain the absolute value of the
transport mean free path, t.

1.2.3. Dynamic solution

The full solution of the time-dependent diffusion equation with boundary
conditions is given by [18]:

T (t, λ) =
exp(−t/τi)

4 t (4πtD(λ))3/2
[

+∞∑
j=−∞

Aj exp(−A2
j/4D(λ)t)

−
+∞∑
j=−∞

Bj exp(−B2
j /4D(λ)t)] (1.23)

Aj = (1 − 2j)(L+ 2ze) − 2(zp + t)
Bj = (2j + 1)(L+ 2ze)

τi =
2i
D

(1.24)

where the inelastic absorption length, i(λ), turns into an absorption or inelastic
time τi(λ). The rate of diffuse light transport in the photonic glass is defined by
the diffusion constant, D, given by Fick’s law [19]. This is, therefore, a dynamic
variable and a time-resolved measurement of light transmission is needed to obtain
its value. The physical meaning of the summatory in equation (1.23) can be
understood as follows: light which follows shorter optical paths thought the slab
is transmitted at earlier times while light which performs longer random walks
emerges much later. The total transmission is therefore given by the sum of all
these contributions. This would produce a time-spread of an initial pulse, which
depends on the diffusion constant. The behavior at long time is dominated by
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the least decaying exponential, giving the time tail decay rate τd = π2 · D/(L +
ze1 + ze2).

1.3. Multiple light scattering in Photonic Crystals

If a light plane wave encounters a Mie sphere, a scattering process takes place
as explained in previous sections. Scattering is what allow us to observe a small
sphere as, for example, an air bubble embedded in a glass. If a second sphere is
placed in the vicinity of the first one, the situation becomes a little bit more com-
plicated due to interference effects between the scattered waves emerging from
both scatterers. Let us imagine that these spheres have the same size comparable
to the light wavelength; if we place N of these spheres close one another the pro-
cess becomes unmanageable and the single scattering is replaced by a multiple
scattering problem. But, in that case, an observer is still able to distinguish the
spheres ensemble (as we can observe the beer foam in figure 1.3). Between all
the possible position configurations of these N Mie spheres, a very intriguing and
fascinating case happens when they are placed in an ordered fashion. In that
very particular case, light undergoes a very peculiar propagation and, for a large
interval of frequencies, the ensemble is no longer visible for an observer. The
system becomes transparent for that wide energy range. But, as a consequence,
there is an energy window, the so-called photonic band gap (PBG), for which
the system becomes opaque. No light can propagate through the system in that
frequency range. This is the case of a perfect photonic crystal, where the waves
scattered by each sphere interfere in such a way to cause total transparency for a
large energy interval with just a change in the overall energy velocity. Photonic
crystals composed by Mie spheres, as all those used in this thesis, are a particular
realization of such system. The underlaying lattice allow us to apply the Bloch
theorem and to treat the problem of multiple scattering with the very well known
formalism used in solid state physics for atomic crystals. Actually, every kind of
waves (sound, electromagnetic, matter) propagating though a lattice of a partic-
ular periodic potential V give rise to the same effects. This particular potential
V has a different nature in each case: electrostatic potential, Ve, for electrons in
an atomic crystal, dielectric function, ε, for photons in a photonic crystal.

Due to this remarkable property, photonic crystals manipulate electromag-
netic modes and control fundamental aspects of light-matter interaction: light
emission [3] and light transport [4], much like semiconductors control electrons.
By modifying the vacuum modes, they change the available phase space for light
propagation opening frequency gaps in which propagation in some (or even all)
directions is inhibited, while the density of states, ρ(ω), near the band-gap edge
frequencies is increased. In addition, to the first prediction by Yablonovich, fol-
lowed many experiments where redistribution and inhibition of the emission was
proven [20, 21, 22] and, furthermore, interesting phenomena are observed in pho-
tonic crystals such as anomalous refraction [23], small group velocity [24] and, for
certain structures, the opening of a complete photonic band gap [25].
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This introduction is not thought to be a compendium of physical phenomena
observed in photonic crystals nor a summary of the fabrication methods or state
of the art. A recent and very useful review about that can be found in reference
[26]. In this section the main properties of multiple scattering of light in photonic
crystals and the basic tools and approximations to understand the propagation
of light through these systems will be briefly analyzed .

1.3.1. Dispersion relation in Photonic Crystals

Figure 1.5: (a) Band structure for an fcc arrangement of dielectric spheres (n=1.6) in
air, calculated along the high symmetry points defining the irreducible Brillouin zone.
Pseudogap along the ΓL direction is denoted as a blue band. (b) Band structure for
an arrangement of air spheres in a dielectric matrix (n=3.45). In this case it is possible
to observe a complete photonic band gap (red band). Insets show the corresponding
systems in real space.

The main property of photonic crystals is that the dispersion relation, ω =
ω(k), adopts a complicated behavior in terms of photonic bands. In the case of
ordered dielectrics, the analogy with the electron propagation through an atomic
crystal becomes very useful. Maxwell equations (1.8) can be combined to obtain
a wave equation for any of the fields as:

∇× [
1
ε(r)

∇×]H(r) = (
c2

ω2
)H(r) (1.25)

This is an eigenvalue equation with eigenvetors H(r) and eigenvalues ( cω )2. The
operator acting on H(r) is Hermitian, so the eigenvalues are real and the eigen-
vectors form an orthogonal set of solutions. Due to the existence of a periodic
potential, which in the case of light waves is the periodic dielectric function ε(r),
the Bloch theorem applied to Eq. 1.25 states that:

Hnk(r) = eikrunk(r) (1.26)

where k is a wave vector of the first Brillouin zone. These solutions can be
expressed as a plane wave envelope function and a periodic function (periodic
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Bloch function) unk which has the same periodicity as the potential. This fact
constrains the possible eigenvectors to the first Brillouin zone and folds the dis-
persion relation which organizes into, so-called, bands (photonic, in this case)
labelled with an integer n. Both the functions unk and also the photonic poten-
tial ε(r)−1 can be expanded into Fourier series of reciprocal lattice vectors G due
to periodicity:

unk =
∑
G

unk,Ge
iGr,

1
ε(r)

=
∑
G

φGe
iGr (1.27)

The dispersion relation folded to the Brillouin zone for two different sys-
tems is shown in Figure 1.5. The fist case, corresponds to an fcc arrangement
of polystyrene (PS) spheres in air background whereas the second case corre-
sponds to an fcc arrangement of air spheres in a Silicon background. In both, the
wavevector is represented in the horizontal axis while the energy is represented
in the vertical axis. The wave vector tip follows a trajectory within the Brillouin
zone linking high symmetry points which define its irreducible part and the en-
ergy is represented in reduced units of a/λ, where a is the lattice parameter and
λ the wavelength of light in vacuum. The convenient use of such units is justified
by the scalability of the solutions of the problem.

The absence of a fundamental length scale in the Maxwell equations, contrary
to the case of electrons in an atomic crystal, implies that a change in the length
scale of the system is translated into a corresponding change in the energy scale of
the eigenvalues so that the product ωa remains fixed. For the fcc direct arrange-
ment of spheres, figure 1.5(a), it is possible to observe a frequency interval (blue
band) for wavevectors lying in the ΓL direction for a reduced frequency window,
a/λ ∼ 0.6, where no states are available. Incoming light with wavevector lying in
this crystallographic direction finds no states available to couple to. Light with
energies contained in that, so-called, pseudogap (pG) cannot propagate through
the system for this particular direction. In such a system, it is not possible to find
a set of energies forbidden for all the crystallographic directions. The appearance
of a so-called photonic band gap (PBG) requires a larger refractive index contrast
Δn = n2/n1 and a different topology. This is achieved in the case of the inverse
structure, figure 1.5(b), where the high refractive index contrast is increased to
3.45 and, together with the new topology, gives rise to the opening of a complete
PBG which takes place between the 8th and 9th band at reduced frequencies 0.85
(red band).

Photonic crystals are possible candidates to tailor light properties not only due
to the eventual appearance of PBG but to the possibility to engineer light group
velocity (the velocity at which the wave energy propagates inside the crystal).
This constitutes a very fascinating and promising tool to control light propagation
[27]. A novel property of photonic crystals, derived by the complicated dispersion
relation, is that the light refraction in these systems obeys no more the snell law:

n1 sin θ1 = n2 sin θ2 (1.28)
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where ni and θi are the refractive index and propagation angle inside each medium.
The Snell law is a particularly simpler case of light refraction. The propagation of
light from one medium (1) into another (2) gives rise to a change in the propaga-
tion direction. In the reciprocal space, the parallel components of the wave-vector
must be conserved. The energy must also be conserved. Light refraction is de-
termined by conservation of the component of the light wavevector, k, parallel
to the interface between the two media and also by the dispersion surface (all
the allowed wavevectors for a given frequency) in both media and according to
the energy conservation. The dispersion surfaces of an homogenous medium are
spheres with diameters determined by the refractive index of the medium:

k =
ω

c
n (1.29)

Figure 1.6(a) schematizes light refraction between two homogenous media
with different refractive index. In a photonic crystal light refraction follows a
more complicated behavior. Dispersion surfaces adopt very complicated shapes in
these materials due to the complicated dispersion relation which light undergoes
in such materials. Figure 1.6(b) summarizes the complicated refraction from
an homogenous medium into a photonic crystal with a given dispersion surface.
This is known as anomalous refraction effect [23]. The wave vector inside the
second medium, a photonic crystal, k2, is determined by the conservation of its
component parallel to the interface as in the homogeneous medium case, but it
is not parallel to the direction of energy propagation which, in a photonic crystal
as well as in a homogenous medium, is given by the group velocity, vg [24]:

Figure 1.6: (a) light refraction between two homogenous media with different refrac-
tive index following the Snell law. (b) anomalous light refraction from a homogenous
medium into a photonic crystal. Dispersion surfaces are, in the latter case, dictated by
the complicated dispersion relation. Light refraction no longer obeys the Snell law.
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vg = ∇kω (1.30)

This magnitude is therefore directly related to the band structure of the crys-
tal. In that case, light refraction is not accounted for by the Snell law anymore,
but for the particular shape of the dispersion surface in the photonic crystal.
A complementary information about dispersion surfaces and light diffraction in
photonic crystals can be found in appendix A.

In photonic crystals, therefore, the group velocity can be engineered for light
with a certain energy just by selecting the crystallographic direction of propa-
gation through the system and tuning the lattice constant. If a very low group
velocity is needed, photonic band edges or photonic weakly dispersive bands can
be selected to that purpose and couple light to them. The group velocity associ-
ated with flat photonic bands becomes small [24], increasing the interaction time
between electromagnetic radiation and the materials which form the crystal.

1.3.2. Density of states: light localization and spontaneous emission

The density of states DOS in a medium equals the density per unit volume
and energy of the number of solutions to Maxwell’s equations. A direct conse-
quence of the existence of PBG in the dispersion relation of light through photonic
crystals is that, for those energy intervals, the density of available electromag-
netic states in the system is zero. The quantum electrodynamical implications
of this fact has been widely discussed in the literature [29, 30, 31]. This effect
can be engineered in photonic crystals and has two crucial implications: the first
one over the spontaneous emission of an emitter placed in a PhC, the second is
related to light localization in three-dimensional systems.

A complete PBG entails a complete suppression of the density of states, a
modification of the electromagnetic vacuum density of states. A small impurity
inside a photonic band gap material will give rise to a confined mode around this
impurity, as in atomic crystals. On the other hand, the spontaneous emission
of an emitter (atom, molecule, quantum dot) can be controlled and tailored by
modification of the properties of the radiation field. This is due to the fact that
the total radiative rate Γ of the spontaneous emission is given by the well-known
Fermi golden rule:

Γ(ω) =
2π
�
ρ(ω) (1.31)

where ρ(ω) is the photon density of states. For photons in ordinary vacuum
(ω = ck),

ρ(ω) =
ω2

π2c3
(1.32)

In the 1950s E. Purcell proposed the enhancement of spontaneous emission
rates of atoms when they are matched in a resonant cavity (the Purcell Effect)
[32]. A two level system will decay spontaneously by interaction with a vacuum
continuum at a rate proportional to the spectral density of modes per volume
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evaluated at the transition frequency. If a local source is placed in a photonic
crystal with an electromagnetic band gap, which has zero local density of states,
then the spontaneous emission can be rigorously forbidden [3]. Rather, a bound
photon-atom state is formed [29]. This effect will occur for an emitter placed
in the PhC if the transition energy lies within a complete PBG. However, if the
transition energy is near a band edge, where ρ(ω) is enhanced, an enhancement of
the radiative decay is expected. Many different kinds of systems in which the rate
of spontaneous emission is modified by the environment are reported, including
microcavities [33, 34], two, [35, 36] and three-dimensional [20] photonic crystals
to give just a few examples.

Other crucial effect which can be strongly affected by the engineered ρ(ω) in
a PhC is the, so-called, strong or Anderson light localization [5]. The inhibition
of light propagation was predicted to occur also in the opposite case, as an effect
of disorder in some random systems. In analogy to the phenomenon of Anderson
localization originally predicted for electrons, if the transport mean free path
becomes as short as the wavelength of light itself, interference dominates in the
scattering process. One may assist to the formation of localized states, in which
light remains trapped, inhibiting light transport. Such an effect has been subject
of great interest in disordered materials and can be reached if:

π2cρloc(ω)2t � 1 (1.33)

where c is the speed of light in vacuum, ρloc(ω) is the photon local density of states
at frequency ω, and t is the transport mean free path for photons, determined by
the degree of disorder in the medium. For photons in a disorder effective medium
with refractive index n (1.32), this condition reduces to the Ioffel-Regel criterion,
kt(ω) � 1 [37].

However, in a PhC, a decrease of ρloc(ω) in the band-gap and an enhance-
ment at the band-edge reflects the modified phase space available �k for light
scattering when the photonic modes are concentrated around few k-directions or
the available scattered states are reduced. This is consistent with John’s seminal
prediction [4] of a need for a modified Ioffe-Regel criterion for scattering in pho-
tonic crystals, to include �k. The very low density of states near the complete
band gap provides a very favorable scenario for the photon localization according
to criterion 1.33 even when kt(ω) 	 1. Localization in these structures arises
from a delicate interplay between order and disorder [38].

1.3.3. Opal-based photonic crystals

From sanscrite upala (gemstone), an opal is a self-assembled face centered
cubic (fcc) arrangement of monodisperse dielectric microspheres [39]. Natural
opals (figure 1.7a) are composed by SiO2 microspheres and show bright visible
iridescences due to Bragg reflections from crystallographic planes of the structure.
Such a structure acts, therefore, as a three dimensional photonic crystal for visible
light (with wavelength comparable to the spheres diameter) with very high quality
features. The monodispersity of the spheres defines the minimum free energy
configuration to be the fcc structure and, among the possible fabrication methods
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used to grow 3D photonic crystals [26], self-assembling gives rise, up to this
moment, the best quality samples.

By mimicking nature, it is possible to grow artificial opals with polymeric
microspheres such as polystyrene (PS) [40] or polimethilmetacritale (PMMA)
[41]. The high monodispersity of these polymer-based microspheres allow very
high quality samples, as shown in figure 1.7(b), figure 1.7(c), figure 1.7(d). The
first tentative to grow artificial opals was to reproduce the growth process of
natural opals: SiO2 self-assembling by natural sedimentation propitiated by the
gravity action. Samples grown by this method [42, 43] present a high amount
of disorder (dislocations, mosaic spread, stacking faults) which, usually, spoil the
optical performances of the system. Apart from that, these samples are not easy
to handle due to its fragility (unless further processing [44] was done to enhance
their mechanical stability) and even more, it takes a long time to grow due to the
slow sedimentation rate needed to obtain a good crystalline order. To solve these
problems and obtain higher quality samples, a new method known as the vertical
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Figure 1.7: (a) Picture of a natural grown opal. The bright colors are due to light Bragg
reflections on different crystallographic planes due to the mosaic spread composite of
the system. (b), (c) and (d) are scanning electron microscope images from cleaved
edges of artificial opals composed by polymer spheres (polystyrene) and grown by ver-
tical deposition. A very high quality and very thick samples (up to 60 layers) can be
grown by this method.
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deposition [45] was proposed. With this faster fabrication method (just few days
are needed compared to sedimentation, which required up to several months)
provides samples which present smaller defect concentration (incomparable, up
to this moment, with any other fabrication method), controllable thickness (which
open a route to systematically study their optical properties) and are easier to
handle since they are grown on solid substrates.

A very clear description of this method as well as the optical and morpho-
logical characterization of artificial opals grown with it can be found in the PhD
thesis of J. F. Galisteo-López [46]. Instead taking advantage from gravity to force
the spheres to settle out, a controlled evaporation-assisted vertical deposition on
a clean substrate (commonly glass or quartz) is performed. The substrate is
hydrophillized by a previous chemical etching which allows the formation of a
meniscus forming at the line where the substrate, air and liquid meet (figure 1.8).
Then, it is placed in a colloidal suspension of microspheres. Crystal growth be-
gins at the point of the meniscus where its thickness is below the diameter of the
sphere [47]. The driving force which pulls the spheres towards the meniscus and
force them to self-assemble is the convection. Evaporation of the solvent drives
the spheres from the colloidal suspension to the meniscus where an ordered front
is formed. Under the appropriate conditions involving colloidal concentration and
evaporation rate [47], more than one layer may begin to grow at the meniscus.
The self-assembling process seems to be very inefficient at these early stages of
the growth process giving rise to, for example, different stacking patterns, [48]
high lattice displacements and, even, different stacking order arrangements [49].
Such an extraordinary disorder has been already discussed in the context of op-

Figure 1.8: Schematic of the vertical deposition growth process. A clean hydrophilic mi-
croslide made of glass or quartz is placed in a colloidal suspension of dielectric spheres.
The convective forces present at the meniscus between the suspension and the sub-
strate drive the spheres and force them to self-assemble. The controlled evaporation
process ensures an effective flow of spheres.
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timal self-assembling of the spheres in the colloidal meniscus [50]. The optical
performances of a polymer artificial opal are limited by the relative low refractive
index of the spheres. These systems are not only interesting by themselves, play-
ing a role of a high quality playground to study fundamental physical phenomena
related to photonic crystals, but are also possible templates where it is possible
to perform further infiltrations of interesting materials. Different techniques al-
low the infiltration of a second material and the posterior selective etching of the
polymer background. The intermediate and final structure are called composite
and inverse opal, respectively. In an inverse opal, a dielectric constant higher than
2.9 ensures the appearance of a complete PBG in the high energy range [51]. The
first attempt of an inverse opal was done by O. D. Velev and co workers [52] and
the first inverse opal with a complete PBG was archived by A. Blanco and co
workers [25]. The main fabrication methods are based on solutions (chemical bath
deposition [53] or electrochemistry [54, 55]) and gas phase such as atomic layer
deposition [56] (ALD) as well as chemical vapor deposition (CVD) performed in
[25] or in the work presented in chapter 2 of this thesis. The gas phase-based
method allows a conformal and very controllable growth process which increases
notably the optical performances of opal-based photonic crystals.

1.4. Lasing emission in nanostructured materials

Figure 1.9: The processes of absorption (1), spontaneous emission (2) and stimulated
emission (3) in a photon-particle picture.

When matter absorbs a photon (figure 1.9a) and, eventually, radiates it, this
emission can be spontaneous or stimulated. Spontaneous emission (figure 1.9b)
is the process by which a light source in an excited state undergoes a transition
to the ground state by interaction with a vacuum continuum and emits a photon.
Contrary to this, stimulated emission (figure 1.9c) is the process by which an
electron, perturbed by a photon having the same energy of the electronic state
transition, decays into a lower energy level resulting in the creation of another
photon with the same energy and in phase with the initial one. This is at the
basis of laser, light amplification by stimulated emission of radiation. This phe-
nomenon can be achieved in an optical set up whose essential elements are: (i)
a gain medium, a system with internal electronic states which is able to radiate
photons as a result of electronic excitation and decay, (ii) an external exciting
or pumping process and (iii) a optical feedback mechanism which provides the
EM modes necessary for the radiation amplification [61]. The pumping process
must provide not merely exited electrons but also population inversion, in which



22 1. Introduction

electrons are excited into some higher quantum energy level than in some lower
energy lever in the gain medium. In a standard laser, the feedback mechanism
is achieved by a resonant optical cavity where standing waves, the modes of the
cavity, allow the stimulated emission of the gain medium. The lasing modes of
such system are defined by the coupling between the atomic or molecular rate
equations of the gain medium and the equations of the optical cavity. A finger
print of lasing emission is a threshold behavior. Every feedback mechanism has
eventual losses which hampers lasing action. When losses are higher than gain,
spontaneous emission dominates. At a high pumping rate, a population inversion
large enough to compensate losses and stimulated emission dominates. This two
different situations are clearly distinguishable in an output/input emission inten-
sity diagram by a, so-called, threshold. Figure 1.10 shows the output intensity
emission from a gain medium as a function of external energy pumping. Two clear
rate emissions are revealed: (1) the spontaneous emission dominates and (2) the
stimulated emission dominates. The pumping energy at which the threshold be-
tween both situations happens depends on the fraction of spontaneous radiation
which contributes to lasing. This is characterized by the, so-called, β-factor which
is of paramount importance since it is intimately related to the feedback mech-
anism losses. The definition of β is the amount of spontaneous emission that
contributes to the lasing mode. The rest of the spontaneous emission which does
not contribute to the lasing mode is lost. As β represents a fraction, its value is
always between 0 (no lasing emission, all the spontaneous emission is lost) and
1 (all the spontaneously emitted photons end up in the laser mode in which is
known as threshold-less laser).

One of the challenges of nanophotonics, both ordered or disordered is to en-
gineer a system in which the value of β minimizes with the ultimate goal of
obtaining a β = 1 laser for which stimulated emission dominates for every energy

Figure 1.10: Intensity of the maximum emission spectrum vs. pump pulse energy. For
pump energy values lower than 4000 μJ (threshold value) spontaneous emission gov-
erns the emission process (1) whereas, above threshold, stimulated emission dominates
the process (2).
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pumping value. Photonic crystals where proposed in such a way to minimized
losses in the optical cavity and to maximize the value of β [3]. By tuning the
emission energy to a complete PBG of the photonic crystal, it is possible to min-
imize the spontaneous emission which do not contribute to the lasing. As the
laser threshold depends on the balance between gain and loss in the system, such
a way to engineer the DOS can substantially reduce β.

1.4.1. Random laser

Lasing in nanostructured materials is not only limited to ordered nanostruc-
tured dielectrics such as photonic crystals. A very intriguing phenomenon hap-
pens when multiple scattering is combined with a gain medium. In such a system
it is possible to observe lasing action in a process which is known as random laser
[62]. This phenomenon was firstly proposed by Letokov in the sixties [63] and
experimentally observed by Lawandy [64] in the nineties. In this section we will
discuss only diffusive random lasers.

Figure 1.11 shows the comparison between a conventional laser (a) and a
random laser (b). In a random laser the optical feedback is provided by scattering
of light, instead of by a cavity. The necessary condition for a random laser is that
the material multiply scatters light, which means that the transport mean free
path (the average distance over which the scattered light direction is randomized)
is much smaller than L, which is the sample size, t << L. The other fundamental
quantity is the gain length g that represents the path length over which the
intensity is amplified by a factor e+1. The interaction between gain and scattering
determines the unique properties of the random laser and, in particular, defines
the critical thickness for the sample (in slab geometry) to lase Lcr = π

√
gt/3

[65]. Light transport through a multiple scattering medium can, eventually, be
described as a diffusion process characterized by a (transport) mean free path,
t, and a diffusion constant, D. Diffuse light propagates though such a medium

Figure 1.11: (a) A conventional laser is composed by a gain medium and an optical
cavity which provides the necessary resonant feedback to achieve lasing threshold. (b)
Unlike ordinary laser, in a random laser the resulting light emission is multidirectional
and not really monochromatic, but the threshold behavior, the photon statistics and re-
laxation oscillations are very similar to those of standard lasers.
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following a diffusion equation as follows:

[
∂

∂t
−D · ∇2 +

νe
i

] · I(r, t) = S(r, t) (1.34)

S(r, t) is the light source and ve is the energy velocity [66, 67]. If one solves Eq.
1.34 for a plane wave incident on a slab of random system, the total transmission
is expressed by the Ohm’s photonic law [16]:

T (L, λ) =
1
αze

sinh[α(zp + ze)] sinh[αze)]
sinh[α(L+ 2ze)]

(1.35)

ze =
1
2α

ln[
1 + αz0
1 − αz0

]

z0 =
2
3
t(λ)

(
1 +R

1 −R

)

In the solution, α = 1/i is the inverse absorption length andR is the polarization-
and angular-averaged reflectivity of the boundaries [17]. Therefore, a measure-
ment of T (L, λ) is a direct probe of the spectral dependence of t. Optical ampli-
fication can be added to the diffusion picture described so far. Multiple scattering
increases the interaction between light and the system, and, when gain is added to
this scenario, the system, eventually, lases, when stimulated emission dominates
over the spontaneous emission of light. This lasing process can be described, to
a first approximation, with the four-level rate equation [61] in the presence of
diffusion:

dN1(t)
dt

= P (t) − βq(t)N1(t)
τ

− N1(t)
τ

,

dq(t)
dt

=
βN1(t)
τ

[q(t) + 1] − q(t)
τc

, (1.36)

τc =
L2

8D(λ)
,

where N1(t) is the number of excited molecules, P (t) is the pump rate, q(t) the
number of photons of the laser modes, τ the spontaneous emission lifetime of
the gain medium. The differences between a single mode standard laser and a
multi-mode random laser lie in the cavity decay time τc [68, 69] that becomes
dependent on the diffusion constant (and, then, on the transport mean free path)
and in the β factor [71] that instead accounts for the average numbers of lasing
modes. From Eq. 1.36 it can be seen that the threshold and lasing process can
be controlled modifying D(λ) and t(λ).

1.4.2. Bloch laser

Photonic crystals where firstly proposed to achieve threshold-less lasers [3].
In a photonic crystal, light-matter interaction can be effectively engineered to
enhance light amplification and lasing action [72]. Contrary to the case of (diffuse)
random lasers, where the laser mode is randomly spread over the entire system,
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the lasing mode in a photonic crystal is a linear combination of Bloch modes and
is spread over the crystal defined by the symmetry of the structure. This is the
reason which explains the isotropic lasing random emission in the first case and
the highly directional lasing emission in the second one. In the following, the
term Bloch laser will be applied to laser in photonic crystals and it is related to
the nature of lasing (Bloch) modes in such system. This term has not been used
in the literature but it could be useful to distinguish, at least in this thesis, laser
in random systems from laser in ordered systems.

As discussed previously, the group velocity of light vg is defined by the gra-
dient of the isofrequency surfaces (Eq. 1.30). Consequently, it minimizes when
the dispersion relation slope goes to zero. This situation can be achieved, for
example, in photonic crystals [27]. At photonic band edges or at weakly disper-
sive, so-called, flat energy bands, the slope of the dispersion relation minimizes
for a certain range of wavevector k values. A reduction of vg results in an ar-
tificially engineered standing wave propagation through the system, compared
to that trough the non-structured material. This leads to a stronger interaction
and to an enhancement of the optical response of the system. In the particular
case that the material which composes the system is a gain material (it is able to
radiate photons by means of an external excitation mechanism), an enhancement
of the stimulated emission may, eventually, lead to a large reduction in the lasing
threshold [24]. An analogous process occurs in standing wave modes near Bragg
diffraction resonance in one-dimensional multilayer stacks. The unique dispersion
relation of two- and three-dimensional photonic crystals, which includes, as men-
tioned, the weakly dispersive flat bands at high energy, gives rise to the so-called
group velocity anomaly [24, 73]. In such case, the reduction of the lasing threshold
was brought about by the enhancement of stimulated emission due to the strong
interaction between the EM field and the matter. vg of the EM eigenmodes is
small over the entire energy- and wavevector- range of this bands, leading to this
large effective coupling between light and the gain material. This enhancement is
similar to that of distributed feedback lasers (DFL) caused by the formation of a
standing wave [74]. Actually, DFL is a type of laser where the active region of the
device is structured as a Bragg reflector, a one-dimensional photonic crystal. The
grating provides optical feedback for the laser during distributed Bragg scatter-
ing from the structure and do not use discrete mirrors to form the optical cavity
(as are used in conventional laser designs). A three-dimensional photonic crystal
Bloch lasing in the weakly dispersive flat high energy bands is more complicated
than a simple Bragg-reflector, but the physics underlying the effect are the same:
by nanostructuring the gain material it is possible to obtain a mirror-less laser.

1.5. Outline of this thesis

Figure 1.12 shows the two different systems which provide the tittle and con-
stitute the basis of the work presented in this thesis. Light propagation and light
emission though opal-based photonic crystals (left) and photonic glasses (right).
It will be shown how light transport and emission properties can be strongly tai-
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Figure 1.12: Top: picture shows an opal-based photonic crystal (left) which shows visi-
ble iridescences due to Bragg reflections and a photonic glass (right) white and without
any trace of Bragg features. Bottom: (left) Scanning electron microscopy (SEM) image
from a photonic crystal cleaved edge (scale bar is 10 μm). (Right) SEM image from a
photonic glass surface (scale bar is 10 μm). Both samples are made of PS spheres (2%
of polidispersity measured by transmission electron microscopy) and have centimeters
squared areas and millimeters thickness.

lored in such systems. For that purpose, light propagation will be described from
two very different approaches: Bloch modes and photonic band structure in the
first case and diffusion approximation in the second one. The thesis is divided
in three parts: In the first part (I), the effect of a photonic band structure from
an ordered system, ZnO inverse opals in this case, is shown on different aspects
of light propagation and light emission. In the second part (II), a novel disorder
material for light, the photonic glass, will be introduced. Their optical proper-
ties as well a particular application of the system for random lasing will also be
shown. In the third part (III), a means to perform a controlled transition from
an order nanostructure to a disordered one will be developed and, in particular,
its implications on ZnO lasing emission.
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Chapter 2 exploits an infiltration technique to obtain ZnO nanostructures
based on opals. Ordered and disordered ZnO systems can be obtained with
the help of a vapor deposition method. ZnO material and Photolumines-
cence properties are investigated in this chapter.

In chapter 3, a method based on ZnO infiltration of opal-based photonic
crystals is explained to probe and identify different crystallographic direc-
tions of their fcc structure. In particular ΓL and ΓX directions.

