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Abstract

Some unexplored decoherence aspects within the Caldeira-Leggett master equation are analyzed

and discussed. The decoherence process is controlled by the two environment parameters, the

relaxation rate or friction and the temperature, leading to a gradual transition from the quantum

to classical regime. Arrival time distributions, nonminimum-uncertainty-product or stretching

Gaussian wave packets, identical particles and diffraction in time display interesting features during

the decoherence process undergone by the time dependent interference patterns. We show that the

presence of a constant force field does not affect the decoherence, positive values of the stretching

parameter reduces the rate of decoherence, the symmetry of the wave function for identical particles

plays no role when open dynamics are considered; and diffraction in time and space is gradually

washed out by increasing the temperature and/or relaxation rate in the zero dissipation limit within

the so-called quantum shutter problem.
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I. INTRODUCTION

Since the pioneering work by Zeh in 1970 [1], decoherence has been the central subject of

intense research investigation and activity although this term was not introduced until the

late 1980s. It was Zurek [2] who clearly reached a milestone in this field at the beginning

of the 1980s. Subsequently, Joos and Zeh [3] coauthored a seminal paper in this context.

From then, an explosion of works along this direction has not being stopped yet in several

branches of physics as well as chemistry and biology. Decoherence or environment induced

decoherence occurs because the system is entangled with its environment and one key aspect

is the corresponding timescale due to the fact that this can be seen as a dynamical process

along time. Once this process reaches a stationary state, we could claim that the transition

from quantum to classical regime has been fully established.

A widely used approach to deal with open quantum systems is within the so-called system-

plus-environment model where the total system is considered isolated. The total isolated

system is described by a pure state wave function, whose evolution is determined by the

unitary time evolution operator according to the Schrödinger equation. The reduced den-

sity matrix in the coordinate representation describing the system of interest is obtained by

tracing out the the degrees of freedom of the environment. In this way, a master equation is

derived for the evolution of the reduced density which contains both frictional and thermal

effects due to the environment, the so-called Caldeira-Leggett (CL) master equation [4, 5].

Time evolution of coherences is also an indication of how the decoherence process is estab-

lished leading to certain timescales of the system under study, spatial interference terms

are exponential suppressed at a given rate. As is known, when using initial Gaussian wave

packets under the presence of up to quadratic interaction potentials, the width of the Gaus-

sian in the off-diagonal elements quantifies the range of spatial coherence [6] speaking about

the coherence length. This Markovian master equation has been used in many branches of

physics such as quantum optics, quantum computation, mesoscopic systems, etc.

Alternative but less known approaches can also be found in the literature within the
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so-called Caldirola-Kanai and Scrödinger-Langevin frameworks [7] where the wave function

of the open quantum system is considered instead of the corresponding density matrix.

Both approaches are not following the system-plus-environment model but effective time

dependent Hamiltonians and nonlinear Schrödinger equations, respectively. Recently, the

Caldirola-Kanai and CL approaches have been applied to describe interference and diffrac-

tion of identical particles in one slit problems [8]. The CL approach stresses different features

of the dynamics of open quantum systems with respect to those are using wave functions.

Recently, this type of analysis has been carried out in the momentum space [9].

In this work, the gradual decoherence process is analyzed for several problem encountered

in open dynamics controlled by the two environment parameters, the relaxation rate or

friction and the temperature. Thus, the quantum-to-classical transition is studied. We

show that the presence of a constant force field does not affect the decoherence. Minimum-

and non-minimum-uncertainty-product or stretching Gaussian wave packets are used in

order to show that the so-called stretching parameter reduces the rate of decoherence in the

interference patterns. Time arrival distributions obtained within the Bohmian framework

are first presented, identical particles and the so-called diffraction in time [10] are analyzed.

Interference patterns as well as the oscillations observed in diffraction which are the hallmark

of the quantum shutter problem is gradually washed out by increasing the temperature in

the zero dissipation limit.

This paper is organized as follows. In Section II the CL master equation in the coordinate

representation is briefly introduced stressing the way of how arrival time distributions can be

obtained. In Section III, the dynamics of non-minimum-uncertainty-product Gaussian wave

packets is analyzed in order to show the importance of the so-called stretching parameter in

the decoherence process. Once this analysis is carried out, the superposition of two Gaussian

wave packets (the Schrödinger cat state) is considered showing how the interference pattern

is blurred by the presence of dissipation and temperature. Two identical particles dynamics

is then briefly analyzed in Section IV. Once the interference process in space is discussed the

next step is to see how the so-called diffraction in time effect is affected by the environment

within the quantum shutter problem in Section V. Finally, in Section VI and VII, results

and discussion and concluding remarks are presented, respectively.
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II. THE CALDEIRA-LEGGETT MASTER EQUATION IN THE COORDINATE