Chapter 4 it shows an optical study of high energy photonic pseudogaps
which appear in ZnO inverse opals. The controlled infiltration of ZnO
allows a photonic band engineering which will result crucial to study ZnO
high energy bands interaction with quantum dots (QD) emission and ZnO
lasing emission. It also develops a method to infiltrate quantum dots, CdTe
in this case, in ZnO inverse opals by means of a physical technique. The
physical infiltration can be monitored by means of optical spectroscopy of
the structure. The interaction of high energy photonic pseudogaps of the
ZnO inverse opal with the QD emission undergoes an inhibition and an
enhancement. A fine tuning and control can be exerted over the process
with posterior ZnO infiltration.

In chapter 5, a method to obtain a random distribution of monodisperse
scatterers is explained. This system is called photonic glass.

Chapter 6 analyzes the optical properties of photonic glasses by means of
static and dynamic measurements and show resonant light diffusion though
such a system.

In chapter 7 the resonant properties of light diffusion are used to control and
modify the random lasing action of and organic emitter. It is compared the
conventional random lasing in a TiO2 powder matrix with the resonance-
driven random laser in a photonic glass.

Chapter 8 shows a means to perform a controlled transition from an opal
based photonic crystal to a photonic glass. By introducing a controlled
amount of vacancies in lattice positions of the original opal a transition
of the optical properties, the scattering mean free path and the diffusion
constant is observed.

Finally, in chapter 9 UV ZnO lasing emission is obtained in ordered and
disordered nanostructures. UV ZnO lasing is observed in ZnO inverse opals
in the high-energy range of the photonic bands provided by the, so-called,
group velocity anomaly. On the contrary, conventional ZnO random lasing
is observed in the case of ZnO inverse photonic glasses and ZnO inverse
opals doped with a high amount of vacancies.
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Chapter 2
ZnO: optical and material
properties for photonics

Among materials for photonics, ZnO is probably one of the most promising
candidates for innovation in the next decade. It has been widely used in numerous
applications such as piezoelectric transducers, solar cells, phosphors, and sensors,
this wide-gap (3.4 eV) semiconductor has been shown to be a good alternative
to other classic materials as a short-wavelength light emitter [76]. Thanks to
its large excitonic binding energy (60 meV), lasing at room temperature was
demonstrated in thin ZnO films optically pumped in the last decade [77] (it is
important to remark the great difficulty which supposes the n/p doping of ZnO to
allow electrical pumping). Since then, different ZnO nanostructures have emerged
in many different sizes, shapes, and geometries, e.g., nanowires [78, 79], nanobelts
[80], or nanoribbons [81, 82], improving its lasing efficiency and boosting its
possibilities in photonics. A wide range of novel functionalities can be obtained
by nanostructuring ZnO. In particular, there are a number of examples of ZnO-
based photonic crystals in one [83], two [84], or three dimensions [85]. In three-
dimensional (3D) opal-based photonic crystals, ZnO infiltration of silica opals
has been tackled by wet chemical methods [86, 87], and polymeric opals have
also been infiltrated with ZnO by sol-gel [88] and electrochemical methods [89].

There are different approaches to growing polycrystalline or epitaxial ZnO.
Techniques involving the gas phase are the most widespread, due to the high
quality epitaxial growth, and can be directly applied in industry. Furthermore,
gas-phase methods have demonstrated their potential in conformal growth for the
infiltration of high aspect ratio structures [90, 91, 92]. Atomic layer deposition
(ALD) [91, 92] provides atomic-scale thickness control of ZnO films by oxidation
of metal-organic precursors such as diethyl zinc (DEZn) or dimethyl zinc (DMZn)
(which are highly reactive in air) by alternating metal-organic and water expo-
sures or pulses of a few seconds length in a binary reaction sequence. These
methods have, however, never been used in porous environments such as opals
even though they are the most appropriate approach for conformal infiltration,
which allows a perfect replication of the template.

33
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A controlled process to fabricate large-area high quality ZnO-polystyrene
(PS) composites and ZnO inverse opals with fine control over filling volume
(nanometric in thickness) by a modified metal-organic chemical vapor deposi-
tion (MOCVD) method will be provided in this chapter. The optical properties
of such a structure will be analyzed carefully and a deep material characterization
will also be carried out.

2.1. ZnO chemical vapor deposition

ZnO has been infiltrated in thin artificial opal films composed by polymeric
(PMMA and PS) spheres. These templates are grown by vertical deposition [45]
on quartz substrates where a colloidal suspension of PS or PMMA microspheres
with a typical concentration of 0.15 wt % is self-assembled. The process takes
places along several hours under a controlled temperature (T = 45 ◦C). The
particular templates shown in this chapter have been grown using a sphere di-
ameter d = 500 nm, although a wide range of spheres diameters from d = 200
nm to d = 1200 nm have been tested. The infiltration is peformed by a chem-
ical vapor deposition using as Zn precursor a diluted solution of diethyl-Zinc,
ZnO(CH3CH2)2, in hexane. Double-distilled water (DDW) was used as oxygen
precursor. The diluted metal−organic compound is easier to handle than the
pure, highly reactive one. It also provides the key to fine control of the ZnO
growth inside the opal. The two precursors are kept separately in glass bubblers
at room temperature. Figure 2.1 schematically reproduces the set up use in this
process. The precursors were alternately feed into the reactor using nitrogen as
carrier gas at a fixed flow rate. The reactor was kept around T = 86 ◦C, which

Figure 2.1: Schematic of the CVD set-up to perform the ZnO infiltration of opals. The
bare opal is placed on the reactor at T = 86 ◦C, a continuous flow of nitrogen bub-
bles diethyl-Zinc and water intermittently to the reactor, where they react forming ZnO
conformal shells on the polymer spheres surface.
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Figure 2.2: Images (SEM) of cleaved edges in ZnO inverse opals (a) and (b) from 500
nm polystyrene spheres. The images reveal the smoothness and quality of the confor-
mal growth of ZnO shells, which extends for areas of hundreds of square micrometers.
Images (TEM) of ZnO grains from ZnO inverted opals (c) and (d) which show with detail
the ZnO atomic planes.

is a compromise temperature in order to obtain smooth deposits with fine grains
while avoiding the softening of PS. Room temperature conditions yield rough
and inhomogeneous deposits. The ZnO film thickness deposited by alternating
exposure to the two sources in succession (a cycle) depends on the carrier gas
flow rate, temperature, and exposure time of each source. In this particular case,
30 s cycles of water and 20 s cycles of diethyl-Zinc were alternatively bubbled
with a fixed nitrogen flow of about 200 ml/min in both cases. A bare opal can be
filled in a single cycle or in several cycles. This fact is of paramount importance
in order to tune the photonic properties to the desired specifications for optimal
performance. Theory predicts particular or functional behavior for a given filling
fraction. It is worth mentioning that due to the conformal growth and geomet-
rical constrains the maximum value achievable for the filling fraction is close to
86 %. In addition, conformal growth allows the fabrication of inverse structures
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even for extremely low ZnO filling fractions.
Inverse opals are obtained after a selective removal of the polymeric back-

ground by a calcination process of ZnO@PS composites which comprises on a
first step annealing at T = 90 ◦C for 6 h, in order to melt the polymer spheres,
and a second step at T = 450 ◦C for 15 h in air. This process not only removes
completely the PS matrix but also recrystallizes the ZnO, as revealed in ZnO pho-
toluminescence measurements shown later on in this chapter. Scanning electron
microscopy (SEM), transmission electron microscopy (TEM) and optical spec-
troscopy have been performed in order to monitor the infiltration process. Figure
3.2 shows SEM images (a and b) and TEM images (c and d) from ZnO-based
opals grown on quartz substrates. The high quality of the smooth and homo-
geneous coating can be observed. Figure 3.2b and c shows the appearance of a
cleaved edge of a ZnO inverse opal with an infiltration degree of 60 % of the pore
volume. Figure 3.2c shows the ZnO grain composition whereas 3.2d shows the
atomic planes of ZnO grains.

Surface inspections reveal homogeneous growth over square-millimetre areas.
The inverse replica order is disturbed only by the usual cracks (hundreds of
micrometres apart) which replicates the structural disorder of the templates. The
empty interiors of the shells in the inverse replicas are observed only in cracks
and the cleaved edges. From these we can give a rough estimate of the ZnO shell
thickness of about 20 - 30 nm, in good agreement with the expected value.

2.2. Optical and Material properties

The refractive index of thin ZnO homogenous films (0.4 - 1.6 μm) was mea-
sured by ellipsometric techniques to range from 2.2 to 1.9 (shown in Figure 2.3),
in good agreement with data previously reported by Yoshikawa and Adachi [93].
Optical microscopy inspection reveals the tuning of the optical properties of the
system. Optical microscopy was performed with a microscope attached to the
spectrometer and a ×4 objective featuring a 0.1 numerical aperture (5.7◦ angular

Figure 2.3: Refractive index of ZnO thin films measured by ellipsometry.
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aperture). Figure 2.4 shows optical microscopy images from the three different
stages of the process: the bare opal (a), the composite one (b) and inverse opal
(c). The optical responses of ZnO@PS composites and ZnO inverse opals were
compared with photonic band calculations [94]. The infilling process has been
monitored by the optical reflectance at near normal incidence with respect to the
(111) face-centered cubic (fcc) planes taken with the help of an optical microscope
from a circular area of about 375 μm diameter. The blue-shift in the first-order
Bragg peak as the infiltration proceeds accounts for the decrease of the average
refractive index of the structure due to ZnO infilling.

Figure 2.5 shows the photonic band calculations (a) and the reflectance spec-
tra of bare PS opal (b), ZnO@PS composite with 80 % pore volume infilling (c),
and the same structure after PS calcination (d). The parameters used for the
calculations were the following: for the bare opal PS spheres arranged in a fcc

Figure 2.4: Optical microscope images showing the surfaces of the bare opal (a), the
ZnO@PS composite one (b) and the ZnO inverted opal (c). The different colors arise
from the different photonic band structure of each sample, which reflect different colors.
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lattice and with a refractive index of nPS = 1.59 were used (pink line in figure
2.5a); for the ZnO infiltrated structure (brown line in figure 2.5a) a layer of 30
nm with a refractive index of nZnO = 1.93 (taken from ellipsometric data) was
added over the PS spheres; finally, for the inverse ZnO replica (blue solid line
in figure 2.5a) the refractive index of the spheres was replaced by 1 (air) in the
inverse structure. Figure 2.5c points out the disappearance of the Bragg peak
due to index matching (notice the disappearance of the pseudogap in the brown
line of (a)). In this case, the system behaves as an homogeneous medium with a
refractive index of around neff = 1.65 and a thickness of around 5 μ m. After
removal of PS by calcination the Bragg peak blue-shifted (figure 2.5d), due to
the lowering of the average refractive index (from neff = 1.65 to neff = 1.2), and
becomes broader (almost double) because of the increase of the refractive index
contrast (nZnO/nair = 1.9). It is important to pay attention to the fact that, the
color of each structure shown in figure 2.4 does not correspond to the reflectance
of the first order pseudogap. Figure 2.5 shows how the light reflectance from the
three structures (bare opal, composite one and inverse opal) happens in the in-
frared (see wavelength axis). The color shown in the optical microscopy pictures
is due to high energy photonic features which will be subject of analysis in the
following chapters.

Figure 2.5: Specular reflectance spectra of a PS bare opal (b), 80% ZnO@PS opal com-
posite (c), and ZnO@air inverse structure (d), together with the corresponding photonic
band calculations (a) for bare (pink), composite (brown), and inverse (blue) structures.
This colors correspond to the real structures reflectance.
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2.3. ZnO photoluminescence

The optical properties of a semiconductor are connected with both intrin-
sic and extrinsic impurities. Intrinsic optical transitions take place between the
conduction band and the valence band, including excitonic effects due to the
Coulomb interaction. Excitons are classified as free or bound. Extrinsic prop-
erties are related to dopants or defects, which usually create discrete electronic
states in the electronic band gap, and therefore influence both optical-absorption
and emission processes. The electronic states of the bound excitons (BEs) de-
pend strongly on the semiconductor material, in particular, the band structure.
Other defect-related transitions could be seen in optical spectra such as free to
bound (electron-acceptor), bound to bound (donor-acceptor), and the so-called
yellow/green luminescence. As in any semiconductor, impurities affect the elec-
trical and optical properties of ZnO. ZnO photoluminescence (PL) emission at
room temperature is due to free-exciton at 3.26 eV (∼ 380 nm) (bound exciton
is, at this temperature, ionized) and a wide green luminescence band (GL). The
nature of the GL, appearing at about 2.5 eV (∼ 600 nm) has been explained in
terms of oxygen vacancy (VO) or Zinc vacancy (VZn) [95].

The samples were optically pumped by a frequency tripled Q−switched pulsed
Nd:YAG laser (9 ns pulse duration), with 10Hz repetition rate. The spot size was
fixed at 2 mm diameter. The pumping beam and the emission beam were along
the direction perpendicular to the sample surface (along ΓL crystallographic di-

Figure 2.6: Emission from ZnO annealed at T = 450 ◦C as a function of pump energy.
The spot size is fixed at 2 mm diameter. Two clear bands can be distinguished, from
the free-exciton emission (λ = 390 nm) and from ZnO defects emission (λ = 600 nm).
The intensity of both emissions increases linearly with pump energy, as expected from
a spontaneous−like luminescence.
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rection). In particular, the emission was monitored with a miniature spectrometer
with a resolution of 0.5 nm. Figure 2.6 shows a set of ZnO PL measurements as a
function of pump energy. PL measurements show very efficient free-exciton emis-
sion and defect emission band in ZnO inverted opals. In this case, the original PS
spheres have a diameter d = 200 nm and, therefore, the free-exciton emission does
not overlap with any photonic feature related to the band-structure of the ZnO
inverted opal. For this measurements, ZnO has been annealed at T = 450 ◦C.
Two clear characteristic emissions are shown corresponding to the free-exciton,
at λ = 390 nm as well as to the intrinsic impurities, at λ = 600 nm. The intensity
of both emission bands increases linearly with energy pumping, as expected from
a spontaneous emission luminescence.

The relation between ZnO crystalline structure and ZnO PL has been ana-
lyzed varying the annealing temperature. The elemental composition of the ZnO
inverse structures was studied by energy dispersive X−ray. Figure 2.7 shows the
X−ray characterization (a) and the PL emission (b) as a function of annealing

Figure 2.7: (a) X−ray diffractograms from the ZnO inverse opals at different annealing
temperatures. The grain size grows with temperature from 4 nm in the as-grown case,
to 40 nm at 900◦C. (b) ZnO PL measurements as a function of annealing temperature.
All these samples are pumped at with the same energy (1000 μJ ∼ 80 μJ/mm2 per
pulse). As-grown ZnO inverse opals do not present free-exciton emission. An increase
of annealing temperature allows the ZnO crystallization, a higher free-exciton emission
and a decrease of the ZnO structural defects. This is pointed out in a higher value of
Iexciton/Idefects, which denotes a higher sample crystallinity.
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Figure 2.8: (Right axis) Dependence of the ratio between of the free-exciton emis-
sion and the impurities emission intensity on the annealing temperature. (Left axis)
Dependence of the ZnO grain size on the annealing temperature

temperature.
The effect of a higher annealing temperature on the ZnO crystal grain is

evident. Upon crystallization, sharp peaks are obtained, in agreement with an
increase in the grain size. All samples present a polycrystalline nature, the grain
size increasing from 4 to ∼ 40 nm upon annealing at T = 900 ◦C, as shown in
figure 2.7a. Data are estimated by applying the Scherrer formula. This ZnO
grain size is of the order of the ZnO shell layer thickness. This fact has important
consequences on the inverse structure mechanical stability. ZnO inverse opals an-
nealed at high temperatures (typically T > 550 ◦C) become very intestable due
to shrinkage and structural tensions. On the contrary, grain size and crystalliza-
tion degree have also a direct consequence on free-excitonic emission. Figure 2.7b
shows direct measurements of ZnO PL at room temperature at the same pump-
ing energy (175 μJ/mm2) from samples annealed at different temperatures. The
maximum intensity related to the free-exciton emission varies from 0 (as grown
ZnO does not present such an emission) to a very efficient emission after an-
nealing at T = 900 ◦C. Figure 2.8 shows the grain size and the ratio between
the free-exciton emission and the impurities band emission (Iexciton/Iimpurities).
This value is a quality measure of the crystal, increased notably by the annealing
process.

The ZnO recrystallization is not only possible by a typical annealing process
under controlled temperature but also by the direct and local action of the pump-
ing laser. Figure 2.9 shows ZnO emission PL at room temperature as a function
of pump energy. In this particular case, the sample has not been annealed after
the growth process. It presents a poor grain crystallization, as shown in figure
2.7a for the case of as-grown ZnO. As revealed in the figure, for low pump en-
ergy no free-exciton related emission is shown by the system. On the contrary,
a strong band emission due to structural ZnO defects (GL) appears at λ = 600
nm, pointing out a high extrinsic defects density. The defect related band emis-
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Figure 2.9: PL emission from as-grown ZnO inverted opals. No annealing process
has been carried out in this samples. When the pump energy is increased over than
1100 μJ ∼ 175 μJ/mm2, a clear free-exciton emission is revealed. The pump laser
crystallizes the sample locally and induces free-exciton emission, reducing the ZnO
impurities and structural defects and, threfore, GL emission.

sion increases linearly with the pump energy. For pump energy value higher than
1100 μJ ∼ 175 μJ/mm2 (threshold annealing pump energy value) the appearance
of free-exciton emission and the inhibition of defect band emission are revealed.
The reason which explains this fact is the direct and local annealing induced by
the pump laser beam. This process gives rise to a local material crystallization
and happens only by the action of the pump laser beam. Those areas of ZnO
inverse opal which are not directly pumped by the laser beam and, consequently,
do not suffer an annealing process, remain amorphous. This fact is observed
by reducing the pump energy to value lower than the threshold annealing value
175 μJ/mm2 and pumping a different ZnO area. By doing so, only defect band
related emission is observed whereas in an annealed area free-exciton emission
is still observable. This effect is, therefore, a local annealing and crystallization
induced by the pump laser and is a very interesting property which opens a route
to study direct laser writing in ZnO inverted opals.
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2.4. Conclusions

In summary, here the use of CVD to grow ZnO in synthetic opals is reported.
This method yields large-area, high-quality ZnO@PS and ZnO inverse opals with
very precise control of degree of infiltration, which, in terms of thickness, means
nanometer-thick layers. For the quality of the deposits and the ease of use,
as well as for its inexpensiveness, this may well turn out to be the ultimate
method of synthesis for a material that has gained a place on the rostrum of
materials for photonics. ZnO grown by this method shows strong UV free-exciton
photoluminescence at room temperature, which may be useful to grow ordered
or disordered ZnO nanostructures with emission properties.





Chapter 3
Tuning and optical study of ΓX
and ΓL pseudogaps in opals

One of the most interesting properties of photonic crystals is that they allow
to modify the photon density of states. The latter is determined by the band
structure which may be tailored by means of variations in the refractive index
and topology for a given symmetry. Although for artificial opals the symmetry is
fixed by the growth process, the band structure can be modified, to certain extent,
by means of a controlled infiltration with other interesting materials carrying out
what can be called band gap engineering [96, 97]. Knowledge of the photonic
band structure of synthetic opals and the possible modifications attainable by
engineering through infiltration is desirable in order to exploit their potential in
applications for light steering such as super refractive devices. For artificial opals
at low frequencies (a/λ < 1, where a is the lattice parameter and λ the wavelength
of light in vacuum), pseudogaps appear for propagation along different directions.
The width of such pseudogaps is mostly dictated by the magnitude of the Fourier
component of the expansion of the dielectric function associated with the recipro-
cal lattice vector G corresponding to the point in reciprocal space where the gap
opens [24]. Therefore, for a fixed symmetry, the interaction and, hence, pseudo-
gap width may be manipulated modifying the refractive index distribution and
volume fraction [98] since the symmetry and lattice parameter remain unaltered.

3.1. Morphological characterization

In this chapter, a method to tune the two high-symmetry pseudogaps in
artificial opals occurring in the reciprocal space directions ΓL and ΓX which
correspond to crystallographic orientations (111) and (100) respectively will be
demonstrated. In particular the ΓX gap, closed for bare opals, can be opened.
We use areas of the opal that present either of these orientations which naturally
appear in artificial opals grown by vertical deposition. They can be identified by
the symmetry of the arrangement of spheres in the surface of the sample. Areas
of hexagonal (square) arrangement of spheres correspond to (111) (100) planes.

45
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While several high-symmetry directions have been studied in bulk artificial opals
by inspecting cleft edges [99], they are difficult to cut, the available areas are
small, difficult to locate, orientate and align with the spectroscopic experimental
set up. While thin film opals grown by vertical deposition have almost always
their (111) planes parallel to the substrate, in some cases naturally occurring
(100) oriented regions appear as already reported by several authors [100, 101].
This occurs mostly in the initial stages of growth.

The samples used were grown using polystyrene (PS) spheres 503 nm in di-
ameter (3 % polydispersity) synthesized by a previously published method [40].
ZnO infiltration of the sample was carried out with the modified metal−organic
chemical vapor deposition method shown in chapter 2. In order to remove PS
spheres to obtain a ZnO inverted opal, the sample was calcinated at T = 450 ◦C
for 2 hours. A Fourier transform infrared spectrometer was used to record the
optical reflectance of the samples at normal incidence in a wide spectral range.
A microscope attached to the spectrometer with a ×4 objective featuring a 0.1
numerical aperture (5.7◦ angular aperture) was used to focus and collect the
light. We have performed all measurements in adjacent regions with square and
hexagonal planes in areas of 9 and 11 layers of thickness respectively. The thick-
ness was estimated from Fabry-Perot oscillations present in the spectra on either
side of the Bragg peak. Optical microscopy (figure 3.1) and scanning electron
microscopy (figure 3.2) were used to characterize the morphology of the samples.
Optical microscopy was performed with the same objective used for optical mea-
surements. In order to perform the scanning electron microscopy inspection, the

Figure 3.1: Optical microscopy images showing regions with different morphology. (a)
Initial stages of sample growth at the top of the sample. (b) Wide region presenting
green and pink colors. Scale bar is 375 μm in both cases.
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samples were coated with a thin gold film as customary. Optical microscopy im-
ages show sample regions presenting different hue. At the early stages (top of the
sample in figure 3.1a) growth takes place by the formation of terraces of increas-
ing thickness with steps more or less parallel to the (horizontal) meniscus line.
As the sample thickness increases, the color of the terraces varies from brown (1
layer) to pink (> 7 layers). At the boundaries between terraces bright green
colors are observed. Even when the sample has reached a stationary thickness
(figure 3.1b), some regions present fairly wide (> 1 mm2) green and pink colored
areas coexisting. A closer inspection of the above mentioned regions by means of
electron microscopy provides structural information at a more local level. Figure
3.2a shows the first stages of growth of the sample presented in figure 3.1a. In the
image, sample thickness grows from one (left) to three (right) layers. Alternation
between square and hexagonally arranged planes takes place, and accounts for
the different colors observed. Where square arrangements appear green colors are
observed, while hexagonal ones account for the brown-pink areas. Such alterna-
tion has been previously observed in similar samples [47] and has been accounted
for by invoking an optimal filling of the meniscus region where the ordering of
the sample takes place [50]. Electron microscopy inspection of large pink (figure
3.2b) and green (figure 3.2c) areas, as those in figure 3.2b, confirms their (111)
and (100) orientation. The existence of wide regions with (100) orientation amid
the prevailing (111) constitutes a perfect playground to carry out the study of
the pseudogap associated with both propagation directions due to their width
and thickness.

3.2. Optical study

The whole process is monitored by optical spectroscopy (figure 3.1). For the
bare opal, the hexagonal area presents (figure 3.1a, left panel) a strong reflectance
peak (1160 nm) which corresponds to the calculated [94] pseudogap taking place
at the L point. The high energy response (a/λ > 1) of these regions presents
a maximum of intensity for λ = 583 nm, which accounts for the pink color.
Square areas do not present a reflectance peak at low energies (figure 3.1a, right
panel). This is due to the fact that the pseudogap is closed in the L point for
this low refractive index contrast, although a feature in Fabry-Perot oscillations
appears in the spectra in the same position (a/λ = 0.7) where the two sets of
degenerate energy bands meet. The green colour of this region is accounted for
by the reflectance peak around λ = 517 nm in the high energy range. Incidentally
we wish to say that the high energy response of synthetic opals has been studied
before [102, 103, 104] and is known to be a signature of the high quality of the
samples. This rules out misgivings about not having a reflectance feature due to
low quality of the inspected region.

The degree of infiltration of the opal can be assessed by comparing the spectral
position of the first order Bragg from (111) facets with the calculated pseudo-gap
in the ΓL direction [105]. Increasing the pore filling fraction with a high index
material affects differently the X and L pseudogaps spectral width. A study
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performed by means of band structure calculations shows that, for the case of
the inverted structure, for which the largest modification of the X-pseudogap
is expected, a 35 % filling is optimal for achieving a maximum spectral width
for both pseudogaps. Figure 3.1b presents the optical response of an opal with
such filling fraction. For the infiltrated opal (figure 3.1b) a reflectance peak
appears in the spectrum from the (100) oriented region due to the opening of
a pseudogap in the ΓX direction (0.011 broad in a/λ units). The calculated
pseudogap width in the ΓL direction is 0.025 (Δω/ω ∼ 0.03). This difference
in breadth explains the different intensity in the peaks corresponding to the two
different crystal orientations. That the reflectance peak corresponding to the
ΓX direction appears in a spectral position slightly blueshifted compared to the
pseudogap predicted by the band diagram in this direction could be explained
by finite size effects, previously reported for the ΓL direction [106, 107], but not
studied for the ΓX direction yet. After the calcination process and opal inversion,
reflectance spectra have been recorded for both crystal orientations (figure 3.1c).
For the ΓX direction (right panel) reflectance spectra shows a strong (18 %)

Figure 3.2: SEM images: (a) Initial stages of growth at the top of the sample, (b)
hexagonal areas corresponding to pink regions in figure 3.1b, and c square areas cor-
responding to green regions in figure 3.1b.
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Figure 3.3: (a) Left (right) panel shows reflectance collected in hexagonal (square)
regions of a bare opal. Central panel shows the corresponding photonic bands. (b) Left
(right) panel shows reflectance collected in hexagonal (square) regions of a PS−ZnO
opal. (c) Left (right) panel shows reflectance collected in hexagonal (square) regions of
a ZnO inverted opal.
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reflectance peak with, approximately, the same intensity as that of the first order
maximum along the ΓL direction. This fact is again accounted for by pseudogap
widths in either direction in accordance with the calculated bands (0.049 in the
ΓX direction and 0.037 in the ΓL direction).

It is also worth mentioning that the high quality of the samples used allows
the study of optical features in the high energy regime. In this spectral region
interplay between several families of planes strongly modifies the bandstructure
of the system and frequency intervals where flat, dispersionless bands develop
(e.g. figure 3.1a). The group velocity associated with these bands becomes small
[24], increasing the interaction time between electromagnetic radiation and the
materials forming the crystal. One may benefit from such low group velocity
modes to explore enhancement of ZnO emission which could eventually open up
routes to fabricate efficient light emitting devices in the UV part of the spectrum.

3.3. Conclusions

In summary, an optical study of the pseudogap occurring in the ΓX and ΓL
directions is performed in this chapter, profiting for this purpose from naturally
occurring (100) and (111) oriented growth in artificial opals that show facets
with square and hexagonal symmetry arrangements respectively. Its dependence
on dielectric contrast is demonstrated. An application of bandgap engineering
to open an otherwise closed pseudogap which will be very interesting to future
refractive applications has been successfully shown. The ability to control the
growth of such square layers would redound to the benefit of photonic engineering
as it would eliminate a major constrain in artificial opal growth. Work towards
this direction is currently being performed.
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Chapter 4
Tuning of Quantum dots
emission templated on ZnO
inverse opals

Light emitters such as organic dyes [109, 110, 111] and semiconductors [112,
113, 114] have been incorporated within the structure of artificial opals during
the last few years. Very recently, partial inhibition and enhancement of the
spontaneous emission has been shown in inverse titania opals doped with CdSe
nanocrystals, matching the first (incomplete) pseudogap [20]. Among the ma-
terials for this purpose, ZnO is particularly interesting one. It is a transparent
material in a range wider than most infiltrated so far and certainly than most in
which photonic bad engineering has been tried. The use of ZnO is important not
only for its ample range of transparency but also for its large refractive index.
High quality ZnO inverted opals grown by chemical vapour deposition (CVD)
(as shown in chapter 2) and atomic layer deposition (ALD) [56] have been re-
ported. Furthermore, the relatively high ZnO refractive index provides enough
dielectric contrast in the inverted structure to open additional pGs in the high
energy regime which has recently been used for enabling laser emission [28]. The
high energy response of photonic crystals [102, 103, 104] presents many of the
most remarkable phenomena relating to its photonic nature as anomalous re-
fraction [21], small group velocity [24], and, for certain structures, the opening
of a complete PBG [25]. Even though as-grown synthetic opals do not present
PBG and their symmetry and topology are fixed by the growth process, they
can behave as templates in which different materials can be filled allowing band
engineering [97]. This may allow us to modify the band diagram for such systems
varying the refractive index contrast of the structure. Careful progressive infil-
tration with ZnO has revealed peculiar in that many new features develop that
were unexpected from previous experience with silica or other oxides (as exposed
in chapter 3). Besides, ZnO is of such current interest that its infiltration and
characterization in PBG environments is crucial. These two properties along with
its lasing action put it in a foremost position which demanded a thorough study
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of the possibilities if offers in combination with a PBG environment. Its ample
range of transparency allows it to host emitters in a broad spectral range from
the infrared to the ultraviolet with no hindrance derived from absorption. All
these reasons make ZnO an appropriate template material where quantum dots
(QD) can be conformally self-assembled and to optically probe their high energy
photonic bands.

In this chapter a large-area, high-quality, new composite material obtained
by structuring, in two steps of hierarchical colloidal self-assembly, a ZnO inverted
opal with colloidal CdTe nanocrystals is presented. We also provide experimental
results of the photonic effect that the original ZnO template produces on the
spontaneous photoluminescence (PL) from CdTe QDs embedded in the structure.
In particular, we will analyze previously the scarcely explored [115] high-energy
photonic bands of the ZnO inverse opal to show that the effect produced shows
up as inhibition and enhancement of the QDs emission.