REPRESENTATION

Within this approach, the environment is generally modelled by a bosonic bath, consisting

of an infinite number of quantum oscillators in thermal equilibrium, and affects the system

of interest through a position-position coupling. The nature of this environment model is

actually known as a minimal one [5]. The corresponding Markovian master equation in the

coordinate representation for one dimension, at the high temperature limit, is written for a

particle of mass m as [4, 5]

∂ρ(x, x′, t)

∂t
=

[
− h̄

2mi

(
∂2

∂x2
− ∂2

∂x′2

)
− γ(x− x′)

(
∂

∂x
− ∂

∂x′

)
+
V (x)− V (x′)

ih̄

− D

h̄2 (x− x′)2

]
ρ(x, x′, t) (1)

where V is the external interaction potential and

D = 2mγkBT (2)

plays the role of the diffusion coefficient; kB and T being Boltzmann’s constant and the

environment temperature, respectively. In the center of mass and relative coordinatesR =
x+ x′

2
(3a)

r = x− x′ (3b)

Eq. (1) is expressed as

∂ρ(R, r, t)

∂t
+
∂j

∂R
+
V (R/2 + r)− V (R/2− r)

ih̄
+ 2γr

∂ρ(R, r, t)

∂r
+ r2D

h̄2ρ(R, r, t) = 0 (4)

where we have defined the current density matrix as

j(R, r, t) = −i h̄
m

∂

∂r
ρ(R, r, t). (5)

As is known, diagonal elements of the density matrix has the interpretation of the probability

density. By imposing the condition r = 0 in Eq. 4, one has the continuity equation

∂P (x, t)

∂t
+
∂J(x, t)

∂x
= 0, (6)

where P (x, t) and J(x, t) are the diagonal elements, r = 0, of ρ(R, r, t) and j(R, r, t), respec-

tively. From the current density of probability is possible to extract information on time
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distributions at the screen position x = X according to [11]

Πa(X, t) =
|J(X, t)|∫∞

0
dt′|J(X, t′)|

(7)

from which the mean arrival time and rms width of the arrival time distribution are obtained

τa(X) = 〈t〉 =

∫ ∞
0

dt t Πa(X, t) (8)

σa(X) =
√
〈t2〉 − 〈t〉2 =

√∫ ∞
0

dt (t− 〈t〉)2 Πa(X, t) (9)

This analysis can also be accompanied by a description in terms of trajectories. Within

Bohmian mechanics where a complete description of a quantum system is given by its

position and wavefunction, trajectories are computed by integrating the guidance equation

[12, 13]

ẋ(x, t) =
J(x, t)

P (x, t)

∣∣∣∣
x=x(x(0),t)

(10)

x(0) being the initial position of the Bohmian particle. In the context of standard quan-

tum mechanics, the concept of arrival time is ambiguous in contrast to classical mechanics

where trajectories are well defined [11]. Different approaches have been applied to deal with

this time; approaches based on trajectories, quantization rules, time operators, phase-space

techniques, renewal equations and operational procedures [14]. In the Bohmian context,

the arrival time distribution at the screen position x = X is given by the modulus of the

probability current density, suitably normalized, [15]

III. DYNAMICS OF GAUSSIAN WAVE PACKETS

In this section we first consider open dynamics under the presence or not of a linear

potential for a non-minimum-uncertainty-product or stretched Gaussian wave packet in the

CL framework and then a pure initial state consisting of superposition of two Gaussian

wave packets i.e., a Schrödinger cat state. This section will finish with two-identical-particle

systems.
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A. Non-minimum-uncertainty-product Gaussian wave packet

Let us consider first an initial state given by the non-minimum-uncertainty-product Gaus-

sian wave packet

ψ0(x) =
1

(2πσ2
0(1 + iη)2)1/4

exp

[
− (x− x0)2

4σ2
0(1 + iη)

+ i
p0

h̄
x

]
, (11)

where x0, p0 and σ0 are the initial values for the center, momentum and width, respectively.

The η parameter is known as the stretching parameter and governs the uncertainty product

∆x∆p with ∆x = σ0

√
1 + η2 and ∆p = h̄/2σ0 which are the uncertainties in position

and momentum, respectively. Eq. (1) is solved under the presence of the linear potential

V (x) = mg x and coordinates (3a) and (3b) in three steps; first, by applying the technique

of the partial Fourier transform with respect to the center of mass coordinate; second, by

solving the resulting equation and finally taking the inverse Fourier transform of this solution

in order to obtain the density matrix in the position representation [16, 17]. In this way,

one obtains

ρ(R, r, t) =
1√

2πwt
exp

[
a0(r, t)− (R− a1(r, t))2

2w2
t

]
(12)

j(R, r, t) = −i h̄
m

(
∂a0

∂r
+
x− a1(0, t)

w2
t

∂a1

∂r

)
ρ(R, r, t) (13)

for the non-diagonal elements of the density matrix and the current density matrix, where

we have defined

a0(r, t) = −
[
e−4γt

8σ2
0

+
1− e−4γt

4γ

D

h̄2

]
r2 + i

(p0

h̄
e−2γt − mg

h̄
τ(t)