Figure 4.1: Left panel: photonic bands with the three pseudogaps opened for 85 %
ZnO pore unfilling. Top right: spectral width of the second pseudogap (B) centered
around (a/λ = 1.6). Bottom right: spectral width of the third pseudogap (C) opened in
the high energy region (a/λ = 1.3) for greater pore filling fraction.
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4.1. ΓL high energy band structure in ZnO inverse opals

In this section, an optical study of the high energy response of ZnO inverted
opals is presented. Such systems present, in this frequency interval and for ΓL
direction in reciprocal space, the opening of two extra pseudogaps in addition
to the lower energy pseudogap present in bare opals. The width of these extra
pseudogaps depends on the ZnO fraction present in the opal, which can be con-
trolled in the infiltration process. Experimental evidence of this fact is provided
by means of optical reflection and transmission measurements for different filling
fractions in good agreement with the calculated bands. In addition, an optical
study of the pseudogap appearing in the highest energy interval as a function
of sample thickness is performed. The samples exceed the required high quality
necessary to resolve their high energy spectral features.

ZnO inverted opals were grown following the method described in chapter
2. Photonic band diagrams corresponding to ZnO inverted opals were obtained
using numerical methods [94] as a function of pore filling fraction from 5 % to
85 %. Optical spectroscopy was performed with a Fourier transform infrared
spectrometer, as usual in this thesis.

Bands calculated for different ZnO filling fractions in the opals (figure 4.1 left)
show how, as a consequence of the increased refractive index contrast, two new
pseudogaps are opened in the high energy region of the ΓL direction in addition
to the lower energy pseudogap opened in bare opals (which we shall call A). For

Figure 4.2: Evolution of the three pseudogaps as a function of the pore filling fraction for
a fixed thickness (14 layers) as observed in the reflectance and transmittance spectra.
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a ZnO pore filling fraction over 40 % a second pseudogap (B) appears between
the 16th and 17th bands with a spectral position centered around a/λ = 1.6.
This spectral position redshifts with increasing infiltration. The calculated width
of this second pseudogap is maximum for 60 % ZnO filling fraction (top panel
of figure 4.1), decreasing for further infiltration. In addition to this pseudogap,
a third pseudogap (C) opens between 5th, 6th bands when the ZnO pore filling
fraction reaches 70 %. The spectral position of C pseudogap is centered around
a/λ = 1.3 and varies likewise with the infiltration rate. Its spectral width grows
monotonically (lower panel of figure 4.1) with the filling fraction until a complete
infiltration (considered for the method used in the process to be 86 % of the pore)
is reached.

In order to verify the calculated positions and widths of the B and C pseu-
dogaps appearing in the high energy region, we have infilled samples with ZnO
varying the degree of infiltration. We have performed an optical study of the
three pseudogaps as a function of ZnO filling fraction (figure 4.2) for a fixed opal
thickness (14 layers) by means of reflection and transmission spectroscopy. As

Figure 4.3: (a) Evolution of the A and B pseudogaps as a function of sample thick-
ness for fixed pore filling fraction (60 %). (b) Optical microscopy image from the ZnO
inverse opal surface. The blue color corresponds to the reflectance peak related to the
B pseudogap at 421 nm (these samples have been grown with polystyrene spheres with
a diameter d = 500 nm). Scale bar is 300 μm
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it is known, a pseudogap in the photonic band diagram for a certain direction
gives a peak in the reflectance spectra whose intensity grows with the spectral
width of the gap. The intensity and the spectral position of the reflectance peak
centered around a/λ = 1.6 evolves in agreement with the calculations. It grows
with the ZnO pore filling fraction (> 40 %) having a maximum for a 60 % of
ZnO inside the pore and decreasing for greater pore filling fraction. For a 75 %
ZnO infiltration, the C pseudogap opens around a/λ = 1.3 in agreement with nu-
merical calculations. The spectral width of the C pseudogap is lower than those
of B and A, which accounts for the intensities of reflectance peaks from each
pseudogap. Transmission spectra give complementary information to reflectance
ones. In addition to the dip corresponding to the C gap, neighboring dips can
be accounted for by diffraction process [104]. We have also performed an optical
study of the B pseudogap as a function of sample thickness (number of layers) for
a fixed filling fraction (60 % for which the width presents a maximum and so does
the reflectance intensity). In the evolution of the peak as a function of thickness
(figure 4.3a) we observe a blueshift which is in agreement with finite size effects
for bare opals previously reported [107]. The study of finite size effects shows
that, for samples 14 layers thick, these peaks reach a stationary line shape and
spectral position, in agreement with the assumption of an infinite-crystal behav-
ior. It is important to point out that, the color of the samples (visible in figure
4.3b) is due to light reflectance related to the B pseudogap at 431 nm (these

Figure 4.4: Left panel: calculated band diagram for 60 % pore filling fraction for which
the B pseudogap is completely opened. Right panel: Reflectance and transmittance
spectra are shown for this pore filling fraction. Dashed lines show the spectral ranges
where just one mode can be excited.
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samples have been grown with polystyrene spheres with a diameter d = 500 nm).

For a 60 % ZnO pore filling fraction (for which the B pseudogap has maxi-
mum width) we have compared reflectance and transmittance spectra with the
calculated band diagram in the ΓL direction. It can be observed (figure 4.4)
that the 2nd order peaks, both in reflection and transmission, agree in spectral
position (λ = 0.43 μm) with the B pseudogap opened as a result of increased
refractive index contrast. A spectral region corresponding to diffraction bands
(1.35 < a/λ < 1.58) can be observed in reflectance spectrum which does not
present peaks or Fabry-Perot oscillations. In the same frequency interval, trans-
mittance falls and presents some remarkable features. The existence of a lower
transmission can be explained attending to the different nature of bands which
populate this energy region. Bands can be divided into two groups [103]: bands
associated with a homogeneous medium with an effective refractive index (linear
bands associated to folding through reciprocal lattice vector parallel to wavevec-
tor k) and those associated with diffraction by different sets of planes (diffraction
bands). The latter ones represent eigenmodes with non-null components in crys-
tallographic directions other than incident (ΓL in our case). This means that
light which couples with these modes will have a moment in other directions
of the crystal besides the incident one. Even tough many of these bands are
uncoupled due to symmetry reasons [108], allowed modes still exist. We find in-
teresting information about the coupling of these modes with light in reflectance
and transmittance spectra (figure 4.4). Different approaches explaining the fea-

Figure 4.5: Left panel: calculated band diagram for a ZnO 85 % pore filling fraction
where three pseudogaps are opened. Coupled bands (continuous lines) and uncoupled
bands (dotted lines) due to symmetry reasons are shown in the band structure. Right
panel: reflectance spectrum for this pore filling fraction where three peaks are observed.
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tures which appear in the spectra can be found in the literature [103, 102]. In the
figure we can observe two dips (1, 2) in transmission which do not correspond to
peaks in reflection. These dips appear in spectral regions where just one mode or
diffraction band is allowed E labelled states). The absence of features in reflection
among the existence of dips in transmission can be understood calculating the
structure of the mode excited by the light.

Increasing the ZnO filling fraction over 70 %, a third pseudogap (C) can be
opened between A and B ones whose width increases monotonically with the
filling fraction. For 85 % filling fraction, the width of C pseudogap is enough
to observe a peak in the reflectance spectrum (figure 4.5). These narrow peaks
can be observed because the quality of the sample is high enough to preserve the
gap. It can also be observed that, with a degree of infiltration over 70 %, the first
allowed diffraction band (6th band) becomes isolated from the others. The group
velocity associated with flat bands becomes small [24], increasing the interaction
between electromagnetic radiation and the materials forming the crystal. Such
low group velocity modes could be useful to enhance ZnO emission which could
eventually open up routes to fabricate efficient light emitting devices in the UV
part of the spectrum, which will be subject of study in chapter 9.

4.2. Quantum dots infiltration

Samples were prepared starting from large diameter (700 nm) polystyrene
(PS) spheres in order to place the desired photonic features (high energy gaps)
matching the QD emission band (around 640 nm for a QD diameter, d = 4 nm).
The CdTe QDs were synthesized in water following a previously described method
by utilizing thioglycolic acid (TGA) as stabilizer [116]. The molar ratio of Cd2+

ions to TGA was 1 : 1.3, which allowed the synthesis of high-quality NCs pos-
sessing PL quantum yields of up to 50 % without any post-preparative treatment
[117]. Figure 4.6 schematically depicts the method used to fabricate the compos-
ite material. Thin film opals (figure 4.6a) were grown using the common vertical
deposition method [45] and then were infiltrated (figure 4.6b) with ZnO following
a modified CVD method explained in chapter 2, which allows a controlled confor-
mal infiltration with few nanometers precision. The structure was then inverted
(figure 4.6c) to obtain the ZnO template, eliminating the polymer backbone by
calcination. The CdTe QD infiltration (figure 4.6d) of the templates (figure 4.6d)
was performed as follows: the photonic matrix was immersed in a dilute solution
of CdTe nanocrystals in doubly distilled water with a concentration of 5.3 × 107

M and was vertically pulled with a step motor. A fine control over the pulling
velocity (0.2 μm/ min) was exerted until the sample was completely removed
from the QD colloidal suspension. The sample was finally heated for 3 h at 45 ◦C
in order to completely dry it. This leads to an accurate deposition of QDs on the
surface of the ZnO shells as figure 4.6d schematically reproduces. This process
can be repeated as many times as needed. We should remark the fact that QDs
are deposited both on the inner and the outer ZnO surfaces. The inner growth is
possible because the spherical air cavities are connected by windows produced in



60 4. Tuning of Quantum dots emission templated on ZnO inverse opals

Figure 4.6: Schematic diagram of the method used to fabricate the composite material:
(a) Growth of a PS opal. (b) CVD infiltration of the PS matrix with ZnO. (c) Removal
of the polymer matrix by calcination. (d) CdTe nanocrystals conformal infiltration by dip
coating. (e),(f) Additional ZnO infiltration by CVD.

the contact points between the original spheres, which remain open after calcina-
tion. The size of these windows depends on the degree of sintering and the grown
material, in this case ZnO, but typically they are around 10 % of the diameter
(70 nm in our case). This interior growth is possible while these windows remain
open.

Once the desired amount of QDs are assembled, a thin layer of ZnO can be
regrown to bury them (figure 4.6e). Additional ZnO infiltrations can be subse-
quently performed to obtain the desired photonic effects in the final composite
(figure 4.6f). Optical spectroscopy (figure 4.7) were performed to characterize
the sample.

Reflectance (transmittance) shows two peaks (dips) related to the first and the
second pGs in the ΓL direction. For the sphere diameters worked with here, the
PL emission band overlaps with the second pG of the ZnO photonic matrix. The
infiltration of the photonic template with QDs very slightly changes the refractive
index distribution, hence the photonic properties of the structure. The optical
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properties are so sensitive to these minor changes that they can be used to monitor
the process with high precision by measuring the shift of the photonic features.
Figure 4.8 shows the specular reflectance, along the ΓL direction (normal to
the (111) planes) versus energy in reduced units (a/λ , where a is the lattice
parameter and λ is the wavelength in vacuum) for a ZnO inverse opal after several
immersions in the QD solution. The maxima in reflectance correspond to the high
energy pG that shifts to lower energies after every coating step.

By a sequence of several immersions it is possible to infill the ZnO template
with a fine control over the filling fraction thus tuning the photonic bands to
the desired specifications for optimal performance. It is important to point out
that this spectral displacement depends on the concentration of the QD solution
employed. In order to study how the QD are deposited on the surface of the
ZnO shells we modelled this process assuming that in each immersion a thin
homogeneous layer of CdTe conformal to the ZnO shells is grown. We have
calculated [94] the position of the mentioned photonic feature (high energy pG)
as a function of the CdTe layer thickness and compared the calculated results
with the experimental spectral positions. In figure 4.8b, experiment and theory
are plotted together showing a good agreement for a 0.5 ± 0.1 nm CdTe layer
thickness on either side of the ZnO shell per immersion, for this particular dip
coating conditions. The specific calculations of the spectral displacement of the
high−energy pG, assuming a CdTe thin-layer deposition, rapidly diverge from
the experimental results when the thickness departs from 0.5 nm per immersion.
This thickness is related to the initial concentration of the CdTe solution. With
higher concentrations, the thickness needed to model the infiltration increases
accordingly. The final thickness after 5 immersions, 2.5 nm, is that of a close

Figure 4.7: Reflectance (blue curve) and transmittance (black curve) of a ZnO inverted
opal. First and second order pGs in the ΓL direction are evident. The PL band from the
QDs is represented by the dashed area.
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packed monolayer [118]. The actual surface on which QDs assemble is, however,
extremely rough at the nm scale and, accordingly, the QDs are not close packed.
Nevertheless, the surface can be considered flat and smooth as far as the optical
properties in the visible range of the spectra are concerned, because ZnO grains
(typically 30 nm) are much smaller than wavelengths involved (around 600 nm)
which, in case of dielectrics, can be considered negligible.

4.3. Quantum dots emission tuning

We have focused our study of the photonic properties of the new compos-
ite material on the high energy regime (a/λ > 1) where interesting phenomena
like slow light or anomalous refraction can take effect and where a full PBG can
emerge. Besides, in this spectral range, as opposed to the low energy regime
(first stop gap), the interplay between light and PBG environments has remained
relatively unexplored. The reason for this is that very high quality samples are
needed since, in this regime, the wavelengths involved are smaller than the lat-

Figure 4.8: (a) Spectral displacement of the second-order Bragg peak as a conse-
quence of the QD infiltration. (b) Open symbols represent the experimental displace-
ment of the reflectance peak associated with the pG while the solid line represents the
evolution of the pG assuming a CdTe thin layer deposition of 0.5 nm (on either side) per
immersion.
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tice parameter. Therefore, the lattice is explored on a very short range scale
where the imperfections are exacerbated. This makes this energy range particu-
larly interesting to test the photonic properties of the new composite. For this
purpose, we have used a band engineering strategy [97] (also described in chap-
ter 4) designing composites with given photonic properties by means of accurate
infiltrations. A careful balance of the QD infiltration and the posterior ZnO cov-
erage provides a means to accurately match the luminescence to the photonic
gaps. In figure 4.9 we show the evolution of the relevant photonic bands for the
ZnO/CdTe composite as the additional ZnO layer is increased (following scheme
in figure 4.6f). The open circles represent photonic bands to which light can not
couple due to symmetry restrictions and the solid lines represent the bands that
determine the gap [108]. The dashed area represents the energy interval where
QD emission takes place and the greyed areas are the effective gap. By varying
the degree of infiltration it is possible to tune this pG (see that greyed areas shift
with infiltration) sweeping across the whole luminescence band.

In this simulation, panel (a) depicts the bands in the case of the initial struc-
ture: a ZnO shell 31 nm thick (arising from the original opal after 6 CVD cycles
and inversion) coated with a QD layer 1 nm of equivalent thickness as explained

Figure 4.9: Band structure of QD-containing ZnO inverse opals. (a) The stage where a
1 nm layer of QDs is added to an inverse opal produced by synthesizing a 31 nm ZnO
layer (55 % of the pore) on the opal and inverting. In panel (b) an extra ZnO infiltration
of 3 nm is added and in (c) a further 3 nm layer is grown. The PL band from the QDs is
represented by the dashed area and the effective gap by the shaded rectangles. Lines
represent the allowed states while dots represent uncoupled bands.



64 4. Tuning of Quantum dots emission templated on ZnO inverse opals

above (two dip coating immersions). Panel (b) shows the photonic bands from a
structure derived from the latter one by growing a 3 nm thick layer (a single cycle
of CVD) on the inner and outer surfaces of the QD decorated shell. Finally, panel
(c) corresponds to the growth of a further 3 nm thick ZnO layer in an additional
single CVD cycle. Although shell thicknesses of quantum dots of the order of 1
nm is invoked, let us remark that this is an effective thickness to simulate the
physical infiltration.

The actual properties of these structures are discussed next. The emission
properties of the composites prepared were measured and compared with those
of the same sources without pG environment. To ensure that the standard PL
was free from any effects arising from the interaction of the QDs and the ZnO
template we used the PL emission from a pulverized sample rather than a colloidal
suspension of QDs. Grinding destroys the photonic lattice and wipes out any pG
effects. This system, with no pG properties but the same QD density and material
properties as the original sample, is what we shall call standard PL emission. PL
measurements were taken at room temperature under 457.9 nm Ar+ laser line
excitation focused onto the back surface of the sample at non-normal incidence.
The emitted light from the (111) face of the composed structure was collected
with a low-aperture lens (f/3.5) and focused onto a spectrometer equipped with
a photomultiplier tube.

Figure 4.10 summarizes the results from three samples differing in the amount
of ZnO added (increasing from (a) to (c)) after the QDs were adhered to the
initial template. In the upper row of plots the reflectance peak is seen to shift

Figure 4.10: Each vertical panel corresponds to a different stage of additional ZnO
infiltration. Upper row: the calculated spectral position of the reflectance peak in the
ΓL direction (dashed area) is shown, with the experimental reflectance, as a function of
additional ZnO infiltration. The center row shows the comparison between the PL emis-
sion in the photonic matrix (PLC, solid line) and the PL of the standard (PLR, dashed
line). Lower row: Plot of the ratio of PLC/PLR. Values lower than one signify inhibition
whereas higher values signify enhancement of the emission.
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to lower energies and broaden as we increase the ZnO content, following the
behavior of the calculated pG (dashed areas in the figure). In the middle row,
the emission spectra from the reference PLR (dash-dot lines) and composites PLC
(solid lines) are plotted. Finally, the ratioed luminescence intensities PLC/PLR
are plotted in the bottom row in order to explicitly show the effect. In the stage
represented by the panel 4.10a (which corresponds to the state of the composite
schematically drawn in figure 4.6d) the gap overlaps the high energy side of the PL
spectrum. Emission in this energy interval is inhibited. The result is a modified
emission profile which presents a strong suppression in the high frequencies and an
enhancement of low ones compared to the standard PL. An additional infiltration
of ZnO in the composite produces a redshift of the photonic features. Panel
4.10b corresponds, qualitatively, to the situation drawn in figure 4.6e and the
corresponding photonic bands are those calculated in figure 4.9b. The gap now
overlaps with the central frequencies of the PL band which are therefore inhibited.
The dip in the radioed PL redshifts as the gap does. In the final panel 4.10c
(which corresponds to stage drawn in figure 4.6f and to the bands in figure 4.9c)
the gap overlaps with the low energies of the PL band tuning the inhibition to
this side of the peak and reinforcing the emission in the high energies. We can
see how in passing from figure 4.10a to figure 4.10c the balance of suppression to
enhancement is governed by tuning the photonic bands which in turn is controlled
by the amount of material added. We see that initially there is suppression on
the high energy side and inhibition on the low, whereas in the final stage the
high energies are enhanced at the expense of the low energy range. Among
possible mechanisms for PL modifications [119], a process of electronic energy
transfer [120] could explain the effect of enhancement attending to the relatively
high concentration of emitters inside the composite. One important feature we
wish to point out is that the absolute value of reflectance that is causing the
enhancement/suppression of the emission is only a few percent. This might not
only be caused by the fact that samples are just a few layers thick: this gap,
as opposed to the well known fundamental pG at L, produces small reflectivities
even in infinitely thick samples. In our analysis we are discounting those bands
that cannot couple to incoming plane waves but that are present in the gap.
In reality these bands might be actually coupling through defects and lessening
the effect. Related to that, we must remark that the high order pG appears at
λ = 605 nm which is smaller than the original PS sphere diameter (700 nm).
This implies that this pG is much more sensitive to the presence of defects in the
sample than the first order pG.

4.4. Conclusions

In conclusion, a novel structured composite that integrates two very relevant
materials such as ZnO and QD in a photonic crystal has been reported in this
chapter. Theoretical and experimental evidence of the opening of two extra pseu-
dogaps occurring in the high energy range of ZnO inverse opals is provided. The
high quality of the samples used in this work allows us to perform an optical
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study of the three pseudogaps by means of reflection and transmission as a func-
tion of the pore filling fraction which are accounted for by the calculations. The
optical response of the widest high Energy pseudogap as a function of the sample
thickness is also presented.The posterior QD infiltration in ZnO inverse opals is
performed by an accurate infiltration in two hierarchical steps of colloidal self-
assembly. The method to infill a ZnO matrix with CdTe nanocrystals provides
a fine control over the pore filling fraction and we prove that the infiltration of
nanoparticles behaves, from the structure point of view, as a thin-layer conformal
infiltration. This is, in the current state of the art, the only way to control the
infiltration of QD. To test this novel composite experimental results of the effect
that the photonic matrix has on the spontaneous emission of the PL in the high
energy regime are provided. The CdTe QD emission is tuned to this regime of
the ZnO template to profit from the wide range of infiltration produced by the
large size spheres. The presence of a high energy pG on the spontaneous emission
has been experimentally reported as an inhibition for frequencies contained in the
gap and enhancement of those on the edge of the gap. Finally, a further careful
and progressive infiltration with an extra amount of ZnO has revealed useful to
tune this photonic effect through the PL emission spectrum. This novel proce-
dure to build a composite from a photonic template and quantum dots in the
same photonic matrix opens a route to heterostructure different materials with
different types of nanoparticles.
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Chapter 5
Photonic Glasses

There is a wide range of disordered materials used for photonics. The most
commonly systems are those composed by oxides or semiconductor powders such
as TiO2 [121], ZnO [122], GaAs [123], Ge [124]; usually these systems are formed
by particles with spherical shape presented both in solid arrangements such as
Al2O3 [125], ZnO [126], TiO2 [127, 128] as well as in colloidal suspensions [64,
129]. In all these cases, the particles composing the system are polydisperse in
shape, size or both and the individual electromagnetic modes of each building
block give rise to an averaged out optical response in wave-vector and frequency
[8]. Up to this moment, there are no available disordered materials composed by
monodisperse scatterers. In this chapter a novel disordered material for photonics
is proposed whose main property is the monodispersity of the building blocks, in
this case polymer spheres (see, for example, [130]). A new range of interesting
phenomena will be affected by this novel property of the scatters, giving rise to
a resonant behavior of diffusion constant, transport mean free path and energy
velocity as well as resonant random lasing action in macroscopic arrangements of
this kind of scatterers.

5.1. Colloidal stability

A colloid is a two phase (at least) system in which one substance (the inter-
nal phase) is divided into minute particles (colloidal particles) with dimensions
between 1 nm and several microns dispersed throughout a second substance (the
external phase). The size is not the most important property of colloids, the
overwhelmingly important property of colloids is their very large surface area.
To some degree, they are all surface and their properties are those of their sur-
faces. The large area emphasizes surface effects relative to volume effects, giving
colloids properties different than those of bulk matter.

Different types of colloids can be distinguished depending on the state of
matter of each phase. It is possible to find sols (solid in liquids), emulsions
(liquid in liquid), foams (gas in liquid), aerosols (liquid or solid in gas) and solid
suspensions (solid in solid). In this thesis we only deal with sols composed by
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polymer spheres (PMMA or PS) dispersed in a liquid (water). The particles that
appear in the sol may be wetted by the water, or may not. Wetting is a typical
surface effect and is of paramount importance in a colloidal system. In the first
case, the liquid is adsorbed on the surface of the particle and is called lyophilic
(hydrophilic if the external phase is water). On the other hand, if the particle
does not adsorb the external phase, it is said to be lyophobic.

There are two questions related to the stability of a sol. First, what keeps
the particles suspended in the solution? Second, how are the particles kept from
agglomerating? A sufficiently small particle acquires a small falling velocity into
the solvent, the characteristic time in which the particle settles becomes very
long compared to measurements time, and an equilibrium sate may be considered.
There is a critical size for a particle, below which it will not settle. For the second
question: if two colloidal particles collide, they will stick together and make a
bigger particle or, eventually, a cluster. Clusters get larger than the critical size
to be suspended by the Brownian movement, and they settle. In most lyophobic
colloids, the particles are electrically charged with the same sign, and this keeps
them apart, since they repel one another. Since lyophobic sols are stabilized by
electric charge, adding extra charge (electrolytes) generally destroys the sol. For
example, when rivers reach the sea with their loads of colloidal sediment, the ions
in sea water coagulate the sol and the load is deposited forming the delta.

The modelling of the many-body potential of an aqueous colloidal suspension
represents a very complicated problem which can be approximated as a (two-body
sphere-sphere potential) sum of two terms:

U(r) = φ(r) + UV dW (r) (5.1)

where φ(r) is the electrostatic repulsive potential due to the sphere surface charge
and UV dW (r) is the attractive Van de Waals potential (also known as London
dispersion forces). In this chapter a method will be explained based on this two-
body interaction between the spheres to grow completely disordered arrangements
of monodisperse (< 2%) dielectric spheres. The growth procedure entails adding
electrolytes to the colloidal suspension which attenuates the surface sphere charge
and, therefore, φ(r).

In the limit of low colloidal density, φ(r) reduces to the well-knownDerjaguin−
Landau − V erwey − Overbeek (DVLO) repulsion [131, 132] that can be calcu-
lated on the basis of the Poisson-Boltzmann equation. In the case of a, so-called,
charge colloidal suspension formed by colloidal particles with diameter d and sur-
face charge Z0 and a collection of point-like charges (electrolytes) with charge Z
and concentration, ρe, the electrostatic repulsion of any two particles as a function
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of the particle-particle distance (r) is given by [133]

φ(x) =
(Z0X)2

β
Lβe

−κ e−κ(x−1)

x
; x > 1 (5.2)

x = r/d

β =
1

kBT

X −→ eκ/2

1 + κ
2
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e2β

4πεε0

κ = κDd = (
√

4πLβρeZ2)d

This repulsive potential decreases exponentially when increasing the concentra-
tion of electrolytes (ρe). The Debye lenght, κD =

√
4πLβρeZ2, describes the

double layer thickness around the particles, where Z is their charge (Zi, if there
is more than one species of electrolytes) and their concentration ρe, (ρe,i). The
double layer consist of two types of charges: charge-determining ions that control
the colloid surface charge and electrolytes which are attracted by this charge,
screening it partly and decreasing φ(r). According to this and considering that it
is usually the surface charge potential ψ of a charged particle that is experimen-
tally available, the approximate formula Z0 = πψε0ε(2 + κ) is commonly used
(see [132], p. 37).

The Van der Waals attractive potential can be expressed as follows

UV dW (r) = −AH(x)
12

(5.3)

where A is the Hamaker constant which depends on the colloid material [134] with
values 10−19 J to 10−20 J and is given as a function of colloid-colloid distance
(r) as:

H(x) =
1

x2 − 1
+

1
x2

+ 2ln(1 − 1/x2) (5.4)

x = r/d

Figure 5.1 plots the total interaction, U(r), between two particles as a function
of the electrolyte concentration according to the equations equation 5.1, 5.2, and
5.3. The specific parameters used for this particular exemplification are a particle
diameter d = 1220 nm with a surface potential ψ = −30 mV (measured with a
standard electrophoretic mobility experiment) and the electrolytes (Ca2+ from
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CaCl2) added to this suspension have Z = 2 and their concentration varies from
ρe = 0 M to ρe = 5 × 10−2 M. The Hamaker constant for PS microspheres in
water is A = 1.32× 10−20 [135]. As a mater of fact, there is a high probability of
flocculation as a result of the collision between two particles if the potential barrier
UM ≤ 10kBT , where rM is the reduced particle-particle distance at which U(r)
has the maximum value. This fact is pointed out in the right panel of figure 5.1,
where energies bellow this value are shaded in grey. For electrolyte concentrations
for which U(rM ) ≤ 10kBT , the instability of the colloidal suspension is ensured
and colloidal flocculation will take place. In this particular case, for an electrolyte
concentration ρe = 1 × 10−2 M, the potential barrier is U(rM ) ∼ 6kBT and the
Brownian energy is enough to force the colloidal flocculation.

5.2. Experimental procedure

PS spheres employed in this thesis have been synthesized by the Goodwin
method [40], which gives rise to a negative surface charge of the particles. PMMA
spheres were synthesized following a similar method [41]. In both cases, positive
electrolytes are needed to screen the negative surface charge of the colloids (which

Figure 5.1: Left panel: Plot of the total interaction potential between two particles
relative to the thermal energy as a function of the concentration of electrolytes in the
suspension according to the solution proposed in ref [133]. Right panel: The magni-
tude U(rM ) represents the potential barrier which prevents the colloids from flocculating.
This barrier decreases when the electrolyte concentration increases. Energies bellow
10kBT are shaded in grey. If the potential barrier is lower than this energy, the colloids
are able to flocculate. In this particular case, this happens for ρe ≥ 7.5 × 10−3 M.
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otherwise prevent the natural agglomeration) and can be obtained by adding
salts (which dissociate producing positive and negative ions in dissolution) or
acids (which also dissociate producing protons and also negative radicals). The
charge, Z, of the ions or the number of protons dissociated from an acid is an
important parameter. The concentration of salt or acid needed to provoke the
colloidal flocculation is inversely proportional to their charge. For example, half
the concentration of a salt such as CaCl2 (which dissociates producing Ca2+

ions) is needed than a salt such as NaCl (which dissociates producing Na+ ions)
to provoke the colloidal flocculation. The attenuation of the repulsive potential
gives rise to a net attractive potential between spheres. In this case, the num-
ber of effective collisions between spheres increases and clusters are formed by
flocculation in the suspension. When the size of the clusters is larger than the
critical size they settle. The formation of clusters inhibits the self-assembling pro-
cess which takes place during the liquid evaporation process and, consequently, a
random distribution of disordered clusters is obtained.

a

b

Figure 5.2: (a) Schematic of the photonic glass growth method. A methacrylate cylinder
of high h ∼ 1 cm is fixed with impermeable gum to a clean, hydrophilic glass substrate. It
is then filled with a charged colloidal suspension previously prepared and shaken under
ultrasound. Then it is placed in a oven under constant temperature (∼ 45◦C) to forced
the evaporation of the liquid phase. Finally, the methacrylate cylinder is removed from
the glass substrate. (b) Picture of a photonic glass grown on a substrate. The sample
shows a high degree of planarity, apart from the irregularity of the edge.

In order to control the thickness and the area of the system, a methacrylate
cylinder of height h and diameter d is glued with flexible and impermeable gum
to a clean hydrophilic glass microscope slide (see schematic figure 5.2a). In a
typical procedure, a total volume VT = 3 ml of an aqueous suspension of PS
spheres with 1220 nm in diameter and CaCl2 is prepared as follows: a Vs = 2.5
ml volume of a colloidal suspension of PS spheres with a concentration ρs = 20 g/l
(2% wt) is added to a volume Ve = 60 μl of CaCl2 with a concentration ρie = 0.5
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M. To reach the total volume, Vw = 0.44 ml of de-ionized water is added. The
final concentration of electrolytes in the final suspension is [Ca2+] = ρfe = 0.01
M. This aqueous suspension is shaken under ultrasound for 5 min to force the
spheres flocculation. The cylinder of diameter dc = 2 cm is then filled with the
suspension which is let evaporate in an oven with constant temperature, typically
at T = 45◦C. The sample is left inside the oven for a time long enough as to allow
the total evaporation of the liquid. When the liquid is completely evaporated,
the cylinder is removed from the substrate, the photonic glass remaining attached
to it (see image 5.2b and SEM images from the system in figure 5.3). In order
to avoid possible cracking (see image 5.3c) or peeling of the sample from the
substrate, it is important that the cylinder is not touching the substrate, leading
a small air chamber between the cylinder, the substrate and the gum. As a
matter of fact, a small fraction of colloidal suspension fills this air chamber by
capillarity and the sample is more strongly attached to the substrate (see picture
5.2b). Proceeding this way, no cracking appears when removing the methacrylate
cylinder from the substrate.

The typical thickness obtained in this case is t = (31 ± 5) μm constant over
centimeters (see figure 5.3b and 5.3c). The following table 5.1 shows the measured
thicknesses of five different photonic glasses with five different concentration of
spheres where VT = 3 ml, Vs = 2.5 ml and dc = 2 cm. The thickness of the
photonic glasses is measured using a low magnification objective and measuring
the focussing on the substrate and on the glass surface and subtracting both
measures.

If the salt concentration is increased, the repulsive barrier is lowered and,
consequently, the size of the clusters formed by flocculation is increased. If the
salt concentration increases, the number of effective collisions required to attache
two particles decreases. Figure 5.4 shows four SEM images corresponding to four
different electrolyte concentrations in the colloidal suspension: ρe = 0 M, figure
5.4(a), 2 × 10−3 M, figure 5.4(b), 1 × 10−2M, figure 5.4(c) and 5 × 10−2 M,
figure 5.4(d). It is directly evident how the self-assembly process is inhibited by
adding ions to the colloidal suspension.

In the case of ρe = 0 M (a), the fcc arrangement of spheres is similar to the
one obtained by the vertical deposition method (see inset of figure 5.4a). For this
concentration, the electrostatic barrier is about 130 times the thermal energy,
the spheres cannot flocculate but they are self-assemble during the evaporation
process. In the case of ρe = 2×10−3 M, figure 5.4(b), the electrostatic barrier is 20

Table 5.1: Thickness

ρs (% wt) (t± 5) μm
2 31
4 66
6 90
8 117
10 150
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times the thermal energy and the spheres are randomly distributed but the image
still shows traces of short range order as can be appreciated in the inset of the
figure 5.4b. In this case, the repulsive barrier, U(rM ) ∼ 40kBT , is higher than the
thermal energy of the particles, but the spheres coagulate and the system looks
randomly arranged apart from small ordered clusters. Even by incorporating
recent modifications, the DLVO theory does not predict experimental results
acceptably well which, generally, show that suspensions have lower stability than
predicted [136]. For 1 × 10−2 M, figure 5.4(c), the spheres are homogeneously
and randomly distributed in the system, in this case the electrolyte concentration
is the optimal to provide a uniform distribution of spheres. Finally, in the case
of ρe = 5×10−2 M, figure 5.4(d), such a high electrolyte concentration gives rise
to a totally attractive potential between colloids which enhances the number of

Figure 5.3: SEM images from different parts of a photonic glass made with PS spheres
with d = 1220 nm. (a) image shows the surface of the sample. The random arrangement
of the spheres is here revealed. (b) and (c) images show cleaved edges of the sample.
In both cases, the images revealed the planarity of the surface over millimeters. The
crack visible in image (c) is produced when removing the methacrylate cylinder from the
glass substrate.



80 5. Photonic Glasses

effective flocculating collisions and the formation of bigger clusters (see inset of
figure 5.4d).

Filling fraction f as the volume occupied by the spheres divided by the to-
tal volume of the system. The size of the clusters has an important effect on f
of the system and may strongly affects the physical magnitudes which describe
light transport. It has been shown that, increasing the electrolyte concentration,
glasses where clusters present increasing sizes can be grown. Figure 5.5 plots the
average f from different photonic glasses as a function of the electrolyte concen-
tration from 0.74 (the expected theoretical volume for a perfect fcc structure,
[137]) to 0.55. These measurements have been performed weighting and measur-
ing the total volume of the samples. The volume occupied by the PS spheres
is estimated by weighting the substrate before and after the sample growth. By

Figure 5.4: SEM images from colloidal suspensions of PS spheres with d = 1220
nm naturally sedimented and after liquid phase evaporation. The colloidal suspensions
have been prepared with different electrolyte concentrations: (a) ρe = 0 M, shows an
ordered fcc arrangement of spheres (see crystallographic in the inset of the figure). (b)
ρe = 2 × 10−3 M, spheres are randomly distributed but still show ordered clusters (see
inset). (c) ρe = 1×10−2 M, the image shows a uniform random arrangement of spheres
similar to the one in figure 5.3a. Finally, (d) ρe = 5 × 10−2 M, image shows a very
inhomogeneous random distribution of spheres.
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Figure 5.5: Plot of the average f of a photonic glass as a function of electrolyte (salt)
concentration. Spheres which composed the glass are 1220 nm diameter. Filling frac-
tion can be estimated by weighting the samples when their geometry is known. A con-
centration 0 M gives rise to a well known opal-based photonic crystal where the total
volume occupied by the spheres is 74 % of the total volume of the unit cell in an fcc
lattice.

doing so, we can estimate the sample weight. Furthermore, the total volume of
the glass is obtained by measuring the thickness and sides of the samples with the
microscope. Large bar errors come from total volume measurements. In partic-
ular, the measurement of the glass sides introduces huge error in the final filling
fraction value regarding the irregularity of the sample edges (see figure 5.2b).

5.3. Study of topological disorder in photonic glasses

The degree of topological disorder in photonic glasses has been measured by
means of two different characterization methods; the first one consist in the analy-
sis of the image autocorrelation function which allows to estimate the correlation
length, c, of the sample surface. The second one is provided by optical spec-
troscopy and consist in the measurement of reflectance and transmittance which
permits the analysis of the bulk disorder in the sample. Both methods provide
an accurate characterization of the disorder degree in photonic glasses.

5.3.1. Correlation lenght

In order to obtain a measure of the ordering of the system, the autocorrelation
function, F (τ) has been analyzed from a SEM image of a photonic glass surface
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and compared it with the same function from both an ordered sample as well as a
TiO2 powder sample (see figure 5.6). The autocorrelation function describes the
correlation of the contrast function, c(r), and gives a measure of the translational
symmetry in the system:

F (τ) =
∫ +∞

−∞
c(�r) ∗ c(�r + τ)d�r (5.5)

If the particles have the same shape and size (monodisperse) and are arranged
with a regular distance between first neighbors (that is, a certain local order) the
function presents a maximum at the corresponding distance. Accordingly, the
auto-correlation function of a random and isotropic arrangement of monodisperse
objects, i.e. without positional correlation, is a delta function in the case of point-
like objects or a decaying function if the objects have a certain size.

The left panel in figure 5.6 shows a comparison of SEM images of the three
different systems and, on the central panel, a normalized plot profile of F (τ) from
the corresponding system. The first system is an opal-based photonic crystal, the
second one is a photonic glass and the third one is composed by TiO2 powder.
The autocorrelation function from an ordered structure presents a periodic dis-
tribution of maxima due to its long range correlation (translational symmetry).

Figure 5.6: Left panel: SEM images of an opal-based photonic crystal, a photonic
glass and TiO2 powder. Scales bar are 1 μm. Right panel: Autocorrelation function of
the surface SEM images from the three different systems. A plot profile of a cut in the
autocorrelation function shows the order degree of each sample, characterized with a
correlation length c for each system.
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The autocorrelation function of an infinite image composed by point-like objects
randomly arranged is a Dirac-delta. In the case of a photonic glass (monodis-
perse scatterers randomly arranged), F (τ) clearly presents a decaying intensity as
a mark of the randomness of the sphere distribution. In addition, at the position
corresponding to the nearest neighbor distance (τ/d = 1), a small hint of a peak
appears in all directions of the autocorrelation image (see inset of figure 5.6) as
a sign that no sphere can stand in air without being attached at least to one
other sphere. Despite the randomness of the sample, this is a weak correlation
due to the solid nature of the system and may disappear if the spheres were,
for example, in a colloidal suspension. TiO2 powder is composed by scatterers
polydisperse in shape and size randomly arranged; F (τ) from this system is sim-
ilar to the one from a photonic glass, apart from the fact that, in this last case,
there is no presence of the peak associated to the scatterer-scatterer contact in
the autocorrelation function. This absence is due to the polydispersity of the
scatters in the powder sample and consequently the many-body first neighbor’s
distances. This particular feature in the autocorrelation function is a clear sign
of a system composed by touching monodisperse objects randomly arranged.

Note also that dependence on distance of the autocorrelation functions also
gives a measure of the relative order in the three structures. The decay in the
autocorrelation function can be characterized by a correlation length as F (τ) ∝
cos(τ/d) e−τ/	c which is the distance from a point beyond which there is no
further correlation of structural order. From a fit of the envelope function e−τ/	c ,
the values of the three systems correlation lengths are c = 7 d in the case of
the crystal and c = 0.35 d, c = 0.4 d in the case of the glass and the powder
respectively.

5.3.2. Optical spectroscopy

In order to probe the amount of bulk disorder, optical tests are conducted
where specular and ballistic reflectance (R) and transmittance (T ) are measured.
Optical spectroscopy is a powerful method to probe the order of the samples.
When the material composing the colloidal particles is transparent (i.e not ab-
sorbing [57]) and the wavelength involved is larger than the particles diameter
(the energy range of work is below the onset of diffraction), the magnitude R+T
can be used as a very sensitive measure of the order [59, 60] (see Appendix A).
The measure of R alone is not enough to characterize a photonic band gap ma-
terial since it only probes a thickness L0 � LB, where LB is the Bragg length
[59]. A high amount of imperfections such as vacancies, lattice displacements
or stacking faults or the very absence of a lattice produce an extra source of
elastic light scattering with a different propagation direction, contrary to the
case of interference-built straightforward transmission or diffraction, when al-
lowed (a/λ > 1. This sort of diffuse scattering is, in this particular case, the
only source for a decrease in transmission and reflection. Diffuse intensity (D) is
estimated as D = 1 − R − T , from measurements with normal incidence white
light in the low energy regime (a/λ < 1, where a is the lattice parameter and
λ is the wavelength of light in vacuum) for a certain crystallographic direction:
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(1,1,1) (normal to the surface of the samples). A defect-free infinite colloidal
photonic crystal must accomplish D = 0. In particular, for energies contained
in the bandgap, the crystal must present 100 % reflectance (0 % transmittance)
and, consequently, 0 % diffuse intensity. In real samples, even in a very high
quality one, this is not fulfilled as imperfections are always present. In contrast,
a completely randomly arranged system should present D = 1. For s > L the
ballistic beam is exponentially attenuated, where s is the scattering mean free
path and L is the sample thickness, according to Lambert-Beer’s law (discussed
in the appendix A). A high value for D is a strong indication of disorder and,
in contrast, a modulationof D for energies contained in the bandgap is a sign of
residual order. Following this, even apparently very disordered samples according
to surface SEM inspection were discarded after detecting a decrease in D in the
regions of the bandgap.

Figure 5.7 shows D as a function of the reduced frequency (a/λ) for four
different colloidal suspensions naturally deposited on a substrate and after the
evaporation of the water. D has been measured as a function of electrolyte
concentration (ρe) added to the colloidal suspension in the form of CaCl2 salt.
According to the figure, an increase of electrolyte concentration in the colloidal
suspension gives rise to an enhancement of D. In particular, the dip present
at a/λ ∼ 0.6 corresponds to the pseudogap along the ΓL direction [59] and
it is remarkable how the dip associated with it disappears upon increasing the

Figure 5.7: Plot of diffuse intensity, D = 1 − R − T , measured in different samples as
a function of the electrolyte concentration in the initial colloidal suspension. Photonic
features, as the main gap, remain till the concentration of salt is enough to force the
spheres flocculation thus preventing them from self-assembling.
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electrolyte concentration. As figure 5.7 reveals, a concentration ρe = 2×10−3 M is
not enough to sufficiently attenuate the electrostatic barrier for which the spheres
are still able to self-assemble and the sample still shows traces of order. This is
already pointed out in the electrostatic barrier estimation done in figure 5.1.
Despite the fact that SEM image of figure 5.4b shows a relatively high degree of
disorder in the sample, the presence of photonic crystal features can be explained
attending to the fact that such a low concentration of salt in the sample is not
enough to force a complete flocculation of the spheres, which are still allowed to
self-assemble in the evaporation process. This is a remarkable fact as the only
inspection of the sample surface is not enough to ensure the total randomness
of a sample and to discard possible order remains. Nevertheless, a concentration
higher than 1×10−2 M is enough to provoke the spheres agglomeration preventing
them from ordering by self-assemble. This is in agreement with the estimations
done in figure 5.1 and with SEM image of figure 5.4c and confirmed by the
experimental measurement of D.

The comparison of optical spectroscopic analysis with the autocorrelation
function analysis highlights now how, a high value of D does not ensure a fully
random distribution of the system. On the contrary, an autocorrelation function
analysis alone gives only information from the analyzed surface. Both analysis
methods together are complementary and determine the degree of disorder of the
system.

5.4. Conclusions and future work

In conclusion, the realization of photonic glasses, solid random distributions
of monodisperse spheres, which are a new photonic material, has been presented.
The system is qualitatively different from opals with poor degree of order and
short-range periodicity like, as they are fully disordered systems with no long-
range correlations. The growth method used is based on the colloidal charge
interaction, it provides very thick and completely random samples which can also
be used as templates to grow higher refractive index materials such as ZnO or
Si. These samples may be a perfect playground to investigate light diffusion in
a resonant random media, resonant random laser and Anderson localization of
light.





Chapter 6
Light transport through
Photonic Glasses

While (ordered) periodic photonic media, i.e. photonic crystals, take advan-
tage of the periodicity in the dielectric constant and the consequent long-range
correlation to mold the flow of light [3, 4]. Disordered ones, with no positional or-
der, can still strongly affect light transport [8, 5, 138, 139, 140, 141, 143]. Typical
non-absorbing materials are homogeneous and non-dispersive, i.e., they are clear
and transparent, and phase and energy travel with the same velocity. Optical
propagation is then determined by the shape of the interfaces between various
such materials (e.g. a curved surface boundary acts as a lens). If the material
is absorptive, dispersion is introduced (brought about by the Kramers-Kroenig
relations) whereby the phase velocity looses most of its usefulness and group
velocity (at which pulses travel) takes over to describe the transport of energy.
Differently, non-absorbing but nanostructured materials can create a new class of
systems in which the dispersion is controlled via light interference. Photonic band
gap materials, for instance, are systems where extinction is built up from multi-
ple interference (Bragg reflection) creating a region of extinction and anomalous
dispersion. In this way, the relevant velocities can be engineered to, for instance,
create devices for dispersion compensation. An entirely new scenario is presented
when disorder is added to the mixture.

The system proposed in the chapter 5, the photonic glass, is composed by
monodisperse scatterers. In the introduction it was pointed out how such a
scatterer, a single dielectric microsphere with size comparable to the wavelength
of light in the visible (a Mie sphere for the visible), can sustain electromagnetic
resonances. The description of the Mie solution to the light scattering problem
with a dielectric sphere is briefly outlined in the introduction (section 1.1.1).

Combining these electromagnetic modes of a single spherical scatterer with
the monodispersity of the system (see figure 6.1), it will be possible to observe
resonances in the light transport from the macroscopic system. Those resonances
will be probed by static and dynamic experiments as an extended optical charac-
terization of photonic glasses. A detailed optical study of the resonant behavior
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Figure 6.1: Top: (Left) SEM image from the photonic glass surface composed by PS
spheres with a diameter of d = 1200 nm. (right) SEM image from TiO2 powder surface
with an average particle diameter d = 850 nm. Bottom: Corresponding histogram of
particle sizes from the photonic glass (left) and TiO2 powder (right)

of diffuse light transport through such a system will be provided and, by means
of independent static and dynamic measurements, resonances will be shown in
the transport mean free path, diffusion constant and also energy velocity of light.
In this chapter, experimental results will be referred to equations explained in
the diffusion approximation section establish in the introduction (1.2.1).

6.1. Static measurements

Figure 6.2 schematically sketches the set up used to perform static measure-
ments: an integrating sphere which consists of a hollow cavity with its interior
coated for high diffuse reflectance. Photonic glasses slabs with different thick-
nesses are placed on the integrating sphere entrance aperture and illuminated
with white light provided by a Tungsten lamp. The sample is optically very
thick; therefore, ballistic or unscattered light propagating through it is exponen-
tially attenuated. It can be therefore assumed that only diffusive light comes out
at any angle from the sample and enters the integrating sphere.

Figure 6.3 shows a direct measurement of the total diffuse light transmission
through different photonic glass slabs (thickness L ∼ 100 μm) upon white light
illumination in the range 500 nm to 920 nm. In order to be able to compare the
optical response of different sphere sizes (790 nm, 930 nm, 1000 nm and 1220
nm), the measurements have been plotted as a function of reduced energy units
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(d · n/λ), where n is the refractive index.
Oscillations in transmission and its spectral dependence are due to the exis-

tence of modes for the electromagnetic field in the spheres. The spectral positions
of these Mie modes depend exclusively on spheres diameter, d, and on its refrac-
tive index, n. These electromagnetic modes are excited when the electromagnetic
field wavelength is comparable with the optical diameter of the spheres.

Figure 6.3a shows a clear and simple evidence of the resonant behavior of
light transport in a broad energy interval. In order to remark this fact and also
to clarify the conditions under which the modes can be collectively excited, the
resonant behavior of these four different spheres sizes has been compared with
two different no-resonant dielectric random systems. Figure 6.3b plots the total
transmission through two reference samples which, for two different reasons, do
not exhibit resonant behavior. As figure 6.3b points out, there is no trace of
resonances in the transport of light for these two reference systems. The first
one (dashed curve) is a photonic glass composed by PS spheres with a diameter
of 200 nm. The small size of the spheres compared to the light wavelength illu-
mination (d · n/λ) ∼ 0.4 whose modes have energies in other range. Therefore,
those spheres behave, upon this particular light energy illumination, as point-like
scatterers giving rise to Rayleigh scattering (where scatterer structure can be
neglected) instead of Mie scattering (where resonances can be sustained). Reso-
nances are expected in other energy ranges (in the UV) for this particular system.
The second one (solid curve) is composed by TiO2 non-spherical powders with a
polydispersity about 36 % (see inset of the figure 6.3b) and a mean diameter of
about 850 nm. A different situation arises with the non-resonant light transport
through TiO2 powder. In this case, TiO2 particles are large enough (d·n/λ ∼ 2.5)
to sustain Mie modes in this wavelength interval. However, figure 6.3b shows no
trace of oscillations in the light transport because resonances are smoothed out
by polydispersity and the arbitrary non-spherical shape of the scatterers. As
shown in the introduction 1.1.1, Mie modes are defined by the morphology of

L
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Figure 6.2: Cartoon of the experimental set up to perform static measurements. A slab
of photonic glass with thickness L is placed at the entrance of an integrating sphere and
illuminated with white light. Diffuse light is measured at the detector.



90 6. Light transport through Photonic Glasses

the scatterer. When the scatterers are non-spherical and also polydisperse, as in
the TiO2 case, each building block sustains resonances for different wavelengths.
This smoothes out the collective response giving rise to an overall non-resonant
behavior.

6.1.1. Resonant mean free path

In order to completely characterize these systems, total transmission, T (L, λ),
was measured as a function of the slab thickness (L, from 50 μm to 1600 μm) for
a fixed sphere diameter (d = 1220 nm) and over an extended wavelength range
(500 nm < λ < 920 nm). T−1(L, λ) is shown in Figure 6.4. From the experiments
it is possible to fit the values of t(λ), the transport mean free path, and a(λ), the
absorption length. When light propagates diffusively and in absence of absorption

a

b

Figure 6.3: (a) Normalized total transmission of white light through photonic glasses as
a function of the reduced parameter d·n/λ. Samples are composed by spheres with four
different diameters and thickness is about 100 μm in all cases. (b) Total transmission
of white light through two different reference samples as a function of the reduced pa-
rameter d ·n/λ. The dashed-line represents total transmission through photonic glasses
made of PS spheres of d = 200 nm. Solid-line represents total transmission through a
powder made of polydisperse TiO2 of averaged d = 850 nm (SEM inset of the sample
where scale bar represents 200 nm). Both present no-resonant light transmission.
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(a >> L) the function 1/T (L, λ) is directly proportional to the slab thickness,
L (figure 6.5a). This is usually called photonic Ohm’s law and is outlined in
the stationary solution to the diffusion equation (see introduction 1.2.2). From
this set of samples, represented in figure 6.4a, we can obtain t(λ) by fitting the
experimental results with the stationary solution of the diffusion equation (1.35)
(see introduction 1.2.2). Figure 6.6 shows this fit for the extended wavelength
range. It reveals a clear resonant behavior of t(λ). In the curve, a triangle
and a square mark the spectral positions of a minimum and a maximum of t(λ)
respectively.

The scattering cross section is enhanced when a Mie mode is excited in a
sphere. The scattering is more efficient at those wavelengths and, therefore, the
transport mean free path becomes minimum.

6.1.2. Absorption

Absorption provokes an exponential dependence of 1/T (L, λ) on the slab
thickness (pointed out in figure 6.4b) and must be carefully characterized. Ab-
sorption provokes extinction (T ∝ e−	aL) which should be distinguished from
diffusion (T ∝ 1/L). Figure 6.5b plots the value of 1/T (L, λ) as a function of
slab thickness (L) at three particular wavelengths which have been previously

Figure 6.4: Total light transmission of white light trough photonic glasses made of PS
spheres with d = 1220 nm as a function of wavelength. (a) For low values of L ((a > L)).
In this case, thicknesses vary from 50 μm to 250 μm. (b) For high values of L (a < L),
up to 1600 μm, transmission shows a linear dependence on thickness except for those
wavelengths were absorption is not negligible. Three particular wavelengths are marked
with a triangle (λ1 = 744 nm), a square (λ2 = 828 nm) and a circle (λ3 = 875 nm)
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marked in figure 6.4 with a triangle (λ1 = 744 nm), a square (λ2 = 828 nm) and
a circle (λ3 = 875 nm). In the first and second cases, λ1 = 744 nm and λ2 = 828
nm, the function 1/T (L, λ) presents a linear dependence on L while in the third
case, λ3 = 875 nm, presents an exponential dependence. Wavelengths λ1 and
λ2 correspond to a minimum and a maximum of a Mie resonance, respectively.
The different slopes agree with the photonic Ohm’s law with negligible absorp-
tion (a(λ1, λ2) > L) and different t. Contrary to these cases and when L is
large enough (see the difference between figures 6.5a and b), a clear absorption
peak is revealed at wavelength λ3. This can be easily seen in figure 6.4b and is
made more apparent in figure 6.5b, where the function 1/T (L, λ) presents a clear
exponential dependence on L.

In order to clarify and distinguish Mie resonances from absorption peaks,
the same transmission experiments have been performed for different spheres
diameters. Figure 6.7 shows the total light transmission through three particular
photonic glass slabs composed by different sphere sizes with diameters 200 nm,
1000 nm and 1200 nm respectively. These slabs are thick enough to present the
peak absorption at λ3 = 875 nm. Therefore a(875 nm) < L in all these cases.

Figure 6.5: Plot of T−1 as a function of the thickness for three different wavelengths.
(a) For low L (a >> L), linear dependence is clearly shown for λ = 744, 828 and 875
nm as an indication of the validity of the Ohm’s law for this wavelengths which present,
however, different slopes that provide t. (b) For high L (a < L), exponential behavior
is revealed for λ = 875 nm related to a water absorption band.
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Figure 6.6: Experimental transport mean free path in a photonic glass made of PS
spheres of d = 1220 nm. The data are obtained by fitting the L dependence of exper-
imental T−1 curves. Two particular minimum and maximum wavelengths are marked
with a triangle (λ1 = 744 nm) and a square (λ2 = 828 nm), respectively.

This peak is independent on the sphere diameter and, for this reason, it cannot
originate from a Mie resonance, which only depends on the geometric parameters
of the scatterers. In addition, as a photonic glass slab composed by spheres with
d = 200 nm cannot sustain collective Mie resonances, we deduce that the peak
must be due to a discrete absorption. It is shown that, for certain wavelengths, the
system presents discrete absorptions which are revealed in optical spectroscopic
measurements only when a < L. At this point it is necessary to estimate the
value of this diffusive length in the energy range where experiments have been
performed. Figure 6.8 shows the diffusive absorption length, a(λ), obtained
by fitting the experimental curve of the function T (L, λ) with the corresponding
equation 1.35. Valuable information is revealed in this plot: (i) the mean value of
the absorption length (a) is about 1 mm, (ii) two dips at wavelengths λ = 730 nm
and λ = 875 nm appear in the function a(λ), for which a presents values about
900 μm and 500 μm respectively and, consequently, absorption is maximum, (iii)
a UV absorption tail is pointed out at higher energies (lower wavelengths), where
a presents a steady decay. The exponential dependence of the function 1/T (L, λ)
on L is related to UV PS absorption [57] at high energies. The sphere’s material
has no absorption [57] at lower energies . According to this, the peaks at λ = 730
nm and λ = 875 nm are attributed to near infrared states of residual liquid water
in the sample due to overtones and combination bands of fundamental vibrations
occurring in the mid infrared [145]. To rule out other possible effects of the salt
used to destabilize the colloidal suspension, we have grown different photonic
glasses varying the growth conditions. As said in chapter 5, an extra amount of
charge is enough to attenuate the electrostatic potential into a total attractive
potential. To verify that no discrete absorption peaks were due to salt, photonic
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Figure 6.7: Total white light transmission through photonic glasses composed by PS
spheres with 200 nm (continuous full line), 1000 nm (dashed-dot line) and 1200 nm
(dash-dotted line) as a function of wavelength. All the spectra present an absorption
peak at λ = 875 nm related to water. The spectral position is marked with a circle, as in
figures 6.4 and 6.5.

glasses with different kind of salts (CaCl2, NaCl,K2CO3,MgSO4 and Na2CO3)
and also with an acid (HCl) have been grown. Their optical response is always
the same and show the same absorption peaks which, therefore, cannot be due
to the salt or PS.

A short comment about absorption in photonic glasses compared to other
photonic systems is needed. As previously settled, light transport through highly
disordered materials is diffusive as opposed to to ballistic or unscattered trans-

Figure 6.8: Plot of the absorption length, a, from a photonic glass made of PS with
d = 1220 nm. It clearly shows two absorption peaks at λ = 875 nm, λ = 730 nm related
to liquid water vibrations.
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port through non-diffusive materials. Although absorption disturbs the optical
properties of all photonic systems, its effects are more evident in diffusive materi-
als. Opal-based photonic crystal is a paradigmatic system where light transport
is, in principle, ballistic in spite of being grown with the same building blocks as
a photonic glass. Absorption effects which can be neglected or unobservable, for
example, in a photonic crystal, should be taken into account and carefully charac-
terized in photonic glasses. This fact is explained attending to the different light
transport properties which take place in each one. In a diffusive material, the
characteristic absorption length is a whereas in a non-diffusive material absorp-
tion is characterized with the length i, which is the distance that light travels
before being attenuated a factor e. According to equation 1.17 (see introduc-
tion, 1.2.1), i is always longer than a and, therefore, light should propagate
much longer ballistic distance in photonic crystal to become attenuated the same
factor as in a photonic glass.

An estimation of the main values of both a and t can be performed, and
also the main value of i. At the wavelengths for which absorption peak has been
observed, a value of a ∼ 800 μm gives rise to i ∼ 0.7 m (with a value of t ∼
3 μm), attending to the fact that a =

√
(t · i)/3 (see introduction, 1.2.1). The

big difference (three orders of magnitude) between the absorption length (i) and
the diffusive absorption length (a) is remarkable. This fact suggests that, to
observe the same absorption effects in a pass-band photonic crystal it should be
necessary to build a photonic crystal 1000 times thicker than a photonic glass,
that is, around 1 mm thick. This estimation is performed in a pass-band whereas
the optical performances of a photonic crystal are expected to be enhanced in the
photonic gap edge, as will be shown in chapter 8.

6.2. Dynamic measurements

Once the static photonic properties of photonic glasses have been examined,
the dynamic transport parameters will be probed. In the experimental set up to
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Figure 6.9: Experimental set up to perform dynamical measurements. A ultrashort laser
pulse is sent to the sample. A spectrometer collects the pulse temporally spread by the
sample and sends it to a streak camera.
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perform a time-resolved measurement (schematically shown in figure 6.9) a streak
camera has been used which permits to monitor the time evolution of a very short
laser pulse in its propagation through the glass. In particular, the experiment
has been performed with 2 ps pulses provided by a Ti : Al2O3 laser tuneable
within 700 - 920 nm. An example of a time-resolved transmission measurement is
plotted in figure 6.10a for two different wavelengths, λ1 = 744 nm and λ2 = 828
nm, which correspond to the minimum and the maximum of a Mie resonance
analyzed in the previous section. The different slope of T (t, λ) at long times
(the time decay) at this two different wavelengths accounts for the presence of a
Mie resonance. The thickness of the photonic glasses used in these time-resolved
experiments is about 1 mm. Figure 6.10b evidences the resonant behavior of
D(λ). Its value has been obtained fitting the experimental time dependence

Figure 6.10: (a) Time-resolved transmission measurements at λ = 744 nm and λ = 828
nm where the different slope of T (t) gives rise to a minimum (D(744) = 166 m2/s) and
maximum (D(828) = 205 m2/s) in the diffusion constant. In this case L = 1120 μm.
(black full lines represent the fit of the experimental measurements with the diffusion
equation). (b) Experimental diffusion constant in a photonic glass made of PS spheres
with d = 1220 nm obtained by fitting experimental T (t) curves. Two particular wave-
lengths are marked with a triangle (λ1 = 744 nm), a square (λ2 = 828 nm), correspond-
ing to the particular measurements shown in (a).
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of T (t) with the dynamical solution of the diffusion equation 1.23 (1.2.3). The
solution to the diffusion equation, with appropriate boundary conditions, fits well
the experimental data. The value of a(λ) has been obtained independently from
static measurements, using Ohm’s law, and can be introduced in the equation as
a known parameter. This provides an accurate estimation of the value of D(λ).
Absorption accounts for a correction of only few %, in average, but is crucial on
the absorption peak (at λ = 875 nm). It can be concluded that the resonant
behavior of D(λ) is due to Mie modes and presents maxima and minima at the
same spectral positions as in the static measurements of t(λ).