)
r (14)

a1(r, t) = xt + i

[
h̄

4mσ2
0

e−2γtτ(t) +
D

mh̄
τ(t)2 +

η

2
e−2γt

]
r (15)

wt = σ0

√
1 +

h̄2

4m2σ4
0

τ(t)2 +
4γt+ 4e−2γt − 3− e−4γt

8m2γ3σ2
0

D + η
h̄

mσ2
0

τ(t) + η2 (16)

with

τ(t) =
1− e−2γt

2γ
, (17)

and

xt = x0 +
p0

m
τ(t)− g2γt− 1 + e−2γt

4γ2
. (18)
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By imposing the conditions r = 0, the probability density (PD) and the probability current

density (PCD) are finally expressed as

P (x, t) =
1√

2πwt
exp

[
−(x− xt)2

2w2
t

]
(19)

J(x, t) =

{
p0

m
e−2γt − gτ(t)

x− xt
w2
t

[
τ(t)

(
h̄2

4m2σ2
0

e−2γt +
D

m2
τ(t)

)
+ η

h̄

2m
e−2γt

]}
× P (x, t) (20)

respectively. Thus, the PD has a Gaussian shape with a width wt and a center moving

along the classical trajectory xt given by Eqs. (16) and (18), respectively. Notice that the

stretching parameter also contributes to the spreading of the PD in a significant way.

In the free-friction limit, where the second term in the right hand side of Eq.(1) i.e., the

term proportional to the damping constant is neglected, Eqs. (18) and (16) reduce to
xt ≈ x0 +

p0

m
t− 1

2
gt2, (21a)

wt ≈ σ0

√
1 +

h̄2

4m2σ4
0

t2 +
2D

3m2σ2
0

t3 + η
h̄

mσ2
0

t+ η2. (21b)

Note that this limit corresponds to short times where γt� 1 i.e., times much shorter than

the relaxation time, γ−1 [18]. In this open dynamics, the temperature is involved through

the diffusion coefficient.

B. Superposition of two Gaussian wave packets; the Schrödinger cat state

Let us consider now the initial state as a superposition of two wave packets to be defined

later on,

ψ0(x) = N (ψ0a(x) + ψ0b(x)) (22)

N being the normalization constant. Equation (22) shows that the initial density matrix

has the form

ρ(x, x′, 0) = N 2(ρaa(x, x
′, 0) + ρab(x, x

′, 0) + ρba(x, x
′, 0) + ρbb(x, x

′, 0)) (23)

where ρij(x, x
′, 0) = ψ0i(x)ψ∗0j(x

′); i and j being a or b. Due to the linearity of the master

equation (1), one obtains again the evolution of each term of Eq. (23) separately by using
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the method outlined above. Afterwards, these solutions are superposed to have the time

dependent PD according to [19],

P (x, t) = N 2(Paa(x, t) + Pab(x, t) + Pba(x, t) + Pbb(x, t)). (24)

By using the fact that Pba(x, t) = P ∗ab(x, t), one can write

P (x, t) = N 2(Paa(x, t) + Pbb(x, t) + 2|Pab(x, t)| cos Θ(x, t)) (25)

where |Pab(x, t)| is the modulus of Pab(x, t) and Θ(x, t) its phase. Rewriting Eq. (25) as the

typical interference pattern expression [20]

P (x, t) = N 2(Paa(x, t) + Pbb(x, t) + 2
√
Paa(x, t)Pbb(x, t) e

Γ(t) cos Θ(x, t)) (26)

one has that

Γ(t) = log
|Pab(x, t)|√

Paa(x, t)Pbb(x, t)
(27)

Γ(t) being the so-called decoherence (negative) function. The corresponding exponential

function

a(t) = eΓ(t) (28)

is called the coherence attenuation coefficient which quantifies the reduction of the interfer-

ence contrast [21].