6.3. Coherent backscattering

The measurements carried so far have been analyzed in the context of the
diffusion approximation. The transport mean free path has been measured in the
past sections by means of the photonic Ohm’s law. In order to support this optical
study, and to show an interference effect, coherent light backscattering measure-
ments will be provided in this section. We will obtain a value of t by means of
the coherent backscattering cone. The phenomenon of coherent backscattering of
light from random systems is an interference effect which survives multiple scat-
tering and constitutes a correction to the diffusion approximation. Also known
as weak localization of light, it can be detected since it manifests as an enhance-
ment of light intensity in the backscattering direction. This enhancement is usu-
ally called cone of coherent backscattering. Several observations of this physical
phenomenon have been performed in colloidal suspensions [138, 139], powders
[146], cold-atom gases [144] or randomized laser materials [147] to give just a few
examples.

The physical origin of the light backscattering enhancement is in the inter-
ference between two paths which undergo exactly the same, direct and reverse,
random walk. Reciprocity is what ensures the equality of the direct and reverse

Figure 6.11: Counter-propagating light paths that give rise to coherent light backscat-
tering.
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paths amplitudes. If we place a source with a long coherence time (an excited
atom, for example) inside the system, there will be, at certain points of the sam-
ple, an enhancement of light due to this interference process which attenuates the
diffusion propagation. For this reason, this process is called weak localization.
If the random system is illuminated by an external laser beam, the backscat-
tered intensity results from interference between the amplitudes associated with
the various scattering paths inside the system; for any two points in the sam-
ple surface, two exactly direct and reverse random walks start from and end in
both points (see scheme in figure 6.11). The interference pattern from these two
points in the sample surface is the same as in the two slit Young’s interference
experiment:

I(θ, ϕ) = I0(1 + ξ cosd · Δk) (6.1)

where I0 is the total intensity, ξ is the interference contrast and θ and ϕ are
the angles with respect to the backscattering direction. Maximum interference
(ξ = 1) is obtained when the counterpart optical paths have the same amplitude
and only at θ = 0. The cone of light backscattering is the Fourier transform of the

Figure 6.12: Plot of the coherent backscattering cone measured from photonic glasses
composed by PS spheres with diameters d = 200 nm (a), and d = 1000 nm (b). The
shape of the experimental cone is fitted with the theoretical curve which provides the
estimate of the transport mean free path in both cases.
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probability for a photon to return to the sample surface, when it is illuminated by
a point-like source. An accurate optical set up to collect the backscattering cone is
explained in appendix C. The top of the cone is build up with long diffusive optical
paths with far entrance-exit surface points (short spatial frequency distributions).
The phase difference between two paths is

Δφ =
2π
λ0

(d · Δk) (6.2)

and, in the small θ limit into:

Δφ ≈ 2π
λ0
θ|rN − r1| (6.3)

where the term |rN − r1| is basically the mean separation between the first and
last scattering events of a photon inside the system, which is of the order of t:

Δφ ≈ 2π
λ0
θt (6.4)

The width of the backscattering cone is, therefore, determined by the average
distance between the first and last scattering event and, thereby, by t as:

W � 0.7
2π

λ0

t
(6.5)

The backscattering cone detection is an accurate method to measure the trans-
port mean free path. We will use it is as a complementary measurement of t
in two different photonic glasses made with PS spheres with diameters d = 200
nm and 1000 nm at a fixed wavelength λ0 = 632 nm. This experiment carried
out with a broad spectral range laser would provide the same information as
that of the total transmission (photonic Ohm’s law). Figure 6.12 shows coherent
backscattering cones from two photonic glasses composed by spheres with diam-
eters d = 200 nm (figure 6.12a) and d = 1000 nm (figure 6.12b). The value of t
is estimated from equation 6.5.

The values of t obtained from the backscattering cone, t = (3 ± 1) μm
for d = 1000 nm and t = (5 ± 1) μm for d = 200 nm, are in agreement with
those obtained with the total transmission measurement. The low enhancement
factor and the large error of the measurements are due to the relative high noise
of the measurements which have the only objective to confirm the measurements
obtained in previous sections. This shows the sensitivity of such measurement and
the convenience of the total transmission measurements performed in previous
sections.

The advantage of this procedure is that, with one measurement on one sample,
we can obtain the value of t, contrary to the case of the total transmission
where several samples are needed to perform an accurate fit of the solution to the
diffusion equation. The disadvantage of the backscattering cone, apart from the
accuracy needed to obtain an acceptable enhancement factor, is that we obtain
t at one wavelength and we can not resolve the resonances.
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6.4. Discussion

The appropriate velocity which describes light diffusive transport in photonic
glasses is the energy velocity. A discussion about the possible resonant behavior
of this magnitude can be found in the literature [67, 148, 149]. Figure 6.13
represents the energy velocity, vE , obtained from independent measurements of
t(λ) (static) and D(λ) (dynamic) and the help of the expression:

D =
1
3
vE t (6.6)

the experimental value is below the average value of the group velocity obtained
from the sample average refractive index vg = c/〈n〉 ∼ 0.77c while showing clear
resonances. Qualitatively, the minima of t(λ), for which the scattering strength
is maximum, correspond to wavelengths that excite a Mie mode, and therefore
experience a longer dwell time. This turns into a minimum transport velocity
(figure 6.13). For comparison, at the bottom of figure 6.13 the lack of velocity
resonance of a TiO2 powder sample is shown. It is measured in the same ex-
perimental conditions. For ideal microspheres, the single particle resonances are
10 − 20 % wide in wavelength, and therefore they are expected to be washed
out for f > 5 − 10 % (see the lower curve in figure 6.13). Recently, Stoerzer et
al [150] have reported a wavelength dependent diffusion constant in 15 − 20 %
polydisperse, irregularly shaped titania powders, which in the light of the find-
ings presented in this thesis is unlikely to be the result of Mie resonances. The

Figure 6.13: Experimental values of the energy velocity as a function of the wavelength
for a photonic glass made of PS sphere with diameter d = 1220 nm and for TiO2 powder.
For the photonic glass, a full oscillation of around 5 % amplitude is shown. The averaged
medium group velocity is 0.77c. For the TiO2 powder, flat velocity dispersion is shown,
obtained with the same procedure (note the different scales on the y-axis).
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importance of the morphology of the sphere is evident, as a broad size distribu-
tion or a random shape of the dielectric resonator are expected to wash out the
resonant properties [151, 152]. Figure 6.14a shows the comparison between the
experimental and theoretical plots of t(λ) obtained by using the analytical Mie
solution to the Maxwell’s equations for a single dielectric sphere. This theory

Figure 6.14: (a) Plot of the experimental transport mean free path (stars) and the
theoretical prediction based on the Mie solution to the single-sphere [67] for ideal PS
spheres (continuous line) with diameter is d = 610 nm (b) Experimental (open squares)
transmission from the same spheres as previous figure compared with the Percus-Yevick
structure factor for hard spheres S(q) (continuous line) with f = 0.5. (c) Plot of the
experimental transport mean free path (stars) and the combination of the Mie solution
to the single-sphere with the Percus-Yevick structure factor for hard spheres S(q) with
f = 0.5 (continuous line).
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can be rigorously applied to the single scattering regime or in the case of dilute
systems and independent scattering events. The partial disagreement between
experimental and theoretical data comes from the fact that this system, the pho-
tonic glass, cannot be considered diluted with a filling fraction of 0.55. When the
scatterers density is very low, a multiple scattering theory with a single scatter
t-matrix should be appropriate [144]. This holds roughly until the optical (and
not physical) sizes of the scatterers start to overlap. Then, the modes start to
interact and this fact should necessarily affect the scattering matrix of the sphere.
Finally, it is expected that the resonances will disappear when the scatterers oc-
cupy a volume fraction of 100 %. The coherent-potential approximation [149],
which is a mean field theory and a first order in scattering density, predicts that
the scattering resonances weaken at high fs and even disappear for f ∼ 50− 60%.
Nevertheless, at a filling fraction as high as 0.55, it is still possible to experimen-
tally observe resonances in the transport mean free path and transport velocity,
as shown here. It is interesting to look further into the physics involved in the
resonant behavior at intermediate filling fractions. When optimizing light diffu-
sion, one often wants to increase the refractive index contrast and to maximize
the scatterers density in order to minimize the scattering mean free path. The
price to be paid when increasing f is to induce both correlations in the scatterers
relative positions (in the close-packing limit, only the crystalline fcc lattice is
allowed) and interaction between the Mie modes inside scatterers. As long as the
suspensions are dilute, the scatterers can be considered independent and intra-
particle scattering (represented by the form factor F(q)) is sufficient to describe
the system. If the concentration increases, however, in addition to intraparticle
scattering, interparticle scattering (represented by the structure factor S(q)) must
be taken into consideration. The relation between transport mean free path and
the microscopic scattering properties is given by [18, 140]:

1
t

=
π

k6

∫ 2k

0
ρ · F (q) · S(q) · q3dq (6.7)

where ρ is the number density and q the single-scattering wave vector. One can
work with a modified structure factor, S(q), in order to fit the data [128] or
confront a new calculation of F(q) taking into account the possible interactions
between the modes of a sphere and near neighbors. Figure 6.14b shows the
comparison between the experiment and the calculation of S(q) obtained in the
Percus-Yevick approximation for hard spheres [153] (since there is no preferred
direction in this random system, S depends only on k and not on q):

S(k) = 1 + (2π)3
6f

(πR)3
C(k)

1 − (2π)3 6f
(πR)3

C(k)
(6.8)

where R is the sphere radius and f the filling fraction of the system and:
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α =
(1 + 2f)2

(1 − f)4

β = −6f
(1 + f/2)2

(1 − f)4

γ =
f(1 + 2f)2

2(1 − f)4

It evidences how S(q) alone cannot account for the resonances which appear in
the transmission spectrum. A combination of the Mie solution to the single-sphere
with the Percus-Yevick structure factor for hard spheres S(q) cannot account for
the resonances of the experimental t measurement (figure 6.14c). A solution to
this problem could be a multiple scattering theory with a modified single scatterer
F(q) which takes into account the possible interactions with nearest neighbors.

Figure 6.15: Analytical calculations of the transport mean free path, t, for four values of
sphere polydispersity, p, and for two different values of sphere refractive index. Sphere
diameters are 1 μm and f = 0.5.
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Indeed, the calculation of an adequate F(q) may be convenient to accurately
account for the strength of the resonances.

Finally, polydispersity and refractive index contrast of the structure are im-
portant in determining the visibility of the resonances. Figure 6.15 shows the
plot of t simulated for four different values of sphere polydispersity and two
different values of sphere refractive index corresponding to PS and Silicon. It
is calculated by assuming a normally distributed spheres radii which defines the
polydispersity. This distribution is then convoluted with the analytical solution
for a single sphere, which yields the macroscopic frequency dependence of the
scattering parameters. Figure 6.15 shows how, increasing the polydispersity, the
resonances are washed out. Even in the case of a high refractive index contrast,
a polydispersity of 5 % is enough to smooth all the main spectral features. This
theoretical prediction agrees with the measurements presented here, which show
how a high polydispersity gives rise to non-resonant light transport (Figure 6.3b)
even in the case of high refractive index contrast, as in the case of TiO2.

6.5. Conclusions

In conclusion, an ample optical characterization of photonic glasses is pre-
sented in this chapter, as far as transport is concerned. With independent ex-
periments (static and dynamic), a resonant behavior in diffuse light transport
is observed: resonant transport mean free path, diffusion constant, and energy
velocity. This observation opens new and encouraging routes in the field of light
transport through disorder media as photonic glasses can be powerful systems to
be used as a new playground for light diffusion. This novel material joins light
dispersion and diffusion in the same system, a combination that can be crucial
to control the diffuse flow of light in analogy to what photonic crystals do for
ballistic light. For example, phenomena such as Anderson localization of light or
random lasing in combination with resonances in t acquire promising possibili-
ties in this novel framework. Photonic glasses by themselves and integrated with
photonic crystals may give rise to new applications in future photonic devices.
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Chapter 7
Resonance-driven Random
Laser

Among all the possible applications of disordered nanophotonics, random las-
ing is one of the most intriguing and fascinating. Proposed by Letokov [63] in the
sixties and experimentally observed now in various materials [154], a random laser
is basically the combination of a random assembly of elastic scatterers and a gain
medium. In such a system light is multiply scattered and amplified. In standard
lasers, light scattering hampers the functionalities, and is generally regarded as
a parameter to minimize. In these systems, gain saturation is obtained by (res-
onant) feedback provided by an optical cavity, therefore, scattering induces light
losses and increases the lasing threshold. On the contrary, in a random laser,
multiple scattering of light is the sine qua non condition to reach threshold and
lase. It serves to have gain larger than losses and reach gain saturation, which is
the fundamental mechanism that leads to coherence [154]. The lasing emission
is determined by the interplay between losses and gain. Unlike ordinary lasers,
the resulting light emission is multidirectional and not really monochromatic, but
the threshold behavior [64], the photon statistics [155, 156] and relaxation oscil-
lations [157, 158] are very similar to those of standard lasers. This phenomenon
is usually observed in random matrices composed by very polydisperse scatterers
in shape and size such as colloidal suspensions of oxides powders [64], powdered
laser crystals [159], ceramics [160], organic composites [161], and even biological
tissue [162]. In all those systems, the scattering parameters, the transport mean
free path or the diffusion constant, which define the diffusive transport, are mono-
tonically dependent on the light wavelength. Thus, the lasing output is selected
a priori by the gain and loss properties.

In this chapter it will be shown how to control light diffusion with the optical
resonances of the monodisperse scatterers composing the system. The resonant
behavior in the diffuse light though a photonic glass allows to control the laser
emission via the diameter of the spheres and their refractive index. Such a system
is a dispersive random device with a priori design lasing peak within the gain
curve.
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7.1. Gain medium

A crucial factor in realizing a random laser is the gain medium, the medium
which provides light emission and amplification. Most of the materials used to
that purpose can be described as a three of four electronic level systems. When
the material is optically excited, electrons promote to some high energy level and
decay in a very short time interval to a metastable state. Laser transitions occur
between this metastable state and the ground state. Usually, materials which
can be optically pumped are considered. Among those gain materials it has been
used mainly semiconductors with photoluminescence properties as ZnO [155] or
organic molecules, organic dyes [64]. Photoluminescence semiconductors usually
present a high refractive index contrast and are used also as the scattering mate-
rial, as in the case of ZnO. Organic dyes, however, present a low refractive index
and should be embedded in a multiple scattering system. These organic materials
present high quantum efficiencies and a wide Stokes shift, which together with
their versatility and small size (organic chains with few nanometers) make them
very good candidates to be laser materials in a random medium. Among them,
the DCM (4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran) dye
molecule is known as one of the best laser dye. However, dyes molecules present
a large quantum efficiency when in dissolution but are affected by quenching and
damaging when dry. For random lasing from nanostructured media this is a
hampering factor since, in order to maximize the refractive index contrast, the
systems are usually solid in air. The presence of a solvent usually attenuates the
multiple scattering of light and make random lasing hard to achieve. To solve
this issue, organic dyes are usually embedded in the scattering medium in solid
phase. This highly disturbs the luminescence functionalities of the dyes which
easily suffer from quenching due to the proximity of the fluorescent molecules
and thermal dissociation and damage due to the high pump energies. In order to
avoid these problems, organic dyes were embedded in transparent DNA helices.
We synthetise a gain medium from DCM molecules intercalated into the helices
of the biopolymer desoxyribonucleic acid (DNA) [163]. This process, which is
schematically illustrated in figure 7.1, prevents the quenching of the dye but also

Figure 7.1: Schematic diagram for the gain medium. (a) Representation of DNA helices.
(b) Inclusion of DCM organic dye into the helices of the DNA.
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provides a way to dissipate the extra heat, accumulated upon optical pumping,
to the DNA strands. In such a nano-designed gain medium, the intensity of the
fluorescence is greatly enhanced (highly efficient amplified spontanous emission
has been reported for this dye configurations [164]) and no dye damage occurs
for a wide pump energy range. In this chapter we will use DCM-intercalated into
salmon DNA helices or strands, DCM@DNA, as gain medium.

7.2. Random Lasing

A random system, composed by particles with arbitrary shape and size, has
a transport mean free path that is spectrally flat (non-resonant) at least for
Δλ ∼ 100 ∼ nm. Under this condition, conventional random lasing occurs at a
wavelength where g(λ) has its minimum, i.e. at the maximum of the gain curve.

Figure 7.2 shows conventional random lasing from the organic emitter, DCM@DNA,
shown in previous section and embedded in a TiO2 powder matrix. This system
is optically pumped by a frequency doubled Q-switched pulsed Nd:YAG laser (9
ns pulse duration), with 10 Hz repetition rate. The spot size was fixed at 2 mm

Figure 7.2: (a) Emission intensity bellow (dashed curve) and above (continuous curve)
the threshold in the case of DCM@DNA embedded in a TiO2 matrix. The lasing mode is
defined by the gain maximum. (b) Emission intensity and its full width at half maximum
(FWHM) as a function of pumping energy. A clear threshold appears at a 500 μJ per
pulse. Pumping spot size is 2 mm
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diameter, to access a large gain volume (much larger than t < 2μm). The dif-
fuse emission was monitored with a miniature spectrometer with a resolution of
0.5 nm. The scattering strength of such a system is relatively high due to the
high refractive index contrast between TiO2 particles (n = 2.5) and air (n = 1),
where n is the refractive index. Figure 7.2a shows the normalized output inten-
sity below (red curve) and above threshold (violet curve). As the pump power
increases, the emission peak becomes narrower due to the preferential amplifica-
tion of the frequencies close to the maximum of the gain curve. In such a system
the lasing modes are selected from those at the spectral position of the minimum
gain length, g. The amount of DCM@DNA was 0.02 wt % for all samples consid-
ered here, of which 1% was DCM. Even with such a low concentration of organic
emitter, 2 × 10−4 wt %, it is possible to achieve a lasing threshold in the output
intensity at 500 μJ, which corresponds to ∼ 60 μJ/mm2 per pulse (figure 7.2b).

As previously mentioned, wavelength tunability is a great challenge in ev-
ery lasing device, in particular it is an issue in random lasers. Since gain is
fixed and determined by the emitter chemical properties, tunability can only be
achieve by tailoring the lasing modes. Our strategy is to exploit the ability of
the monodisperse random media to sustain electromagnetic resonances. The idea
is to exploit resonances in scattering coefficients [?], called Mie resonances [?],
present when the sizes of the scatterers are comparable with the wavelength of
the incident light. These resonances are, in principle, also present in the single
scattering properties of the TiO2 microparticles which compose the powder, but
due to the different shape and size of each particle, the resonances are washed out
on a macroscopic scale. On the contrary, in a system composed of monodisperse
spheres, each scatterer sustains the same resonance at the same energy, giving rise
to a macroscopic resonant behavior. A candidate for that purpose is the photonic
glass (see chapter 5) ; static and dynamic measurements of light diffusion in such
systems have shown matching resonances for t(λ) and the diffusion constant of
light D(λ) (see chapter 6).

7.3. Resonant Random Lasing

In a photonic glass, the lasing wavelength becomes very sensitive to the diam-
eter of the constituent spheres and follows the resonances of the system, as will
experimentally shown. To that purpose, a set of photonic glasses composed by
spheres with different diameters were used as the basis of an amplifying system
completed by embedding organic laser dye.

The emitter embedded in the different photonic glasses, DCM-special couple
into the DNA strands, is the same as the one used in the case of TiO2 powder in
figure 7.2, with the same concentration. DNA hosts charge ions in certain strand
positions. The whole emitter has, therefore, a net charge due to this fact, about
3 × 10−6 M charge concentration. This extra amount of charge, when added to
the colloidal suspension of PS microspheres, is enough to force the flocculation of
the colloidal particles (see chapter 5). Upon evaporation of the solvent, a solid
photonic glass based on PS spheres coated by few nm of a DCM@DNA gel is
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Figure 7.3: (a) Random laser emission from photonic glasses with different sphere di-
ameter compared with the pure dry dye fluorescence and a reference sample made with
TiO2 powder doped with DCM@DNA). The pump energy for every sample is around
10 mJ. (b) and (c) Emission intensity and total transmission for photonic glasses re-
spectively with d = 0.9 μm and d = 1.0 μm. Lasing occurs close to the transmission
minimum.

realized.

The optical pumping and the diffuse emission was monitored as in the case
of TiO2-based random laser. The multiple light scattering condition was ensured
by the sample thickness L > 100 μm, which is much larger than the typical mean
free path in such photonic glasses, t ∼= 2− 3 μm, for visible light (see chapter 6).
Figure 7.3 shows in more detail how the resonances sustained by the scatterers
affect lasing action. As a reference we consider a photonic glass of very small
spheres with d = 0.2 μm (figure 7.3a, light blue curve) as well as the polidisperse
TiO2-based random laser (violet curve). Both systems, for different reasons,
do not show resonances in the static or dynamic measurements (see chapter 6).
In both these cases, lasing occurs nearly at the same wavelength, close to the
maximum of the gain curve. In the same figure ( fig. 7.3a), instead, one can
observe a controlled overall shift of the lasing wavelength of about 35 nm between
different photonic glasses composed with spheres with diameters d = 0.9 μm
(yellow curve) and d = 1.0 μm (orange curve). Lasing modes from both systems
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are shifted with respect to the gain maximum which can be explained in terms
of Mie resonances.

Figures 7.3b and 7.3c compare the lasing wavelength dependence with the
sample total transmission. For these two photonic glasses, the Mie resonances
are pronounced and in phase opposition, even if the difference in the diameter
is only ∼ 0.1 μm. The minimum in transmission corresponds to a minimum
both in t and D and with a maximum in the scattering strength. Light at this
wavelength populates a Mie mode in the structure and dwells longer in the active
media, enhancing the light/dye interaction and therefore the lasing probability.
According to that, the system tends to lase where the scattering strength is
maximum, even far from the gain maximum. The limited gain puts a limit on the
wavelength shift induced by the scattering resonance, which is of 35 nm.The shift
is enough to be observed by naked eye. Figure 7.4 shows the images corresponding
to the emission of both systems above threshold which are distinguishable by
naked eye by the color of the lasing emission.

To prove our concept and to confirm that, indeed the transport resonances de-
termine heavily the lasing wavelength, the spheres of the photonic glass with the

Figure 7.4: Real image of the lasing mode from d = 0.9 μm and d = 1.0 μm photonic
glasses doped with DCM@DNA with a pump energy around 10 mJ in both cases. The
spectral difference between both lasing emissions (∼ 30 nm) is distinguishable by naked
eye.
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gain medium DCM@DNA are dispersed in ethanol solution (spheres concentra-
tion 5 vol%). In such a way, the refractive index contrast and, therefore, the Mie
resonances are strongly damped. In previous works [65, 68], colloidal suspensions
of spheres of particles mixed with the laser dye have been used for random lasing.
This makes the contrast so low that the Mie resonances nearly disappear. Figure
7.5a shows such an effect. The straight curve represents total light transmission
for a photonic glass composed by spheres with d = 1.0 μm, while the dashed
curve represents the total light transmission through the colloidal suspension of
the same spheres in ethanol. The figure clearly reveals that the resonances are
strongly damped. The corresponding emission spectra are plotted in figure 7.5b,
where the colors represent the same sphere diameters as for the samples in figure
7.3a. Figure 7.5 points out the fact that by damping the Mie resonances of the
system, the tunability of the lasing emission also disappears, as expected.

Figure 7.5: (a) Total integrated transmission for a photonic glass with d = 1 μm (contin-
uous curve) and from a colloidal suspension of the same spheres (5 vol% of concentra-
tion) in ethanol (dashed curve). The refractive index of the host medium increases re-
spectively from 1 (air) to 1.36 (ethanol). (b) Random laser emission for different spheres
suspension in ethanol with DCM@DNA as optical active medium, with an external pump
energy fixed at 10 mJ. In this case the total spectral separation of the emission maxima
for the different suspensions is only 7 nm.
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7.4. Threshold dependence on Mie resonances

The existence of scattering resonances in the system not only affects the lasing
mode tunability but also the threshold value of the photonic glass-based random
laser. In general, scattering resonances enhance lasing action and may, eventually,
lower the lasing threshold [166]. The presence of a maximum in the scattering
strength and, correspondingly, a minimum in the transport parameters as t and
D corresponds to a maximization of the light scattering. For certain wavelengths
for which the multiple scattering of light is optimized, the pump energy necessary
to achieve gain larger than losses is minimized and, thus, the lasing becomes
easier.

Figure 7.6 compares the threshold for the photonic glasses used in this work.
All the samples measured here were pumped under the same conditions. The
threshold value for four different systems is shown in figure 7.6; all these systems
are composed with spheres of the same material, PS, but with different diameters
and polydispersity. Apart from the diameter, a very important parameter to
take into account is the monodispersity of the scatterers. A high polydispersity
value washes out the macroscopic resonant response (see chapter 6). In this
measurement we have used three photonic glasses composed by very monodisperse
microspheres (< 2 %) and one with a high polydispersity (represented by the
bar). This last sample is grown by mixing spheres of the same material with
slightly different diameters. We intentionally introduce the polydispersity in the
system to obtain a very polydisperse reference sample composed by the same
material as the other photonic glasses. The diameter of the spheres is normalized
to the lasing wavelength emission (λlasing) and the polydispersity is represented

Figure 7.6: Threshold for various photonic glasses: a standard sample with d = 0.2 μm
which is not able to sustain Mie resonances in the visible, two photonic glasses with
d = 0.9 μm and d = 1.0 μm which are capable to sustain Mie resonances within the gain
curve and a polydisperse arrangement (∼ 42 %) of PS spheres for which a threshold
appears at 3.9 mJ. This plot points out how the existence of resonant modes for light
within the gain spectral range reduces the pump energy necessary to achieve population
inversion.



7.5. Conclusions and future work. 115

by the bar on the diameter variable. In the particular case of the photonic
glass composed by spheres with d = 200 nm (d/λlasing = 0.3), no resonances
can be sustained in the visible, due to the small size of the spheres. Therefore,
those spheres behave, upon this particular light energy illumination, almost as
point-like scatters giving rise to Rayleigh scattering (where scatterer structure is
negligible) instead of Mie scattering (where resonances are featured). Resonances
are expected in other energy ranges (in the UV) for this particular small sphere
diameter. With this considerations, it is easily observed how random lasing has a
lower threshold for those photonic glasses where Mie resonances are present close
to the gain curve, as in the case of d = 0.9 μm (d/λlasing = 1.45) and d = 1.0 μm
(d/λlasing = 1.6). These photonic glass-based random lasers need about half
pumping energy than the two reference samples: the photonic glass composed by
small microspheres (with d = 0.2 μm) and a very polydisperse arrangement of the
same kind of spheres with a main diameter about d = 0.8 μm (d/λlasing = 1.3).
It is also important to mention that these two reference samples, due to the lack
of scattering resonances, lase at the same spectral position of the random lasing
emission of TiO2 conventional random laser. Their emission is controlled only by
the gain curve and their threshold is higher than Mie resonances -based random
lasing.

7.5. Conclusions and future work.

In this chapter, random laser action from a three-dimensional system with
resonant transport features has been presented. The experiments shown here
demonstrate that Mie resonances can strongly effect random lasing and determine
both the lasing emission wavelength and threshold for photonic glasses. The
concurrence of disorder with scattering strength, gain and monodispersity is what
allows this fact. The high contrast of the dielectric in air secures strong light-
matter interaction; the dye hosted in DNA helices lends amplification; finally the
resonances spectrally select the modes and minimize the lasing threshold of the
laser. In the experiments the laser dye was always distributed on the surface of
the spheres. This work shows that it is possible to control spectrally both light
diffusion and random lasing emission, opening a novel route to active disorder
based photonic devices.





Part III

From Photonic Crystals to Photonic
Glasses
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Chapter 8
Light transport through
vacancy-doped photonic
crystals

Usually, defects in photonic crystals are regarded as undesirable features that
spoil optical quality and performance. However, they can also be viewed as an
enriching factor since, when controlled, they can be used to build up cavities,
waveguides etc. being the basis of future circuits of light. This only happens
when a strict control is exerted on defects amount, position, shape, and other
morphological characteristics [167]. The essential property of, for example, semi-
conductor materials which form the basis of modern electronics and optoelec-
tronics is that their electrical conductivity can be tuned over several orders of
magnitude by the addition of impurities to the crystal lattice [168]. Since the
control of conductivity is performed by adding impurities to the semiconductor
material, lattice imperfections has been a critical issue in the field of microelec-
tronics. These include both extrinsic (intentional) and intrinsic (unintentional)
impurities such as vacancies and interstitials. The point defects can, eventually,
be optically active and act as either radiative or non-radiative recombination cen-
ters thus affecting the optical properties of the material [170], as we have seen in
ZnO photoluminescence mesurements in chapter 2.

Attending to the mature semiconductors technology and in order to fulfil the
promise that photonic crystals hold for nanophotonic applications, the engineer-
ing in a controlled way of (extrinsic) defects appears as an important challenge.
In the particular case of opal-based photonic crystals, the amount of (intrinsic)
defects produced by self-assembly is partly out of control and the achievement
of the highest quality possible is a common goal of the colloidal community, for
which many routes have been tested.

Important consequences on light transport parameters such as the scattering
mean free path or the diffusion constant will be reported in this chapter. Even far
from the localization regime, the scattering properties of Bloch modes, the peri-
odic electromagnetic modes of a photonic crystal, are expected to be profoundly
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different from the diffusive modes encountered in conventional random media.
Pioneering experiments on coherent backscattering [179, 180], and diffuse light
transport in photonic crystals have been searching for signatures of Bloch-mode
mediated scattering but have merely shown standard light diffusion. Moreover,
the experiments have been interpreted using a model that assumes no photonic
modal dispersion [183], but rather a modified reflectivity at the system bound-
aries. Up to now, the role of the photonic crystal modes and the effect of the
modified density of states on light scattering are largely unknown.

In this chapter, a new route to introduce controlled amount of extrinsic defects
in lattice positions of photonic crystals will be shown. The method to introduce
vacancies in lattice positions of opal-based photonic crystals will be explained.
Then, a careful characterization of morphologic disorder degree will be carried
out by means of SEM images analysis as well as optical spectroscopy as function
of the density of vacancies. Finally, light transport will be studied through these
systems. In this case, static and dynamic measurements will be shown together
contrary to what has be done in chapter 6, we will here firstly analyze the scat-
tering mean free path, s, and the diffusion constant, D, in photonic crystals
as a function of the density of vacancies. At this point, we will return to total
white light transmission measurements which suggests, in the light of the previous
analysis, a kind of transition from ballistic to diffuse light transport as a function
of vacancy-density. A comparison between completely random arrangements of
spheres (photonic glasses) and photonic crystals with a high amount of vacancies
will be finally presented.

8.1. Vacancy-doped photonic crystals

In chapter 5, a way to obtain a random solid ensemble of spheres has been
extensively outlined. In addition, an alternative route to grow a disordered distri-
bution of monodisperse spheres will be shown in this section. For that purpose,
a binary colloidal crystal will be engineered in what it is called an alloy photonic
crystal or vacancy-doped photonic crystal. Binary photonic crystals have been
object of interest in the past years [171, 172, 173]. They consist of both large (L)
and small (S) spheres that alternately self-organize into two- or three-dimensional
superlattices. Compared to those crystals which are composed by single-species
spheres, binary crystals exhibit a rather rich phase behavior that depends on the
volume fractions of the large and small spheres, and on the diameter ratios of the
small to large spheres.

Going a step beyond, and selectively etching one of the spheres (either large
or small ones), those that we will call dopants in the following, a system com-
posed by monodisperse scatterers can be obtained. Figure 8.1 schematizes the
process and the results obtained. Binary colloidal suspensions of PMMA and
PS spheres were ordered by vertical deposition [45]. The total colloidal concen-
tration is typically set as 0.15 wt % and the growth conditions are the same as
for the case of the photonic crystals as explained in chapter 2. The density of
dopants (PS spheres, in this case) is tune by changing over the partial PS con-
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Figure 8.1: (a) A diagram schematizes the film growth by vertical deposition when PS
(red) and PMMA (grey) spheres are mixed together in the initial colloidal suspension
with different diameters. By removing the dopant spheres (PS), thin disordered films
are obtained (b). The vacancies are the original positions of the PS spheres before
selectively etching them with Cyclohexane. These are visible in a SEM image (c) of a
disordered film grown by this method using PS and PMMA spheres with diameters 457
nm and 237 nm, respectively. (d) and (e) show the same process when PS and PMMA
spheres have the same diameter. In that case, the lattice remains undisturbed after the
dopants removal. (f) SEM image of thin disordered film grown by this method with PS
and PMMA spheres with the same diameter (237 nm).

centration in the initial colloidal suspension. For example, if a 10 % final vacancy
density is needed, a partial PS spheres concentration of 0.015 wt % and PMMA
concentration of 0.135 wt % will be mixed to obtain a total 0.15 wt % colloidal
suspension. Once the alloy colloidal crystal is grown, PS is removed by a chemical
selective etching. In particular, PS selective removal is performed by immersing
the samples in 99 % pure Cyclohexane for at least 4 h. This very easy procedure
completely removes PS spheres from their lattice positions, leaving the PMMA
spheres undisturbed. Figure 8.1 schematizes the two possible final systems which
can be obtained following this procedure. Figure 8.1a, 8.1b and 8.1c shows the
process when using two original PS (red) and PMMA (grey) spheres with differ-
ent diameters (dPMMA/dPS = 0.6). If the spheres diameters are initially different
(0.3 < dsmall/dlarge < 0.7), the thin film grows very disordered [174] and the re-
sulting system is a random and disordered thin film composed by PMMA spheres,
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as shown in figure 8.1a. By selectively removing the dopants (PS spheres), a dis-
order arrangement of PMMA spheres is obtained (figure 8.1b). SEM image of the
surface of such system is shown in figure 8.1 c. The ratio between PS diameter
and PMMA diameter has a paramount importance. If one of both spheres is too
small, an ordered superlattice can arise from the self-assembling process [171].
On the contrary, if the spheres diameters are initially equal figure 8.1d, a differ-
ent kind of disordered system is obtained. In that case, the system grows ordered
and the selective removal of the dopants do not alter the structure lattice (figure
8.1e). SEM image figure 8.1f shows a colloidal crystal composed by 30 % of PS
spheres and 70 % of PMMA spheres after PS etching. In that case, both spheres
PMMA and PS have the same diameter d = 237 nm, within the polidispersity of
each of the spheres (< 2 %).

The selective dissolution of PS spheres in an colloidal alloy crystal can be
optically monitored. This can be done by estimating the effective refractive index
of the sample for a given thickness and following its evolution as a function of
etching time. The optical response of a photonic crystal for (low) energies far
from the pseudogap are equal to those of an homogenous medium with an effective
refractive index. For that energy range, light cannot probe the nanostructure
of the system. From the spectral separation of the Fabry-Perot fringes in the

Figure 8.2: Effective refractive index (neff ) of the system as a function of PS etching
time. The concentration of PS and PMMA spheres are known and the thickness of
the sample, L, can be then calculated from the Fabry-Perot fringes in the reflectance
spectrum (black curve in the inset of the figure). By dissolving the PS spheres, neff

reduces. This variation is accounted for by the blueshift in the Fabry-Perot fringes.
The evolution of neff can be estimated with the help of L and the Fabry-Perot fringes
of the etched sample (red curve in the inset of the figure). The PS removal has a
characteristic time of about few minutes. neff reaches a stationary value when PS
spheres are completely removed from the sample.
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transmittance or reflectance spectra, the thickness of the sample can be accurately
estimated. Local reflectance maxima due to the Fabry-Perot resonances will
appear at (for an opal on a substrate with a refractive index higher than that of
the opal [175]):

mλ = 2Lneff =⇒ 1
λ

=
m

2Lneff
(8.1)

where m is the resonance order, L is the sample thickness and neff is the effective
refractive index. Plotting the inverse wavelength as a function of the resonance
order, a linear relation is obtained. From the slope of the relation between m and
λ the thickness of the sample can be calculated. The thickness of the as-grown
system, composed by PS and PMMA spheres (figure 8.1d can be estimated from
the known partial concentration of each sphere and from their refractive index:
nPS = 1.59 and nPMMA = 1.4. With this initial estimation of the thin film
thickness, which does not vary during the etching process, it is then possible to
study the evolution of the etching process by monitoring the effective refractive
index as a function of the etching time using equation 8.1. neff is constant when
the PS spheres are completely removed from the lattice. Figure 8.2 plots the
evolution of neff as a function of the etching time in thin film initially composed
by a 60 % of PMMA spheres and a 40 % of PS spheres both with a diameter d =
237 nm. The figure reveals that, for a etching time interval longer than 1h, neff
reaches a constant value and, therefore, the PS spheres are completely dissolved.
This process occurs in few minutes; the effective refractive index strongly reduces
in the first minutes of the etching process. The inset of figure 8.2b shows the
reflectance spectrum from the composite before (dark curve) and after PS removal
(red curve). Apart from the disappearance of the reflectance peak related to the
first pG in the ΓL direction (which will be object of attention in the following
sections), a blue shift in the Fabry-Perot fringes point out a change in neff . The
final system is a vacancy doped photonic crystal (figure 8.1e), where the amount
of vacancies is determined by the initial relative concentration of PS/PMMA
spheres in the initial colloidal suspension. These samples have typically the same
dimensions of a thin photonic crystal film, that is, few micrometres thick and few
centimeters wide. The homogeneity of the final structure after etching might be
useful to study the effect of controlled induced extrinsic disorder.

8.2. Study of topological disorder in vacancy-doped photonic crys-
tals

The degree of disorder in vacancy-doped photonic crystals is evaluated by
means of two characterization methods; firstly, the analysis of the image auto-
correlation function which allows an estimate of the correlation length c, of the
sample surface (the distance from a point on the sample beyond which there is
no positional correlation), and secondly white light optical spectroscopy (specular
measurement of reflectance and transmittance) which permits to probe the super-
ficial and bulk disorder in the sample. Both methods provide an indication of the



126 8. Light transport through vacancy-doped photonic crystals

disorder degree as a function of the density of vacancies included in the samples.
A complete characterization requires the study of light transport parameters like
the scattering mean free path, s, or the diffusion constant, D.

8.2.1. Correlation length

The analysis of the autocorrelation function, F (τ), from a SEM image of a
photonic glass surface has already been used to measure the degree of disorder
in those systems (see chapter 5). As explained in that case, the autocorrelation

c

Figure 8.3: (a) SEM images of opal-based photonic crystals doped with a different
vacancy density: ρv = 0 %, 5 %, 20 % and 40 %. (b) Autocorrelation function, F (τ), of
the surface SEM images from the four different systems. A plot profile of a cut in the
autocorrelation function accounts for by the order degree of each sample. (c) Correlation
length c calculated for the four samples as the autocorrelation function decay length
F (τ) ∝ e−τ/�c .
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function describes the correlation of the contrast function, c(r), of an image (in
this case the surface of a given sample) and gives a measure of the translational
symmetry in the system. The same analysis will be used in the case of photonic
crystals doped with a given density of vacancies. All the samples analyzed in this
section are composed by particles which are equal in shape and size (monodis-
perse) and are arranged with a regular distance between first neighbors (as that
one shown in figure 8.1f). In this case, the lattice remains undisturbed after the
PS etching process and it presents a long-range correlation. There is, therefore,
a strong correlation imposed by the lattice survival. As will be shown, the ef-
fect of addition of vacancies is the increase the disorder and the decrease of the
correlation length of the system.

Figure 8.3a shows a comparison of four SEM images from different opal-based
photonic crystals grown with PMMA spheres with a diameter d = 237 nm and
doped with ρv = 0 %, 5 %, 20 % and 40 % vacancies in lattice positions. Figure
8.3b shows the autocorrelation function, F (τ), for an arbitrary given direction
and from the corresponding system and figure 8.3b shows the corresponding cor-
relation length, normalized to the sphere diameter. The autocorrelation function
from the vacancy-free (perfect) ordered structure presents a periodic distribution
of maxima due to its long range correlation (translational symmetry). By doping
the system with vacancies, this maxima are strongly attenuated, pointing out an
increasing disorder in the system. Note also that dependence on distance of the
autocorrelation functions also gives a measure of the relative order of the four
different structures. The periodicity of the crystals yields an oscillating spatial
correlation which is damped on different length scales, depending on the amount
of imperfections. The decay in the autocorrelation function can be characterized
by a correlation length as F (τ) ∝ cos(τ/d) e−τ/	c which is the distance from
a point beyond which there is no further correlation of structural order. The
oscillations present in the autocorrelation of the SEM images are on the same
length scale, corresponding to the periodicity of the structure (the same in the
four cases), but the decay of the envelope shows an increasing disorder with the
density of vacancies. From a fit, the values of the four systems correlation lengths
are c ∼ 10 d in the case of the perfect crystal and c ∼ 3 d, c = 1 d, c = 0.7 d
for a vacancy concentration of a 5 %, 20 % and 40 % respectively.

8.2.2. Optical spectroscopy

In this section light transport though opal-based photonic crystals doped with
a controlled amount of vacancies will be analyzed by means of static measure-
ments. The static measurements will comprise specular transmission and reflec-
tion with white light (from 400 nm to 900 nm) in the direction perpendicular to
the sample surface (ΓL).

An optical and morphological study of disorder in the composite alloy crystal
(figure 8.1a), the intermediate system where PS spheres are not removed from the
sample, can be found in the literature [174]. The aim of the work presented in this
chapter is, nevertheless, to obtain disordered thin films composed by monodisperse
scatterers. It is, therefore, mandatory to selectively remove one of the species
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and to study the degree of disorder in the bulk of the system. The analysis of
the autocorrelation function from SEM images of the samples surfaces carried
out in the previous section only gives information from the sample boundaries,
the surfaces. The analysis carried out in the present section will affront the
measurement of the amount of remaining order in the bulk of the structure. To
that purpose, optical tests are conducted where specular reflectance (R = IR/I0)
and transmittance (T = IT /I0) are measured in the direction perpendicular to
the sample (along the ΓL crystallographic direction). As explained in chapter 5,
section 5.3.2, the magnitude R+ T can be used as a measure of the order of the
structure. Intrinsic disorder in opal-based photonic crystals has been analyzed
by this means in the past [59, 60]. In this section we will applied this method to
characterize the intentionally (extrinsic) disorder added to the samples. Diffuse

Figure 8.4: (a) and (b) figures show the reflection and transmission measured from
the 0 % and 40 % vacancy doping, respectively. (c) and (d) figures show diffuse light
intensity from the corresponding samples before and after PS removal, respectively.
Notice the presence (disappearance) of the gap before (after) PS spheres removal. The
inset of figures (c) and (d) shows a scheme of the corresponding system.
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intensity, D, can be calculated from the relation D = 1 − R − T (see appendix
A). R and T measurements with normally incident white light in the low energy
regime (a/λ < 1, where a is the lattice parameter and λ is the wavelength of
light in vacuum) for a certain crystallographic direction will be carried out for
that purpose. Since PS and PMMA absorbance for the considered frequencies is
negligible [57, 58], only the presence of a certain amount of vacancies in lattice
positions gives rise to diffuse light scattering and extinction.

The main consequence of the inclusion of vacancies in photonic crystals in
their optical properties is shown in figure 8.4. Figure 8.4a and b shows reflectance
and transmittance measurements from samples doped with a 0 % and 40 % of
vacancies, respectively. The most evident effect of the inclusion of vacancies in the
photonic crystal is the disappearance of the reflectance peak related to the pG in
the ΓL direction (direction along which the measurements are performed). This
effect is also revealed by the diffuse intensity measurement, D, from both samples
(figures 8.4c and 8.4d). Before etching, D presents the usual features for a finite
opal such as the monotonic increase for frequencies outside the gap, the presence
of a gap at about a/λ ∼ 0.6 for polymeric spheres, an enhancement in the low
energy edge and an inhibition of frequencies inside the gap [59]. The transition
between order and disorder is performed by removing the PS spheres and it is
highlighted by the disappearance of any hint of gap or band-edges features and by
the enhancement of D for all frequencies. The reason for the disappearance of the
photonic features related to the pG is that, when increasing disorder, constructive
and destructive interference, which is at the basis of light propagation through
photonic crystals, is averaged out giving rise to an effective medium behavior.
In such a case, only UV absorption tail is left at higher energies related to UV
PS absorption [57]. The complete disappearance of a gap-related peak (dip) in
reflectance (transmittance) is the fingerprint of bulk disorder in the samples. This
measurement, together with the analysis of the sample surface correlation length,
gives a preliminary characterization of the effect that the inclusion of vacancies
in random positions of the lattice has on the optical properties of the samples.

8.3. Scattering mean free path

Let’s go deeper in this direction and let’s quantify the effect that these vacan-
cies have on light scattering and, in particular, their effect on the scattering mean
free path and the diffusion constant. In the case of the perfect lattice, the waves
scattered by each sphere interfere in such a way to cause total transparency for
a large energy interval. From the light propagation point of view, the vacancies
act as scatterers which produce diffuse light, making the pass-band opaque and
the band gap transparent. This effect will be quantified in this section by the di-
rect measurement of the scattering mean free path as a function of the vacancies
density.

For that purpose, the scattering mean free path (s) in the visible and near in-
frared range for one specific direction has been measured. Furthermore, a strong
chromatic dispersion of s and value of up to ∼ 100−500 μm, that is to say ∼ 300
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times the lattice parameter, a, is reported. Figure 8.5 shows a scheme of the ex-
perimental set-up. The opal-based photonic crystals doped with vacancies (from
0 % to 40 %) are probed along the ΓL crystallographic direction (perpendicu-
lar to the sample surface). Specular reflectance (R = IR/I0) and transmittance
(T = IT /I0) are measured. Spectra (as those shown in figures 8.4c and 8.4b)
are taken in adjacent regions, as shown in figure 8.5a, along a line perpendicular
to the crystal growth direction and parallel to the meniscus between the colloid
and the substrate. This is done to be sure that growth has taken place under
exactly the same conditions and at the same instant. Adjacent regions of different
thickness (films with different amount of stacked layers, drawn in figure 8.5a) are
visible by optical microscope inspection as terraces on the sample surface, as in
figure 8.5b. The thickness of such films is assessed by measuring the density of
Fabry-Perot fringes that occur for the interference of the light reflected from the
front and rear faces of the sample. This precise measurement has been crucial to
provide the exact thickness, L, of the tested region in the sample and has been
confirmed by simply counting terraces along the photonic crystal (counting the
number of terraces in the vertical direction whose separation is known with an
uncertainty equal to that of sphere diameter. The actual thickness is, therefore,
given with an uncertainty of < 2 %, the sphere polydispersity.

Figure 8.5: (a) Scheme of the scattering mean free path measurement set up. Specular
reflectance and transmittance are measured along the ΓL direction (perpendicularly to
the sample surface) in adjacent terraces with known thickness. (b) Optical image made
combining 8 images of the opal surface from a microscope, in which the different layers
are distinguishable as terraces. The measurements have been performed from 1 to 67
layers, which are clearly distinguishable from each other by eye inspection with the help
of the microscope, on adjacent areas, along horizontal lines perpendicular to the crystal
growth direction.
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The analysis carried out over the reflectance and transmittance measurements
takes into account the fact that light impinging on a perfect photonic crystal can
be absorbed, reflected, diffracted or transmitted. In our case, and in the partic-
ular spectral range of interest, absorption effects can be neglected as confirmed
by measuring the absorption length (a ∼ 10m) in the visible range for a pho-
tonic glass composed by the same polymer spheres (see chapter 6, section 6.1).
Diffraction can be totally excluded as we are considering energies below the onset
of diffraction (a/λ ∼ 1.12) for details see appendix A. If any degree of topological
disorder is added, some light will be scattered off a Bloch mode, leading to what
is commonly known as diffuse light. In the case treated here, scattering is the
only phenomenon that can account for light missing from the sum of ballistic
transmittance T and reflectance R. Under these conditions, the diffuse light in
photonic crystals is then quantified by D = 1− (T +R), as previously discussed.
Lambert-Beer law for photonic crystals can be written as:

Figure 8.6: Lambert-Beer’s law in photonic crystals. (a) Plot of ln(R+ T ) as a function
of the sample thickness, at λ = 633 nm, for different vacancy density doped photonic
crystals (from 0 % to 40 % vacancies doping), made of PMMA spheres of 237 nm diam-
eter, and refractive index 1.4. The slope is the inverse of the scattering mean free path.
Three regions are distinguishable, from low to high thickness: (I) interface effects; (II)
the opal is complete, and the scattering losses grow slowly and exponentially; (III) thick
and cracked opal. (b) Represents s obtained from the slope of the linear fit, for regime
II, compared to the Bragg length (LB) in the case of ρv = 0 % as shaded area.
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R(L) + T (L) = exp(−L

s
) (8.2)

(deduced in more detail in A, section A.1). Scattering losses are characterized
through the scattering mean free path which, in a random medium, is defined as
s = 1/σρs, where σ is the scattering cross-section and ρs is the scatterers number
density. s is not only a measure of the quality of a photonic structure but also
the basic length-scale of a more complex picture of multiple scattering and light
diffusion. While quantities like the transport mean free path, t, or the diffusion
constant, D, are meaningful only in the context of the diffusion approximation, s
has a full meaning in any microscopic picture, regardless of the transport regime.
In our system, the degree of extrinsic disorder can be very precisely and uniformly
tuned (see scanning electron microscopy (SEM) images in figure 8.1a and 8.1b),
while keeping the sample thickness precisely controlled. This allows us to develop
a setup to measure Lambert-Beer’s law for photonic crystals.

8.3.1. Scattering mean free path vs. vacancy doping

Figure 8.6a shows the measured ln(T + R) for three different degrees of va-
cancy doping, i.e. for different degrees of extrinsic disorder, at a wavelength
λ = 633 nm and for spheres with diameter d = 237 nm (a/λ = 0.52). In this
type of representation, the slope yields directly (−s)−1 according to equation
8.2. This wavelength is chosen to exemplify a spectral region where no photonic
band features are present, as, at such a low energy, the photonic crystal band
dispersion is the same as in a uniform homogeneous effective medium. In figure
8.6a three scattering regimes are clearly distinguishable. For thicknesses lower
than ca. 10 layers, regime (I), light scattered is due to surface effects and the
slope of the linear fit decreases. Top (crystal-air) and bottom (crystal-substrate)
interfaces are sources of light scattering of about ∼ 25-30 %. The interfaces
present additional defects, for example different stacking patterns [48], high lat-
tice displacements and, even stacking order arrangements [47], which are been
already discussed in the context of optimal self-assembling of the spheres in the
colloidal meniscus [50]. When the second regime (II) sets in, the slope (−s)−1

reach a stationary value that characterizes the photonic crystal. Equation 8.2
holds and scattering losses scale with sample thickness like ∼ exp(L/s). In this
range of thicknesses, where self-assembly has reached a stationary and optimal
behavior [59], it is possible to determine the quality of the crystal from the scat-
tering mean free path. If we extrapolate to zero thickness the exponential fit
yields a non-zero value for the losses, which means that there are some intrinsic
scattering losses associated with the surfaces of the crystal. As the crystal grows
thicker, the absolute value is dominated by surface losses but, for thicknesses in
regime II, s is determined from crystal bulk variation. Finally, for larger thick-
nesses, a third scattering regime (III) appears in figure 8.6a. Apparently, for
thick samples the self-assembling process loses its effectiveness and the intrinsic
disorder grows strongly. This effect may be attributed to several reasons such
as a possible different drying condition of the crystal caused by the evaporation
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of the solvent or a mechanical instability of the sample that we found starts to
crack after ∼ 50 layers and to lift from the substrate.

The physical picture we propose can be checked against consistency if addi-
tional disorder is added to the photonic crystals. This can be done by doping
the original photonic crystal with a controlled concentration of vacancies. In
this way, the scattered light increases when the extrinsic disorder (vacancies) in-
creases. At a wavelength of 633 nm the values of s for different vacancy density,
calculated from the fit to the Lambert-Beer law, are plotted as a function of va-
cancy density in figure 8.6b. Basically, in a photonic crystal without vacancies,
s depends only on the intrinsic thermodynamically-induced disorder, whereas
in a controlled vacancy-doped photonic crystal, s can be artificially decreased
through extrinsic disorder. As can be readily appreciated, the perfect crystal
(that with 0 % added vacancies) is far from perfect but it presents a scattering
mean free path of several hundreds of times the lattice constant (in this case
a = 0.33 μm) and, in particular, much larger than the Bragg length [59], that
in our case is B = (3.8 ± 0.3) μm. It can also be noticed that, the addition of
a very little amount of defects rapidly decreases the mean free path, hence the
quality of the crystal. In this figure, the inverse scattering mean free path scales
linearly with the vacancy concentration ρv. We can expressed s as:

−1
s = ρ0σ0 + ρvσv (8.3)

where ρ0 and ρv are the density of intrinsic and intentionally added scatterers
and σ0 and σv their scattering cross-section respectively. Equation 8.3 assumes
independent scattering from the vacancy doping. Using equation 8.3 we can fit
s(ρv) as a function of the vacancy concentration, ρv (in %) and get a good
agreement with experimental data. From this fit we can estimate σv = (0.016 ±
0.002) μm2, which is about 3 times smaller than the geometrical cross section of
the sphere and compatible with its Mie cross section (σMie ∼ 2πR2 for R ∼ λ,
where R is the sphere radius [10]).

8.3.2. Scattering mean free path vs. energy

The analysis carried out so far has been done at wavelengths away from any
photonic band gap features: that is, in a spectral region where the material acts
just as an effective medium and the addition of vacancies (scatterers) is just a
source of scattering. In order to study the effect of the photonic crystal modes on
light scattering it is necessary to investigate the energy dependence of s, which
can be done by plotting the scattering mean free path as a function of wavelength,
as presented in figure 8.7.

Here a resonant behavior of s is visible. This strong dispersion is the signature
of the effect of the photonic crystal. Before going into the details of this profile,
it is worth carrying out a quantitative analysis of the scattering strength in our
photonic crystals. In the low energy side of the pG, s takes on a value of the
order of ∼ 100 μm for sphere diameter d = 237 nm and ∼ 500 μm for d = 600
nm (not shown here), the largest values reported so far. Previous experiments
[179, 180, 181] have measured t, the transport mean free path, from very thick
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(∼ 200 μm) photonic crystals grown by natural sedimentation or centrifugation
[179], and found values in the range 7 μm < t < 20 μm. It is important to point
out that s is in always smaller than t since it is defined as:

t =
s

1 − 〈cos θ〉 (8.4)

where θ is the angle with respect to the forward direction. Therefore, these
reported values of t constitute an upper bound for the scattering mean free
path. The values found in our experiments represent a much higher degree of
ordering than previous reports.

Figure 8.7 presents the energy dependence of s in a logarithmic scale. Far
from the band-gap, s(ω) varies as ∼ ω−2. This ∼ ω−2 dependence has been
confirmed also in previous experiments [183] and attributed to Rayleig-Gans type
of scattering [10]. Figure 8.7 shows how, at the band-edges, s(ω) has a sharp
decrease of a factor of up to 4 to s(a/λ = 0.59) = 111 μm and then it shoots up
almost an order of magnitude in the band-gap to s(a/λ = 0.62) = 80 ± 40 μm.
Such an 8-fold increase occurs within just 0.03 in a/λ or ∼ 27 nm in wavelength,
around the photonic band-gap. Again, as a comparison, we show in figure 8.7
the frequency dependence of s for the 10 % and the 40 % vacancy photonic

Figure 8.7: Dispersion of the scattering mean free path. Figure shows s as a function
of the light wavelength for samples grown with spheres 237 nm in diameter. The position
of the pseudo-gap is shaded in cyan. A strong decrease of s at the band-edge and a
strong increase in the band-gap is the effect of the photonic crystal dispersion. The
same analysis performed on 10 % and 40 % vacancy doped photonic crystals shows
how the dispersion smooths rapidly to turn into a slight variation associated with the first
Mie resonance of the disordered medium. The dotted line shows the ω−2 dependence
of s far from the band-gap.
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crystal, the latter can be considered fully disordered. As the vacancy doping is
increased, the profile is smoothed. Firstly the band-edge effect on s disappears,
as these states are very sensitive to disorder (we will return to this assumption
later on this chapter). Then, for the 40 % vacancy case, the effects on ρ(ω) are
washed out and the only feature in s occurs at the position of the first Mie
resonance of the individual dielectric spheres. This weak energy dependence of
s is likely to be the only residual effect in a very disordered opal, as those grown
by natural sedimentation or centrifugation [42, 179]. Disordered opals present
only superficial ordering visible in the Bragg iridescences from the first layers but
are largely bulk-disordered and exhibit standard light diffusion. This may be the
reason why previous experiments have reported very small values of mean free
paths and no evidence of strong frequency dependence.

8.3.3. Scattering mean free path and density of states

The polarizability tensor of a small spherical particle of volume V placed at
position r can be written as [182]:

α = 3V [I − 3iV β(
ω

c
)2ImG(r, r′)]−1 (8.5)

where I is the unit dyadic, G(r, r′) is the green tensor of the system at the working
frequency, and β is the Clausius - Mossotti factor of the scatterer. From this, the
power scattered by the particles is:

P ≈ ε0(3V βω/c)2E+
inc(r)ImG(r, r)E+

inc(r) (8.6)

where Einc(r) is the field polarizing the scatterer. If the external field is a plane
wave with wave-vector k and amplitude E0 and taking into account the reciprocity
theorem, the field exciting the scatterer can be expressed using the k component of
the green tensor Gk(r) as Einc(r) = Gk(r)E0. We will assume that the imaginary
part of the green tensor can be approximated by ImG(r, r) ≈ Iπc2/(2ω)ρk(ω).
Noting aslo that the k contribution to the local density of states (or projected
density of states), denoted by ρk(r, ω), is proportional to |Gk(r)E0|2, we obtain
a (spatially averaged) scattering cross section:

σk(ω) ∼ F (ω)ω2ρ(ω)ρk(ω) (8.7)

where F (ω) is a form factor which takes into account corrections beyond Rayleigh
scattering. In this simple model, the form factor can be replaced by a Rayleigh-
Gans factor F (ω) ∼ ω−2 and the polarizability of the scatterer α(ω) can be
considered independent of frequency. Any lack of isotropy is neglected in the
dispersion relations of the photonic crystal. This result states that the scattering
cross-section, and hence the scattering mean free path, has a strong dependence
on the light wavelength and the total and projected density of states ρ(ω) and
ρk(ω), respectively. This dependence typically disappears in ordinary random
media for which the photonic modes are isotropic, and with smooth energy de-
pendence.
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Figure 8.8a shows the inverse of the total density of states, ρ(ω), which induces
the dispersion in s. While the total density (dark blue dotted line) has a very
weak modulation at the gap, the density of states ρk(ω) for propagation parallel
to k = (111) (along the ΓL crystallographic direction) which is proportional to
the inverse of the group velocity in that direction, vg(k = (111)), has a strong
variation at the gap (violet full line). Of course in an infinite crystal the inverse
of the group velocity diverges at the band edges and is not defined in the gap [24],
but for finite crystals a shape that closely resembles the scattering enhancement
is experimentally and numerically found.

Figure 8.8b shows the enhancement factor in the scattering mean free path
for two different samples composed by PMMA spheres with diameters d = 237
nm (black curve) and d = 600 nm (green curve). The enhancement factor is
obtained by normalizing the experimental curve, calculated from the fitting of the
measurements, to the value of the scattering mean free path measured at a/λ ∼
0.4. At this low energy, which is spectrally considerably far from the photonic
pseudo-gap of the photonic crystal, light does not probe the nanostructure of the
system and just propagates thought the crystal as in an effective medium with
an effective refractive index. The enhancement factor points out the existence of
a photonic pG and reveals the variation of the density of states in the photonic
crystal as compared with the effective medium. A clear resonant behavior is
evident. The variation in s is 8-fold for d = 237 nm and 20-fold for d = 630
nm, which we attribute to the superior quality of the lattice in the last particular

Figure 8.8: (a) Inverse of the theoretical density of states for an fcc arrangements of
spheres along the incident direction (ΓL direction). Both the inverse of the total ρ(ω) and
the projected ρk=(1,1,1)(ω) are plotted. (b) Enhancement factor, s(a/λ)/s(a/λ = 0.4),
for two opals with two different sphere diameters and no vacancy doping. The dashed
pink curve is the product [ρ(ω)ρk(ω)]−1, which qualitatively reproduces the measured
profiles. The position of the pseudo-gap is shaded in cyan.
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sample. In figure 8.8b we plot also 1/ρ(ω)ρk(ω) (dashed pink curve) that, from
equation 8.7, is expected to reproduce the shape of energy dependence of s(ω).
A fair agreement between theory and experiment is obtained, and the qualitative
behavior is well captured by our simple model. Notice that ρ(ω) measures the
number of modes available for propagation into all directions, and hence is the
quantity that controls the light emission from an isotropic light source embedded
in the photonic crystal. In polymeric opal photonic crystals, as the one discussed
here, ρ(ω) has only a minor variation of around 10 % in the pG. The directional
ρk(ω), which describes a single direction, has a large variation of an order of
magnitude: it increases sharply at the band-edge and decreases considerably
in the middle of the gap. Although both contribute to the strong variation of
s, it is evident that the principal factor responsible for a change in s(k =
(111)) is ρk(ω) in the direction k = (111). Our simple and qualitative model
accounts quite well for the shape of the measured s(ω) although it does not
account for the asymmetry of its dispersion in the pG. This effect is related to
the available scattering states in other crystallographic directions close to the
incident one. For light incident in the ΓL direction, scattered photons in the
low energy band-edge find allowed states in adjacent directions when a small
momentum is acquired (like from scattering in an impurity). At the high energy
band-edge, the additional momentum needed for a scattered photon to find an
accessible state in other directions is larger and the process for this frequency
becomes less probable than the former. This is the reason that, qualitatively,
explains why s grows more slowly in the low energy side of the gap and presents
such an asymmetry. These measurements indicates the need for a more complete
theoretical model that should account for all the modes in all directions with the
right scattering probability.

An increase of s in the band-gap and a decrease at the band-edge reflects
the modified phase space available (Δk) for light scattering when the photonic
modes are concentrated around few k-directions or when the available scattered
state one reduced. This is consistent with John’s seminal prediction of a need
for a modified Ioffe-Regel criterion [37] for scattering in photonic crystals, to
include Δk. In addition, here we show that as the phase-space is modified, also
s is altered, light scattering in photonic crystals is richer than in conventional
amorphous media.

8.4. Diffusion constant

Static measurements reveal the resonant behavior in the scattering mean free
path and its dependence on the projected density of states in the photonic crystal,
but a crucial information about the dynamic response of light pulses though the
system is also of paramount importance to characterize the transition from order
to disorder. As shown in chapter 6, sectionb6.2, time-resolved measurements of
light transport diffusion offer valuable information. In the previous section, the
static transmission of scattered light has been analyzed, which is at the basis of
light diffusion. A light pulse incident on an homogeneous material with wave-
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length independent transmission, like a constant refractive index thin film, will be
transmitted preserving its shape; if the same pulse encounters a bandgap environ-
ment, as in the case of photonic crystals, it experiences delays and deformations
of its envelope due to the complicated dispersion of the group velocity in these
systems. In this section, the time-resolved response of transmitted diffuse light
though photonic crystals with a controlled amount of vacancies will be analyzed.
In chapter 6, section 6.2, a streak-camera set up was used to monitor the time
decay of diffuse light with ps-resolution; however, in this section, a non-linear
optical gating technique will be used to measure the time decay of diffuse light,
as the needed resolution is in the range of fs.

8.4.1. Time-resolved spectroscopy by non-linear optical gating

The time which light spends to travel thought a thin film with thickness of
the order of microns (structured or not) is of hundreds femtoseconds (fs). This is
out of the range of typical streak cameras. A streak camera cannot go beyond few
picoseconds. We are brought to employ very short laser pulses and an accurate
technique to detect very short time intervals (see also [185]).

Figure 8.9: Scheme of the non-linear optical gating. Two synchronous pulses are
generated by the OPAL laser at 1500 nm and 810 nm (grey and red pulses, respectively).
The infrared (grey) pulse is used to probe the sample and generate diffuse light. The
reference (red) pulse is spatially delayed in a controlled translational stage. Diffuse
and reference pulses are then mixed together in a non-linear crystal generating a third
pulse with frequency sum of the frequencies of generator pulses. Since the intensity of
this later pulse is proportional to the product of the two, diffuse and reference, pulses
intensities at a given time, the whole process works as an optical gate.
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An optical gating technique has been employed to measure time decay of
diffuse light through the samples analyzed in this chapter. Optical gating solves
the problem of detecting very short optical pulses by converting time intervals
into space distances via the space-time relation x = ct (for light in vacuum 10
fs correspond to 3 μm). Figure 8.9 schematizes the set up used to that purpose.
A probe and a reference pulses are provided by an optical parametric oscillator
(Spectra Physics, OPAL) which yields short pulses tunable within 1450 to 1600
nm (average power 100 mW). The OPAL is pumped by a Ti:Sapphire laser at
center wavelength 810 nm (pulse duration 130 fs, average power 2.0 W, repetition
rate 82 MHz). More details about the pulse source can be found in appendix B).
In our case, the probe pulse is generated at 1500 nm (grey pulse in figure 8.9)
and it is used to probe the samples. A second reference pulse, residual of Ti:Sapp
laser, is synchronously generated with the probe pulse at wavelength 810 nm
(red pulse in figure 8.9) and it is delayed spatially in a controlled manner with
the help of a translation stage with accuracy of microns. The first pulse probes
the sample and gives rise to diffuse light (schematically drawn as a deformed
grey pulse in figure 8.9). It is then mixed with the reference pulse in a non-linear
crystal, giving rise to a third generated sum frequency pulse (green pulse in figure
8.9). The generated pulse frequency is sum of the diffuse and reference pulses
frequencies. Since the efficiency of the sum-generation at the non-linear crystal is
proportional to the product of the two diffuse and reference pulses intensities at
a given time, the whole process works as an optical gate. Delaying spatially the
reference pulse, it is possible to scan the diffuse pulse in time. Then, the problem
of resolving tens of fs translates into resolving μm which is a more easily done
by using the translation stage. The details of the set up used to measure time
of flight of diffuse light though vacancy-doped photonic crystals can be found in
appendix B

Figure 8.10 shows the measurement of the time-resolved light transmission,
through thin film opals grown with PMMA spheres with a diameter d = 630 nm at
two different energies and for a fixed vacancy density, ρv = 0. The spheres used
in this section have a diameter slightly larger than those used in the previous
section and this is due to the fact that both PMMA spheres come from two
different batches.

The measurements have been performed at a/λ1 = 0.56 (black circle in figure
8.10a) and a/λ2 = 0.59 (red circle figure 8.10b). The reference pulse is plotted
in both figures with a blue curve in order to compare the diffuse decay with
the time delay of the reference beam. The thicknesses of the samples used in
these time-resolved experiments are about 21 μm (∼ 40 layers). The value of
the diffusion constant is obtained by fitting the experimental time profile of T (t)
with the dynamical solution of the diffusion equation 1.23 (1.2.3). The diffusion
constant at λ2 is D(λ2) = 220 m2/s. Contrary to this, the time decay of the
diffuse light at λ1 is on the order of the of the probe and reference pulses (150
fs, blue curve in figure 8.10a) and it is not possible to fit the decay time and to
obtain a measurement of the diffusion constant at that energy by means of the
non-linear optical gating technique. In order to explain this fact, s has been
measured at these two different wavelengths, λ1 = 1590 nm and λ2 = 1500 nm,
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for samples grown with these spheres. Figure 8.11a shows the corresponding
spectral positions of these two probe wavelengths with respect to the theoretical
density of states of the sample. The first probe wavelength (λ1) corresponds to
the value a/λ1 = 0.56 (marked by black square). The second probe wavelength
corresponds to a/λ2 = 0.59 (marked with a red circle). Figure 8.11a plots the
theoretical density of states projected along the ΓL direction, ρk=(1,1,1)(ω), for an
fcc arrangements of spheres. It is easy to observe that the first energy probe (black
square) lies in a photonic pass band along the ΓL direction and the second energy
probe (red circle) coincides with the spectral position of the low energy band-edge
in the same crystallographic direction (figure 8.11b). As explained in the previous
section, this fact has an important effect on the measurement of the scattering
mean free path. To explicitly point it out, figure 8.11c shows the variation of the
s as a function of the vacancy density (ρv) at both energies. At λ1, s varies
from 53 μm, in the case of the perfect opal, to 3 μm, for ρv = 40 % (a ten fold
reduction). This strong variation (plotted as a dashed black curve in the figure)
happens in the case of λ1 lying on the pass band, far from any photonic feature.
Contrary to this strong variation, at λ2, figure 8.11c shows a more attenuated
variation of the scattering mean free path when the sample is probed at the band-
edge (plotted as a dashed red curve). In that case, the value of the scattering
mean free path varies from 25 μm, for the perfect opal, to 4 μm, in the case of
ρv = 40 %, which is nearly half the variation as in the case of λ1. This fact can
be due to the modified phase space available Δk, which enhances light scattering

Figure 8.10: Plot of the time-resolved diffuse transmission through photonic crystals
with ρv = 0 % at different energies: a/λ1 = 0.56 (a) and a/λ2 = 0.59 (b), together with
the pulse reference (blue curve).
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Figure 8.11: (a) Theoretical density of states along the ΓL direction for the case of
ρv = 0. The measurement of the diffusion constant is performed at a fixed energy
value (red circle), a/λ2 = 0.59, which coincides with the band-edge in this particular
crystallographic direction. Black square represents an energy value at the pass band,
far from any photonic feature. (b) Photonic band diagram along the ΓL direction which
shows the actual spectral position of the λ1 (black line, pass band) and λ2 (red line,
low energy band-edge). (c) Scattering mean free path, s, measured at two different
spectral positions, at the pass-band (black squares) and at the band-edge (red circles)
as a function of the vacancy density, ρv. The variation of s is more attenuated in the
case of the band-edge (red line) than in the pass-band (black line).

(pointed out in figure 8.11c). This light scattering enhancement gives rise to
a subsequent light diffusion enhancement. Attending to these measurements, a
photonic effect related to the density of states in the perfect photonic crystal may
be the reason for which the diffusion constant is too large to be measured at
λ1. In the pass-band of the photonic crystal, light scattering is very inefficient
and light propagation is mainly ballistic or unscattered. On the contrary, in the
band-edge, where light scattering and diffuse light are enhanced, the diffusion
constant is too high and the time decay is of the order of the reference pulse to
be measured.

From the time dependence we obtain D. Figure 8.12 shows the experimental
diffusion constant at a fixed fixed wavelength λ2 = 1500 nm which corresponds
to a/λ2 = 0.59 and as a function of the vacancy density, ρv. The experimental
measurements are fitted by an exponential decay (dashed black curve) as D ∝
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Figure 8.12: Plot of the diffusion constant of light, D, as a function of the vacancy
density, ρv measured at λ1 = 1500 nm. The system is composed by PMMA spheres
with n = 1.42 and a diameter d = 630 nm.

e−ρv/α0 , where α0 ∼ 3. The figure 8.12 shows a reduction of the diffusion constant
as a consequence of the increased amount of disorder in the samples induced by
the inclusion of vacancies in lattice positions. The value of the diffusion constant
varies from D(ρv = 0 %) = 220 m2/s to D(ρv = 40 %) = 43 m2/s. The
introduction of 40 % of vacancies in the sample constitutes a very disturbing
effect on the photonic properties of the sample which may completely destroy
any photonic feature (as shown in figure 8.6b). The final disordered system
has a diffusion constant value which is about 20 % of that from the most perfect
photonic crystal (no doped with vacancies). It seems plausible that, at wavelength
λ2, these variation may be artificially attenuated by a low diffusion constant
value for ρv = 0 % due to light interference in the structure, as suggest recent
theoretical analysis of the diffusion constant where disorder is intentionally added
to a photonic crystal [38]; a 70 % variation of D is found in such studies in the
onset of strong light localization. In our case, we are probably far from this
phase transition due to the low refractive index of the structure. An exceptional
reduction of the diffusion constant in photonic crystals with a certain amount of
intrinsic disorder has also been measured very recently [187] which is explained,
also, in terms of interference effects on the diffusion parameters.

8.5. Total white light transmission: from crystals to glasses

A smooth transition between order and disorder has been characterized through
the analysis of the scattering mean free path in section 8.3 and the diffusion con-
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stant in section 8.4. It has also be shown how the density of states ρ(ω) of the
system has a crucial role in the light scattering though photonic crystals. The
possibility of exerting a high control over this magnitude is of paramount impor-
tance since it is what governs directly the light transport as well as light emission
in nanostructured dielectrics [3, 32]. Along this thesis we have seen that, by
modifying the vacuum modes, photonic crystals change the available phase space
for light propagation opening frequency gaps in which propagation in some (or
even all) directions is inhibited, while the density of states, ρ(ω), near the band-
gap edge frequencies is increased. However, even in the highest quality photonic
crystals intrinsic disorder triggers light scattering that, for thick enough crystals,
provokes that ballistic transport of light is replaced by diffusion. Strong evidence
that the density of states significantly modifies light scattering has been provided
in the previous section. As pointed out by John [4], a dramatic change in light
diffusion may occur for frequencies in or around the band-gap and eventually
Anderson localization of light can be reached, the photonic conductor becoming
an insulator. Even far from localization, the study of the transition from ballistic
to diffuse light propagation is a challenge itself. In this section, experimental
measurements which suggest such a transition will be analyzed in an opal-based
photonic crystal when it is doped with vacancies.

Figure 8.13: Total light transmission through opal based photonic crystals doped with a
given density of vacancies (black curves) and through a photonic glass grown with the
same spheres (red curve). The measurements are taken in the high and low energy
range. In particular, the figure shows the evolution of the dip related to the pseudogap
in the ΓL direction.
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To that purpose, total transmission is measured with the help of an inte-
grating sphere which consists of a hollow cavity with its interior coated for high
diffuse reflectance. A schematically sketch can be seen in chapter 5, section 6.1.
Photonic crystal thin films with different concentration of vacancies are placed on
the integrating sphere entrance apperture and illuminated with monochromatic
visible and infrared light. Light illumination is performed perpendicularly to the
sample surface.

In order to estimate the ratio between the sample thickness and the scattering
mean free path, we will use the value of s measured at the pass band (black
squares in figure 8.11c). Total transmission measurements are performed with
the integrating sphere on large areas of mm2, where it is not possible to select
an individual thickness in the sample (contrary to the case of s measurement).
For this reason, we will assume a mean value of the sample thickness of 21 μm.
With this value of L, we can estimate the ratio L/s. This is an important
parameter to characterize the light transport regime in each sample. Attending
to the definition of s (see chapter 1, section 1.2.1), L/s becomes an estimation
of the average number of scattering events which take place in the sample, as
shown in table 8.1. The number of scattering events which light performs in the
sample (in the pass band, at an energy far from any photonic feature) increases
with the vacancy density ρv. From an average value of no scattering events in the
case of the most perfect opal-based photonic crystals to the 5 average scattering
events in the case of ρv = 40 %. This important estimation gives a first crucial
information about the kind of light transport regime which takes place in the
samples. From ballistic light transport, in the case of non-doped crystals, to the
case of quasi multiple scattering light transport, in the case of ρv = 40 % doped
crystals.

Table 8.1: Average number of scattering events

ρv (%) s (μm) L/s

0 40 ± 4 0.5
5 22 ± 2 1
20 7.0 ± 0.7 3
40 4.0 ± 0.4 5.3

The enhancement of light scattering is here pointed out: without changing
the crystal structure, just by the addition of vacancies in the lattice which act as
scatterers, we can control and fine tune the light scattering regime from ballistic
to multiple scattering. This as already suggested in the measurement of the
scattering mean free path compared to the Bragg length LB (figure 8.6b). In
this section we will try to analyze this transition more deeply and to compare
the transport parameters of the doped crystal with the photonic glass. Figure
8.13 shows a direct measurement of the total light transmission through different
photonic crystals films (thickness L ∼ 20 μm) upon white and infrared light
illumination in two ranges from from 980 nm to 2000 nm and 500 nm to 900
nm, in order to be able to probe both the low and the high energy photonic
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dispersion relation of the samples. The density of vacancies varies from ρv = 0 %
to ρv = 40 % (black curves) and it is compared with the total diffuse light
transmission from photonic glasses (red curves) grown with the same spheres. In
photonic glasses, the transport mean free path has been measured (see chapter 6)
to be t � 3 μm. Although, s is smaller than t, the values of s for the crystal
highly doped with vacancies and for the photonic glass are on the same order,
s(ρv = 40 %) = 2 μm (figure 8.6b).

The first fact which is necessary to point out is that, in the cases of ρv = 0 %
and ρv = 5 % we are measuring ballistic light transport. For these low vacancy
densities, the samples present a low value of scattering events (table 8.1) and

Figure 8.14: Total light transmission through opal-based photonic crystals with a 40%
of vacancies in lattice positions compared to photonic glasses made with the same
spheres with diameters d = 237 nm (a), d = 630 nm (b) and d = 780 nm (c).
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light propagates through the sample ballistically. Most of the photons propagate
without being scattered by the lattice. Figure 8.13b shows a dip in the case of
ρv = 0 % and, the same but attenuated, in the case of ρv = 5 %. This dip in
transmission is related to the ΓL pseudogap. As previously said, light illumina-
tion is performed perpendicularly to the sample surface and, therefore, ballistic
light only probes the ΓL crystallographic direction, giving rise to a deep in trans-
mission. This dip, as extensively shown in this thesis and, in particular, in the
introduction, originates from light interference and can be described in terms of
Bloch-modes propagation and band-gaps. In the case of ρv = 40 %, the optical
thickness of the sample can be considered large, attending to table 8.1. In this
case, ballistic light is exponentially attenuated as dictated by the Lamber-Beer
law and only diffuse light escaping from the sample can be measured. For such a
high amount of vacancies, the dip related to the photonic pseudogap transforms
into a Mie resonance related to the Mie modes of the dielectric spheres. I hy-
pothesize is that there is a transition from Bloch-modes mediated light transport
(in the case of ρv = 0 %) to Mie-modes mediated light transport (in the case of
ρv = 40 %). Although it cannot be completely assured with these measurements,
it is plausibly suggested when comparing with total light transmission through a
photonic glass. The total diffuse light transmission through a photonic glass (red
curve) grown with the same PMMA spheres with the same diameter reveals such
a behavior (see also chapter 6, section 6.1). The total light transmission from a
crystal doped with ρv = 40 % and from a photonic glass are indistinguishable
(figure 8.13).

In order to support and to give additional experimental evidences to this
thesis, figure 8.14 compares the total light transmission through photonic crystals
doped with ρv = 40 % and through photonic glasses made with the same PMMA
spheres for three different diameters, d = 237 nm, d = 630 nm and d = 780 nm.
Figure 8.14 shows, clearly, that light transmission presents the same features in
the case of both systems. From these static measurements it is not possible to
distinguish a photonic crystal doped with a ρv = 40 % from a photonic glass, even
if in the first case a long correlation still exist in the structure. Although this
measurements are not enough to ensure a complete transition between ballistic
to diffuse light transport, they suggest such a transition.

8.6. Conclusions

In conclusion, we show that the controlled smooth transition from ballistic
to diffuse transport in photonic crystals can be induced by the introduction of
extrinsic disorder. It was also found that the strength of scattering is closely
related to the density of states, which induces immense, up to 20-fold, varia-
tions in the scattering mean free path. The measurement of this magnitude was
made possible by a simple method that estimates scattering strength from simple
straight-line transmittance and reflectance measurements. We propose s as a
robust, easy to measure, figure of merit in assessing the quality of photonic crys-
tals for technological applications. In particular, our samples which are grown
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in no special-care conditions like glove boxes or clean rooms, exhibit scattering
losses as small as ∼ 86 dB/cm casting an optimistic light on photonic crystal
future applications. The possibility of controlling light scattering and diffusion
in nanostructured optical media has important implications not only to test the
quality of photonic devices, but also to properly address the proximity to the
onset of Anderson localization in disordered lattices, or for the spectral control of
lasing emission from disordered/ordered active media. Complete photonic band-
gap materials, like Si inverted opals, would amplify the effect here presented and
would be proper candidates to observe Anderson localization of light. Moreover,
and beyond the fundamental questions related to light transport, the majority
of microelectronic devices, from conducting wires to p-n junctions, are based
on rather perfect metallic atomic lattices and exploit carrier diffusion as their
functional component. In the photonic domain, the control of light diffusion in
imperfect ordered dielectrics is an unexplored route that might lead to photonic
devices based on the interplay between order and disorder.





Chapter 9
Laser emission in ZnO
nanostructures

Along this thesis, it has been pointing out that conventional optics and mod-
ern nanophotonics mold the flow of light in a different fashion. Conventional
optics makes use of homogenous materials and engineers light emission and light
propagation through the material boundaries whereas modern photonics makes
use of nanostructured dielectrics where light properties are controlled with the
nanostructured itself. This is, for example the case of laser emission. Both in the
introduction and also in chapter 7, it has been widely explained how conventional
lasers are composed by a gain medium which is able to radiate photons by means
of an external pumping mechanism and an optical cavity which provides the nec-
essary resonant feedback to reach a threshold [61]. The optical cavities used in
those lasers are mirror-based Fabry-Perot resonators. Light modes are built up
with the help of mirrors and threshold is achieved with the resonant feedback
mediated by the cavity. Cavity losses are the main limiting factor and define the
well-known parameter β-factor, the amount of spontaneous emission that con-
tributes to the lasing mode. Smaller β, smaller energy needed to make a gain
medium laser. Modern nanophotonics propose different strategies to minimize
the value of β and to obtain very efficient lasing emission spending less energy
than in homogenous gain media. In nanostructured gain media, light modes
are provided by light interference with an ordered dielectric structure (photonic
crystal-based lasing emission Bloch lasing [72]) or by light multiple scattering (as
in the case of random lasers [63]). In both approaches, ordered (in two- [190]
and three- [28] dimensions) and disordered (powders [155] or very low quality
ordered structures [189]), light-mater interaction is enhanced artificially with the
help of the material nanostructure, the material is engineer to simultaneously
play the role of gain medium and optical cavity in conventional lasers, providing
laser modes feedback.

In this chapter lasing measurements on ZnO ordered and disordered nanos-
tructures will be shown. Bloch lasing in high energy photonic bands of ZnO
inverse opal will be reported as well as experimental evidence of random lasing in
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two different ZnO disordered nanostructures: ZnO inverse photonic glasses and
ZnO inverse photonic crystals doped with a high amount of vacancies. A play-
ground to study the transition from Bloch to Random lasing will be provided.
Both lasing emission approaches will be quantitatively compared and the basis to
a further study of the transition from Bloch to random lasing will be proposed.

9.1. Bloch laser in ZnO inverse opals.

We will firstly analyze lasing emission in ZnO inverse opals obtained with the
infiltration method shown in chapter 2. Figure 9.1 schematizes the optical set
up used to that purpose: ZnO inverse opals are optically pumped by a frequency
tripled Q-switched pulsed Nd:YAG laser (9 ns pulse duration), with 10 Hz repe-
tition rate. The spot size was fixed at 1 mm diameter. The pumping beam and
the emission beam are along the direction perpendicular to the sample surface
and probe the photonic band structure along the ΓL crystallographic direction.
The ZnO emission was monitored along the same direction with the help of a
beam splitter and a miniature spectrometer with a resolution of 0.5 ∼ nm. The
pump energy per pulse is measured with the help of a powermeter, as figure 9.1
shows.

ZnO inverse opals without vacancies are pumped at high energy photonic
bands (a/λ > 1), where light couples with small slope photonic bands [59]. UV
ZnO lasing is demonstrated at room temperature for these samples as figure 9.2
shows. This measurements confirm those reported by M. Scharrer et al. [28] for
similar ZnO structures. Such structure, inverse ZnO opal with high refractive
index contrast n � 2, simultaneously confines light and provides optical gain.

Figure 9.2 shows the comparison of the experimental lasing emission results
(right panels of figure 9.2a, 9.2b and 9.2c) and the calculated photonic band

Figure 9.1: Schematic of the optical set up used to measure emission from ZnO in-
verse opals. Pumping and emission are along the (111) crystallographic direction of the
ordered nanosctructure.
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Figure 9.2: Comparison between experimental measured ZnO lasing in three different
ZnO inverse opals with different original polymer sphere diameters and the photonic
band structure in the ΓL direction assuming a ZnO refractive index n = 2.5 at the reso-
nance. The spheres diameters are (a) d = 316 nm, (b) d = 330 nm and (c) d = 367 nm.
ZnO emission below threshold is also shown in the figure (blue curve) and compared to
the lasing mode. The increase in the sphere diameter is translated into a redhift of the
first high-energy flat band (blue) with respect to the ZnO PL spectrum. This gives rise
to a redshift of the lasing mode from 386 nm (a) to 392 nm (b) and finally to 442 nm
(c). Inset in right panels of the three figures show the emission intensity versus pump
energy, evidencing the existence of a threshold for the three cases.
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structure for each structure at panels of the corresponding figures. These mea-
surements reveal that ZnO lasing emission occurs in high-order photonic bands
with so-called abnormally low group velocity [24]. As explained in the introduc-
tion, section 1.4.2, at photonic band edges or at weakly dispersive, so-called, flat
high energy bands, the slope of the dispersion relation minimizes for a certain
range of wavevector k values. A reduction of vg creates a standing wave like
an ordinary cavity. This leads to a stronger light-matter interaction and to an
enhancement of the optical response of the system. This demonstrates that the
high-order band structure of three-dimensional photonic crystals can be used to
effectively confine light and, for example, to enhance ZnO emission. In particular,
at the low-frequency edge of the third pseudogap in the high energy range of ZnO
inverse opals (labelled C in chapter 4) there is an isolated non degenerate band
(blue curve in left panels of figure 9.2) with extraordinarily low dispersion. Right
panels of figures 9.2a, 9.2b and 9.2c show ZnO emission above threshold which
coincides with the spectral position of this flat photonic band for three different
PMMA original sphere diameter: d = 316 nm (9.2a), d = 330 nm (9.2b) and
d = 367 nm (9.2c). Different original PMMA sphere diameters have been chosen
to tune the blue flat photonic band through ZnO photoluminiscence (PL). Prof-
iting from the relatively wide spectrum of ZnO PL, it is possible to probe lasing
emission from 380 nm to 440 nm by varying the sphere diameter. Light in such a
weakly dispersive blue band has a very low group velocity vg which provides light
amplification. In order to proof that this is the origin of the ZnO lasing emission,
the original PMMA sphere diameter is increased (from figure 9.2a to 9.2c). Blue
flat band redshifts with respect to the ZnO PL spectrum as a consequence of that
diameter increasing. Blue flat band tunes the ZnO PL from 386 nm (a) to 392
nm (b) and finally to 442 nm (c). In all these cases, the lasing emission coincides
with the spectral position of the flat band. Even in the latter case, for original
PMMA spheres diameter d = 367 nm, for which the blue flat band is spectrally
far from the maximum ZnO PL, it is still possible to observe ZnO lasing mediated
by the low group velocity provided by that mode. Inset of figures (a), (b) and
(c) show the emission intensity versus pump energy, evidencing the existence of
a threshold for the three cases.

Figure 9.3a shows ZnO emission above threshold from the three ZnO inverse
opals shown in figure 9.2. Lasing emission of the three inverse opals is compared
with ZnO emission below threshold (dashed dark blue curve in figure 9.3). Fig-
ure 9.3 points out the spectral redshift of the lasing emission originated from the
spectral shift of the lasing mode (blue flat band in figure 9.2) with respect to
the ZnO PL. This reveals that it is possible to tune Bloch lasing in ZnO ordered
nanostructures just by varying the lattice constant. The existence of resonant
modes for light (in this case, blue flat band) within the gain spectral range re-
duces the pump energy necessary to achieve population inversion. This effect
has already been observed in resonant random laser (see chapter 7). The lasing
threshold is, therefore affected, by the interplay between ZnO gain and the spec-
tral position of the lasing mode (blue flat band). Figure 9.3b shows this effect:
varying the lattice constant (by increasing sphere diameter) is translated into
an lower ZnO gain and the lasing mode overlapping, which gives rise to lasing
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threshold increasing.

9.2. Synthesis of ZnO disordered nanostructures

In order to compare previous Bloch lasing in ZnO ordered nanostructures
with random lasing in ZnO disordered nanostructures, we will present in this
section two different ways to obtain such systems. The chemical vapor deposition
presented in chapter 2 to accurately infiltrate opal-based photonic crystals with
ZnO will be used in this section to infiltrate disordered nanostructures which are
the two approaches presented in this thesis: photonic glasses and photonic crystals
highly doped with vacancies. The relatively high ZnO refractive index n � 2
provides enough dielectric contrast to improve the effect of multiple scattering on
light propagation compared to the polymeric original systems, but in addition to
that, UV light photoluminescence of ZnO at room temperature (shown in chapter
2) is a great motivation to use ZnO. By means of the mentioned CVD-method,

Figure 9.3: (a) Detail of the redshift of the lasing emission in ZnO inverse opals pro-
duced by the increase in the original PMMA sphere diameter from d = 316 nm to d = 367
nm. (b) Inverse of the lasing threshold for the corresponding spheres diameters. The
spectral distance from the lasing mode (the first weakly dispersive photonic band, in this
case) and the maximum in the ZnO PL gives rise to an increasing in the lasing threshold.
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ZnO will be infiltrated in both systems and inverse ZnO disordered structures
will be obtained. In the former case, photonic glasses grown with PMMA spheres
as explained in chapter 5 will be infiltrated with ZnO. In the latter case, PMMA
opal-based photonic crystals doped with a high amount of vacancies as explained
in chapter 8 will be also infiltrated with ZnO. In order to obtain the inverse
structures in both cases, the polymeric backbone will be removed by calcination.

9.2.1. ZnO inverse photonic glasses

In order to compare ZnO lasing in both disordered macrostructure, we used
the same PMMA sphere diameter to grow both templates. In the first case,
a photonic glass composed by PMMA spheres with d = 367 nm is synthesized
following the process explained in chapter 5. Then, the template is infiltrated
with ZnO following the chemical vapor deposition method explained in chapter
2. If the PMMA spheres are then calcinated, ZnO random distributed shells are
obtained (figure 9.4a). The inset of figure 9.4a shows cracked ZnO shells in detail.
If the cycles in the CVD process are long enough (typically few minutes bubbling
H2O and ZnO(CH3CH2)2 simultaneously) the sample can be totally infilled by
ZnO, obtaining a random distribution of air spheres embedded in ZnO (figure
9.4b).

In order to optically monitor the different stages of the process, we have
analyzed total transmission with the help of an integrating sphere. This method
has been used in this thesis in chapters 6 and 8. To that purpose we have used a
photonic glass template composed by spheres with diameter d = 1220 nm. The
sample is placed in the entrance of the integrating sphere and it is illuminated
in the range 500 nm to 920 nm. Figure 9.5 shows the measurement of diffuse
light through the different systems obtained in the process. The initial template
(figure 9.5a), the photonic glass, is optically thick and, therefore, ballistic light
is exponentially attenuated into the sample. Only diffuse light is collected by

Figure 9.4: SEM images from ZnO inverse photonic glasses. (a) ZnO shells randomly
embedded in air. (b) Air spheres randomly embedded in ZnO.
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the detector. It presents the typical resonances in transmission related to the
Mie modes of the spheres. The particular sphere diameter d = 1220 nm used to
perform this measurements is selected to resolve such resonances in this particular
energy range. In the case of spheres diameter d = 367 nm, no resonances can
be measured in transmission for this energy window. When the template is
infiltrated with ZnO, the spectral position of the resonances slightly redshifts,
as figure 9.5b shows. In this case, the resonances are still observable in total
transmission. When the polymer backbone is removed and a random distribution
of ZnO shells is obtained, the resonances strongly attenuate in this energy range
(figure 9.5c). The reason is that the Mie modes are strongly confined at the
highest refractive index material which, in the case of the direct photonic glass is
that one which composes the spheres (see introduction, section 1.1.1). When the
spheres are removed, the field is then confined in the material which composes
the shells, ZnO in this case, and the resonances are shifted to other energies.

9.2.2. ZnO inverse opals doped with vacancies

The second approach to obtained a disordered ZnO nanostructure is based
on the infiltration of vacancy-doped photonic crystals. As shown in chapter 8, a
controlled amount of vacancies can be introduced in a polymer opal. If a ZnO
chemical vapor deposition is carried out on such system, the material only grows
conformally on the polymer spheres. The lattice vacancies remain unaltered and,

Figure 9.5: Total diffuse light transmission measurements through a photonic glass
composed by PMMA spheres with d = 1220 nm (a), through the same system infiltrated
with ZnO (b) and through the inverse structure: a ZnO inverse photonic glass (c)
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when the polymer background is removed by means of a temperature-based an-
nealing process, the resultant ZnO inverse structure replicates the vacancy-doping
of the original structure. Figure 9.6 schematizes this process: a photonic crystal
composed by PMMA spheres (grey spheres in figure 9.6a) is doped with a con-
trolled amount of PS spheres (red spheres in the figure). The samples used in
this chapter have been grown using PMMA spheres with d = 367 nm and PS
spheres with the same diameter has been used as the dopants. The total col-
loidal initial concentration is typically 0.15 wt % and the relative concentrations
of PMMA and PS spheres are 60 % and 40 % respectively. A selective removal
is exerted over PS spheres by immersing the system in 99 % pure Cyclohexane.
This selectively dissolves PS spheres, leaving PMMA spheres intact in their lat-
tice positions (figure 9.6b). Then, ZnO infiltration by means of chemical vapor
deposition is performed over the system, giving rise to a composite PMMA-ZnO
material doped with vacancies (figure 9.6c). ZnO only grows conformally on
the surviving PMMA spheres. Consequently, it will tend to form small lumps
(in regions where a PS sphere was removed) embedded in a network of ZnO of
f = 26 %. Finally, PMMA spheres are removed by calcination at T = 450 ◦C,
giving rise to a ZnO-shells inverse structure doped with vacancies (figure 9.6d).

Figure 9.6: Schematic of the ZnO infiltration process in vacancy-doped photonic crys-
tals. (a) Binary crystals are grown with PMMA (grey) and PS (red) spheres with a con-
trolled partial concentrations of each other. (b) PS spheres are removed by selectively
dissolution in 99 % pure Cyclohexane. PMMA spheres remain intact. (c) ZnO infil-
tration by means of chemical vapor deposition provides PMMA-ZnO composite opals
doped with vacancies. (d) Polymeric backbone removal by calcination gives rise to a
ZnO inverse opal doped with vacancies. The final vacancy concentration is the original
PS concentration in the initial binary crystal. (e) SEM images from ZnO inverted opals
doped with vacancies. The vapor-based infiltration process allows a ZnO conformal
growth on PMMA spheres leaving the vacancies intact. This permits the replication of
the vacancy doping in the final ZnO inverse structure.



9.3. Random laser in ZnO disordered nanostructures. 157

Figure 9.6e shows a SEM image from the final ZnO inverse opals doped with va-
cancies. The inset of the figure shows how the ZnO shells are grown conformally
to the PMMA spheres and also how the vacancies remain in the final ZnO inverse
structure. The vacancy concentration that can be introduced in this system is
limited by the mechanical stability of the system and is always lower than a 40 %.
A concentration higher than ρv > 40 % gives rise to very mechanically intestable
PMMA structures. Apart from this limitation, a wide range of ZnO inverse opals
with vacancy concentration from ρv > 0 % to ρv > 40 % can be grown to probe
their optical properties.

9.3. Random laser in ZnO disordered nanostructures.

Differently to the case of ordered ZnO inverse opals, where lasing emission me-
diated by Bloch modes has been shown, random lasing is determined by diffusive
modes. In this section, random lasing from the both different ZnO disordered
nanostructures presented previously will be shown. In particular, we will use
ZnO inverse photonic glasses and ZnO inverse opals doped with a high amount
of vacancies (ρv = 40 %). Random lasing in very low quality ZnO inverse opals
[189] has been already shown in the past. However, random lasing emission can
be measured in our systems due to the high amount of disorder introduced in a
controlled way. The samples are optically pumped in the same manner as ordered
ZnO structures and lasing emission is collected with the same set up configuration
(see figure 9.1).

Figure 9.7 shows ZnO emission above threshold in the case of a ZnO inverse
photonic glass (orange curve) and in the case of a ZnO inverse opal doped with
ρv = 40 % vacancies (black curve). Both systems are grown with original PMMA
spheres with diameter d = 367 nm. Lasing emission from both systems appear
at the same spectral position, λ = 391 nm, contrary to the case of ZnO inverse
opal without vacancies, where lasing emission occurs at λ = 442 nm. Both ZnO
random structures present conventional random lasing emission. It is here impor-
tant to remark the crucial difference between random lasing emission observed
in photonic glasses in chapter 7 with random lasing emission observed here in
ZnO inverse photonic glasses. In the first case, lasing modes are determined both
by the gain curve and the resonant modes present in the sample. ZnO inverse
photonic glasses do not present resonances in transmission, as shown in figure
9.5c. This important difference can be explained attending to the fact that, the
electromagnetic field resonates in the high refractive index material which, in the
case of direct photonic glasses composed by polymer spheres is the polymer itself.
In the case of inverse ZnO photonic glasses, the high refractive index material is
the ZnO shells. The total transmission of such a system is monotonically depen-
dent on energy over the ZnO gain spectrum, as shown in figure 9.5c. No resonant
modes can be measured at the energy range where ZnO PL takes place and ran-
dom lasing is completely determine by ZnO gain curve (dashed dark blue curve
in figure 9.7). As the pump power increases, the emission peak becomes narrower
due to the preferential amplification of the frequencies close to the maximum of
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the gain curve. The lasing modes are selected from those at the spectral position
of the minimum gain length, g, as occurs in the case of TiO2-based random laser
in chapter 7. The same can be explained in the case of ZnO inverse opals doped
with a high amount of vacancies. Although the direct opal doped with vacancies
presents resonant modes in its total transmission (see section 8.5 in chapter 8),
the inverse structures do not present these resonances any more for the same
reason of the ZnO inverse photonic glass explained previously. Total transmis-
sion does not present resonances within the ZnO gain spectrum for both ZnO
disordered nanostructures and, therefore, lasing modes are completely determine
by ZnO gain curve. A small blueshift (∼ 5 nm) can be observed in figure 9.7 for
both lasing emissions with respect to the maximum of the ZnO gain curve which
cannot be explained at this point. Lasing threshold is 4×10−5 J/mm2 per pulse,
in the case of ZnO inverse photonic glass, and 3.2 × 10−5 J/mm2 in the case of
ZnO inverse photonic crystal doped with ρv = 40 % vacancies.

9.4. Transition from Bloch to Random ZnO laser mediated by
vacancy doping

Both Bloch laser and random laser have been observed in ZnO inverse struc-
tures. In the first case, the lasing emission is determined by the lattice constant

Figure 9.7: ZnO lasing emission in ZnO inverse photonic glass (orange curve) and ZnO
inverse opal doped with ρv = 40 % (black curve). Lasing modes from both systems are
spectrally very closed (λ = 389 nm). This is due to the fact both systems do not present
resonances within the ZnO gain spectrum and show conventional random lasing.
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of the crystal (sphere diameter) whereas in the second case, no control can be
exerted over the lasing emission. It appears at the same spectral position for a
random distribution of ZnO shells and for a ZnO inverse opal doped with a high
amount of vacancies. In this section, the transition from Bloch lasing emission
in the ordered structure to random lasing emission in the disordered one will be
shown. For that purpose, we will use a ZnO inverse opal with no vacancy dop-
ing and a ZnO inverse opal doped with a high amount of vacancies ρv = 40 %,
both grown with an original PMMA sphere diameter d = 367 nm. Figure 9.8
shows ZnO emission above threshold in the case of a perfect ZnO inverse opal
(red curve) and a ZnO inverse opal doped with vacancies (black curve). Lasing
emission is determined, in the case of the ZnO ordered nanostructure (red curve),
by the interaction between the lasing mode (blue flat photonic band shown in fig-
ure 9.2) and ZnO gain spectrum. In particular, it appears at λ = 442 nm. On the
contrary, no resonant modes are present in the disordered ZnO photonic crystal
doped with vacancies, as discussed in previous section. Lasing modes in such a
structure are diffuse open modes as those of a conventional random laser. Emis-
sion above threshold (black curve) is, therefore, determined by the gain length g
and the lasing mode appears, therefore, spectrally very close (λ = 390 nm) to the

Figure 9.8: ZnO emission above threshold from ZnO inverse opal without vacancies
(red curve) and with a ρv = 40 % vacancy doping (black curve). Both systems are
grown with an original PMMA sphere diameter d = 367 nm. The spectral shift of the
lasing mode from λ = 442 nm to λ = 390 nm suggests a transition from Bloch lasing
in the case of the ordered structure to random lasing, in the case of the disordered
structure.
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gain maximum (λ = 395 nm). Lasing threshold in both structures is achieved at
3.3 × 10−3J/mm2 in the case of ρv = 0 % and 3.2 × 10−5J/mm2 in the case of
ρv = 40 %.

Figure 9.8 suggests how, just by adding a certain amount of vacancies to the
ordered system, it is possible to observe a transition from Bloch to random lasing
emission. PMMA sphere diameter has been particularly selected to obtain lasing
emission in the ZnO inverse opal spectrally far from the maximum ZnO gain.
This enhances the transition between both types of lasing in ZnO nanostructures
revealed, in spectral measurements, as a lasing emission shift from the spectral
position of the first flat band to the spectral position determined by the ZnO gain
curve. Both are, respectively, the lasing modes in the ordered and disordered ZnO
nanostructures.

9.5. Conclusions and future work.

This chapter summarizes the spectral measurements of ZnO lasing from dif-
ferent ZnO nanostructures, ordered and disordered. Here we show UV lasing in
ZnO inverse opals mediated by high-energy weakly dispersive photonic bands.
By varying the original polymer sphere diameter it is possible to tune the lasing
mode though the ZnO gain spectrum. It is also shown that, the spectral distance
between the lasing mode (the flat photonic high-energy band) and the maximum
in the ZnO gain curve strongly affects the value of the lasing threshold which
increases with this spectral distance (and with the sphere diameter). We also
show UV random lasing in ZnO inverse photonic glasses and ZnO inverse opals
doped with a high amount of vacancies. Lasing emission from both disordered
ZnO nanostructures are spectrally very close to each other and to the maximum
of the ZnO gain curve. The transition from Bloch lasing to Random lasing is
suggested in the case of ZnO inverse opals with and without vacancy doping.

Spectral measurements shown in this chapter are not enough to assure such
a lasing mechanism transition. In the future, the range of vacancy doping den-
sity from 0 % < ρv < 40 % should be investigated to analyzed the intermediate
system. Time-resolved measurements of and photon statistics of ZnO lasing in
both cases as well as in the intermediate system may be crucial to ensure a com-
plete control exerted over the lasing mechanism with just the controlled extrinsic
disorder of the structure.
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Appendix A
Light scattering in Photonic
Crystals

Light impinging on a perfect dielectric lattice as, for example, an opal-based
photonic crystal, can be reflected (IR) or scattered (IS) in the bulk of the sys-
tem. Moreover, light scattering in such a system can be elastic (due to light-lattice
interaction, when lattice constant is on the order of light wavelength) or inelas-
tic (absorption by the material composing the spheres). Polystyrene (PS) and
polymethil-metacrilate (PMMA) spheres do not absorb light in the spectral range
of work (450 nm < λ < 2 μm) used in this thesis [57, 58]. On the following, we
will discard absorption effects and, therefore, only elastic scattering will be taken
into account.

In the particular case of light propagating normal to the surface of the system
(see figure A.1), it undergoes a constructive interference imposed by the period-
icity of the lattice. This limits light propagation directions to the incidence one
(IT ) or along certain diffraction directions determined by the lattice (Idiff , with
different diffraction patterns, in the figure two of them have been exemplified).

Diffraction patterns are a very particular case of the speckle pattern of the
system due to the underlaying lattice structure. Light is scattered in directions
different than the incidence one by constructive interference. This regime of light
scattering occurs, in the case of photonic crystals, in the, so-called, high energy
photonic bands [103]. Let us consider light incident perpendicular to the sample
surface with a given incident wavevector ki. Whether grown by natural sedimen-
tation [43] or vertical deposition [45], artificial opals present their surface parallel
to the (111) family of crystallographic planes, that is, along ΓL crystallographic
direction. Light wavevector ki is, therefore, along ΓL direction.

Figure A.2 shows the scattering diagram in the reciprocal space. In particular,
the repeated Brillouin zone of an fcc structure is shown. Figure A.2 also shows
the photonic band structure along the ΓL direction. Scattered light wavevector
(red arrow) ko is restricted by two conditions: the energy conservation and the
conservation of the parallel component of the incident wavevector k to the sam-
ple boundary (imposed by the boundary conditions of the Maxwell equations).
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The first one imposes that, both incident and transmitted wavevectors lie on a
dispersion surface, which for one homogenous-like medium is plotted by circle
centered at the origin. The second imposes that the scattered wavevector, ko,
can be folded back to the incident one, ki, by some reciprocal lattice vector, G
in such a way to conserve the parallel component of ki to the system boundary.
In the case of ki along ΓL direction, the parallel component is null. Figure A.2
schematizes the scattering process for three different light frequencies (1), (2)
and (3) where isofrequency surfaces are plotted as circles with three different col-
ors. In the first case (1) (blue circle), incident and scattered light wavevectors are
restricted to be equal. Light can only propagate straightforward in the incident
direction. This corresponds to light coupling with a, so-called, linear photonic
band (pointed out in the band diagram). In the second case (2), equi-energy
surface (pink circle) lies on a Bragg plane and a Bragg diffraction takes places. A
pseudogap is opened for this particular frequency ω2 as pointed out in the pho-
tonic band diagram. Finally, in the third case (3), incident wavevector is large
enough (yellow circle) to be folded by a reciprocal lattice vector Gi into scattered
wavevectors lying in other directions than the incident one. This physical process
occurs when light couples to a, so-called, diffraction band [103], as pointed out
in the band diagram. This is the origin of light diffraction in photonic crystals.

Figure A.1: Schematic of the possible propagation light channels for light impinging
normally to the sample surface with intensity I0. Disregarding inelastic scattering (i.e
absorption) of the material composing the spheres, light can be reflected (IR), diffracted
(Idiff ), straightforward transmitted (IT ) or diffused by inhomogeneities (ID).
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For low energies, as in cases 1 and 2, for which a/λ < 1 the, so-called, onset of
diffraction, only linear bands are available and diffraction can not be built for
these energies.

Scattering in perfect and infinite photonic crystals is, therefore, given by:

IS = IT + Idiff (A.1)

However, if the lattice is not perfect, that is, there is a certain amount of
disorder such as vacancies, displacements, polydispersity in the spheres size, etc,
there is an extra source of elastic scattering allowed in the crystal. If the lattice
is not translational invariant, there is no more wavevector k conservation. In this
case, the propagation direction is not restricted and the light scattering is diffuse
(ID). This type of light propagation is the origin of what is commonly known as
light diffusion. For light impinging on a photonic crystal in a certain direction
and measured in the same direction, ID is a source of light loss in that particular
direction and can be used as an extremely sensitive measurement of the amount

Figure A.2: (Left) Schematic of the scattering diagram in reciprocal space: incident
(scattered) light wavectors represented by black (red) arrows. Light scattering process is
represented for three particular frequencies and for the case of incident wavevector lying
in the ΓL direction. The diagrams are for negligible refractive index contrast. (Right)
Photonic band structure along this particular crystallographic direction is also plotted to
point out light-bands coupling in the three different cases.
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of disorder in the system [59, 60].
Scattering in an imperfect photonic crystal is, therefore, given by

IS = IT + Idiff + ID (A.2)

According to the previous discussion, in the case of a non-perfect lattice, non-
absorbing sphere material and below the onset of diffraction (Idiff = 0), light
can only by reflected, transmitted or diffused by inhomogeneities:

I0 = IR + IS = IR + IT + ID (A.3)

A.1. Lambert-Beer law for Photonic Crystals

I0 is the intensity entering the sample at z = 0, Iz is the intensity entering
the infinitesimal slab at z, dI is the intensity scattered in the slab, and I is the
intensity of light leaving the sample. Then, the total opaque area on the slab due
to the scatterers is σρsAdz, where σ is the scattering cross section and ρs the
scatterer density. The fraction of scattered photons will be σρsdz so,

dI

Iz
= −σρsdz (A.4)

which solution is:

Iz = I0exp(−σρsz) (A.5)

where s = 1/σρs is the scattering mean free path. In the case of independent
absorbing scatters, the extinction length of the ballistic light beam is:

1
ext

=
1
s

+
1
abs

(A.6)

In this thesis, as discussed previously, we deal with non-absorbing materials
in the spectral range of work (at least as a first approximation). Therefore,
Lambert-Beer’s law reads:

I(L) = I0 exp(−L

s
) (A.7)

where I0 is the light intensity impinging the system and I(L) is the light intensity
leaving the system in the same direction (ballistic beam propagation). According
to what has been discussed in the previous section, in the case of a non-perfect
lattice, non-absorbing sphere material and bellow the onset of diffraction, for light
incident normal to the system surface, the light intensity at a given thickness L
inside the sample is:

I(L) = I0 − ID (A.8)

here, the only source of light losses in the direction of incidence is the diffuse light
ID. According to A.3, A.7 and A.8 it is easy to obtain:
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IR + IT = I0 exp(−L

s
) (A.9)

and taking into account R = IR/I0 and T = IT /I0:

R(L) + T (L) = exp(−L

s
) (A.10)

A very sensitive and precise measure of the scattering mean free path of
the system can be obtained by measuring reflectance, R(L), and transmittance,
T (L), from a photonic crystal with a certain amount of lattice disorder, composed
by non-absorbing material and for energies bellow the onset of diffraction as a
function of the system thickness. This is limited if a very precise measurement
of L is possible.
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Appendix B
Optical gating technique

Optical gating uses the non linear optical properties of frequancy sum to a
reference laser beam (ω1) with the diffuse light signal beam (ω2) transmitted
though the sample in a 3 mm thick non-linear BBO (beta barium borate) crystal
to produce a sum frequency signal. Since the efficiency of the sum-generation is
proportional to the product of the two laser beam intensities at a given time, the
whole process works as an optical gate, with a variable time delay.

Figure B.1a shows the probe beam sorce, which is obtained by an Argon laser,
which pumps a Ti:Sapp laser, which at the same time pumps an optical parametric
oscillator (called OPAL). The Argon laser is used to pump a Titanium Sapphire
crystal, hence, in order to exploit all the absorption spectrum, the Argon is kept
multi-line. Ti:Sapp laser works with a center wavelength 810 nm (pulse duration
130 fs, average power 2.0 W, repetition rate 82 MHz) and the pumped OPAL
yields short pulses tunable from 1450 to 1600 nm (average power 200 mW). This
beam (ω1) is used to probe the sample. The reference pulse at 810 nm (ω2) is
obtained from the Ti:Sapp beam (450 mW average power). Both signal beams
can be distinguished in figure B.1a as the probe beam (grey) and the reference
beam (red).

Figure B.1b shows the optical set up to analyzed diffuse light though the sam-
ples. The probe beam (grey) probes the sample with a certain angle with respect
to it surface whereas the reference beam is delayed with a translation stage. The
spatial delay introduced in the reference beam is of the order of microns. Both
signal beams, the reference and the diffuse light from the sample are mixed in the
non-linear crystal generating green light (ω3) (figure B.1c). The energy conserva-
tion requires that ω3 = ω1 +ω2, while the momentum conservations k3 = k1 +k2.
The radiation can be emitted in every direction but the phase-coherence between
the waves determines a strongly peaked output in a certain direction.

The phase-matching condition, turns into a relation between the refractive
indexes ne and no, that the waves experience in the material:

ke3(θ) = ko1 + ko2 (B.1)

or
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ne(ω3)ω3 = no(ω1)ω1 + no(ω2)ω2 (B.2)

Phase-matching cannot be fulfilled in a normally dispersive medium, as the
refractive index is a monotonic function of wavelength. In the case of the BBO
non-linear crystal, phase-matching is obtained changing the angle between light

Figure B.1: (a) Reference beam (ω2) and probe signal beam (ω1) are generated by
a Ti:Sapp laser and an optical parametric oscillator (OPAL) respectively. The OPAL is
pumped with the Ti:Sapp laser. (b) The signal provided by the OPAL , within 1400 nm
and 1600 nm, probes the sample whereas the reference beam (810 nm) is delayed spa-
tially with a controlled translation stage. The spatial delay is of the order of microns. (c)
The diffuse beam from the sample and the delayed reference beam are mixed together
in the BBO non-linear crystal, generating green light (ω2). The efficiency of this sum-
generation is proportional to the product of the two laser beam intensities, the whole
process works as an optical gate, with a variable time delay. (d) The green beam is
finally detected by a photodiode.
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propagation and the optical axes, as the extraordinary refractive index is angle-
dependent (equation B.3) so it can be tuned to satisfy equation B.2.

ne(θ) =
none

sqrtn2
ecosθ

2 + n2
osinθ

2
(B.3)

As mentioned previously, the sum-generation efficiency is proportional to the
product of the two beams intensities. In other words, the intensity of the green
generated light (Iω3) is directly proportional to the cross correlation between the
two incoming pulses (Iω1,2):

Iω3(t)
∫
Iω1(t− τ)Iω2(t)dτ (B.4)

A delay line on the reference beam path allows to tune the time delay be-
tween signal and reference, and thus the longitudinal spatial overlapping. This
technique allows for measuring in a time window equal to the pulse duration, 130
fs. The constant time profile of the generated signal at 510 - 540 nm allows for
a time resolution of less than 100 fs. The sum frequency signal is detected by
a photodiode and a standard lock-in technique is used to suppress noise (figure
B.1d).
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Appendix C
Coherent backscattering
technique

The technique to record backscattered light needs to be very accurate. The
backscattering cone is a very sensitive measurement. Although the physical phe-
nomenon and its interpretation is rather simple, a reasonable enhancement factor
of the backscattered light is necessary to estimate t with accuracy. The theoreti-
cal enhancement factor for light backscattered at θ = 0 is two for weak scattering
in the helicity conserving polarization, but many set-up artifacts reduce consid-
erably this factor. These artifacts are from reflections in boundaries and surfaces
which introduce noise in the measurement to diffusion in other materials different
than the sample itself. It is, therefore, crucial to be careful and screened all the
possible reflectance surfaces. When working with visible light, light can be screen
with the use of black surfaces which absorb light losses from the laser beam.

Figure C.1 schematizes the set up built up to measure the coherent enhanced
backscattering. The coherent beam is provided by a He-Ne laser at λ0 = 632
nm. All the cone measurements are done at this wavelength. The laser beam
is polarized vertically and it is formed by several EM modes. It is very impor-
tant to illuminate the samples with a plane wave beam in order to have a flat
background. To spatially clean the laser mode, a spatial filter composed by a
microscope and a pin hole is used. The laser beam is then collimated with the
help of a lens (1) and its diameter is selected with a diaphragm. With the help
of a beam splitter, the beam illuminates the sample. In order to average over
a large number of scattering configurations, the sample is rotated in the plane
perpendicular to the beam propagation. The backscattered light from the sam-
ple surface is then focused with the help of a lens (2) into a CCD camera, which
records the backscattering cone. The enhancement factor of the backscattering
cone is defined as the ratio of the total intensity at exact backscattering to the
diffuse background intensity at exact backscattering. The diffuse background in-
tensity is the intensity which would be expected from an incoherent addition of
the scattered waves. Light polarization is a very important issue. Single scatter-
ing events invert the helicity of incoming light whereas multiple scattering events
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randomized the light polarization. Light which is singly scattered reduces the
cone enhancement and should be eliminated from the measurement. A way to
do that is to properly place a quarter-wave plate (a) in the incoming laser beam.
This converts the linearly polarization into circular polarization. Single scatter-
ing events will flip the helicity of circular polarized scattered light whereas higher
scattering orders will convert incoming circular polarization into elliptically po-
larized one. By placing an additional quarter-wave plate (b) in the backscattered
beam, it is possible to transform singly scattered light with circular polarization
into vertically polarized light. The only requirement is the second quarter-wave
plate (b) to be orthogonal to the initial one (a). Finally, singly scattered light
can be eliminated from the backscattered beam by placing an horizontal axis
polarizer. This proceeding significantly improves the set up performance and the
backscattering cone measurement. An example of a backscattering cone obtained
with this set up is shown in figure C.2, where the experiment is performed on
a piece of paper. The inset of figure C.2 shows the cone of light backscattered
recorded by the CCD. The value of the transport mean free path is obtained by
fitting the the experimental backscattered light with the function:

Figure C.1: Set up of the backscattering cone measurement.
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γC(θ) =
3

23tαu
α+ u(1 − exp(−2αξ))

(u+ α)2 + η2
(C.1)

η = k(1 − μS)

u =
1 + μ−1

S

2t

ξ =
2

3t
μS = cos θ
α = k sin θ

(C.2)

Figure C.2: (a) Speckle pattern (b) Averaged speckle pattern which shows the cone of
backscattering and (c) fit of the backscattering cone from paper.
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where γC(θ) is the so-called cross term, a contribution from the interference
between reciprocal light paths [138, 139]. This function, which derivation is out
of the scope of this thesis, can be obtained assuming that the random walk in the
three orthogonal propagation directions is uncoupled. For more details, please
check [191].
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Conclusiones generales

Se han obtenido ópalos inversos de ZnO mediante deposición en fase vapor
de ópalos directos constituidos por microesferas poliméricas. Se han estu-
diado las propiedades ópticas del sistema directo, el compuesto y el inverso.
Por último se ha medido la fotoluminiscencia de la estructura final. Se
ha realizado un estudio de la misma en función de la estructura cristalina
mediante procesos de recocimiento de temperatura variable.

Se ha utilizado el método de infiltración de ZnO en ópalos directos como
medio para investigar diferentes zonas cristalográficas de las muestras. En
particular se han estudiado las direcciones cristalográficas (111) y (100) que
corresponden con las direcciones ΓL y ΓX del espacio rećıproco.

Se ha realizado un estudio óptico de reflectancia y transmitancia de ópalos
inversos de ZnO en la zona de alta enerǵıa (a/λ > 1). Se han relacionado los
resultados experimentales con la estructura de bandas fotónicas del sistema.
Se ha observado y controlado la aparición de intervalos de enerǵıa prohibida
en la zona de alta enerǵıa.

Se ha realizado la infiltración f́ısica de puntos cuánticos de CdTe en ópalos
inversos de ZnO. Se ha observado que dicha infiltración puede monitor-
izarse ópticamente, controlando de esta forma la cantidad aproximada de
nanoparticulas en la estructura. Se ha estudiado el efecto que la estructura
fotónica ejerce sobre la fotoluminiscencia de las nanoparticulas.

Se ha crecido una estructura desordenada formada por esferas iguales en
tamaño y forma. Se ha llamado vidrio fotónico. Se ha estudiado la propa-
gación de luz difusa a través de dicho sistema, constatándose el compor-
tamiento resonante tanto en el camino libre medio de transporte como en
la constante de difusión. Se ha hecho uso de dicha propiedad para ejercer
control sobre la emisión de laser aleatorio.

Se han introducido intencionadamente vacantes en un ópalo polimérico. Se
ha estudiado el efecto que estos defectos extŕınsecos tienen en la propagación
de la luz, en particular sobre el camino libre medio y la constante de difusión.
Se ha realizado una ulterior infiltración de dichos sistemas con ZnO. Se ha
observado emisión laser en el caso del sistema sin dopaje que corresponde
a una baja velocidad de grupo y que es efecto debido enteramente a la
estructura fotónica del sistema. Por otro lado, se ha observado emisión
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laser aleatoria en el caso del sistema fuertemente dopado observándose una
transición de uno a otro tipo de emisón laser a través del dopaje de las
muestras.
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