1. Minimum-uncertainty-product Gaussian wavepackets

Let us assume that the initial state is a superposition of two wave packets located sym-

metrically around the origin, having the same width but opposite kick momenta, ψ0a(x) and

ψ0b(x), respectively

ψ0(x) = Nm
1

(2πσ2
0)1/4

{
exp

[
−(x− x0)2

4σ2
0

+ i
p0

h̄
x

]
+ exp

[
−(x+ x0)2

4σ2
0

− ip0

h̄
x

]}
(29)

where the normalization constant Nm is given by

Nm =

{
2 + 2 exp

[
− x2

0

2σ2
0

− 2p2
0σ

2
0

h̄2

]}−1/2

. (30)
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Then, after lengthy but quite straightforward calculations, one obtains
Γm(t) = −

(
x2

0

2σ2
0

+ 2
p2

0

h̄2σ
2
0

)(
1− σ2

0

σ2
t

[
1 +

h̄2

4m2σ4
0

τ(t)2

])
(31a)

Θm(x, t) =
βm(t)(x− αm(t))

σ2
t

(31b)

for the decoherence function Γ(t) and the phase function Θ(x, t) respectively, with
αm(t) =

g

2γ
(τ(t)− t) (32a)

βm(t) = −x0
h̄

2mσ2
0

τ(t)− 2
p0

h̄
σ2

0 (32b)

and the temperature is again present by means of the diffusion coefficient through σt which

is given by Eq. (16) by imposing η = 0 i.e., σt = wt|η=0. The second term inside the second

factor in Eq. (31a) is less than one and therefore the decoherence function (31a) is essentially

negative. Eq. (31a) clearly shows that Γm(t) = 0 for D = 0. This is a known result implying

that the last term in Eq. (1) is responsible for decoherence [22]. As one expects, the

decoherence function becomes zero for γ = 0. In the limit γ → 0, the CL equation converts

to the usual Schrödinger equation for closed systems where the superposition of two wave

packets remains coherent forever. Notice that the decoherence function is independent of

g which means the applied constant force does not affect the decoherence function. In the

presence of the applied constant force, the interference pattern is shifted by the value αm(t).

From the behavior of σt at long times, γt � 1, i.e., σt ∼
√
t, one sees from Eq. (31a) that

the decoherence function approaches the value −(x2
0/2σ

2
0 + 2p2

0/(h̄
2σ2

0)), that is, exp[Γ(t)]

approaches 〈ψ0b|ψ0a〉, the overlap of the initial states. For widely separated states, x0 � σ0,

this overlap is extremely small meaning practically zero coherence at long times. Finally, the

above general arguments and trends can be particularized to the free motion case (g = 0).

2. Non-minimum-uncertainty-product Gaussian wave packet in free space

If the initial state is now a superposition of two stretched Gaussian wave packets with

the same width, located symmetrically around the origin with opposite kick moment, ψ0a(x)

and ψ0b(x), respectively

ψ0(x) = N 1

(2πσ2
0(1 + iη)2)1/4

{
exp

[
− (x− x0)2

4σ2
0(1 + iη)

+ i
p0

h̄
x

]
+ exp

[
− (x+ x0)2

4σ2
0(1 + iη)

− ip0

h̄
x

]}
(33)
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where the normalization constant N is now given by

N =

{
2 + 2 exp

[
− x2

0

2σ2
0

+ 2
p0x0

h̄
η − 2p2

0(1 + η2)σ2
0

h̄2

]}−1/2

(34)

one readily obtains

Γ(t) = Γ0(t) + η

(
−2p0(h̄x0 + ηp0σ

2
0)

h̄2 +
f(t)

2h̄2m2σ2
0w

2
t

)
(35)

and
Θ(x, t) =

β(t)(x− αm(t))

w2
t

(36a)

β(t) = βm(t)−
(
x0 +

p0

m
τ(t)

)
η − 2p0σ

2
0

h̄
η2 (36b)

for the decoherence function and phase respectively with

Γ0(t) = −
(
x2

0

2σ2
0

+ 2
p2

0

h̄2σ
2
0

){
1− σ2

0

w2
t

[
1 +

h̄2

4m2σ4
0

τ(t)2

]}
(37)

f(t) = h̄3x0[mx0 + p0τ(t)]τ(t) + ηh̄2[m2x2
0 + 4mx0p0τ(t) + p2

0τ(t)2]σ2
0

+ 4(1 + η2)h̄mp0[mx0 + p0τ(t)]σ4
0 + 4η(2 + η2)m2p2

0σ
6
0 (38)

Equation (35) is too complicated to be analyzed. However, for motionless wave packets

where p0 = 0, the decoherence function takes a simpler form

Γ(t) = − x2
0

2σ2
0

{
1− σ2

0

w2
t

[
1 +

h̄2

4m2σ4
0

τ(t)2

]}
+

x2
0

2w2
t

(
η2 + η

h̄

mσ2
0

τ(t)

)
(39)

showing that for positive values of the stretching parameter η the decoherence function is

less negative leading to reduction of the rate of the decoherence. From Eq. (39) one sees

again that Γ(t) = 0 for D = 0 implying that the last term in Eq. (1) is responsible for

decoherence [22]. In the zero dissipation limit one obtains

Γ(t) ≈ − 4Dx2
0t

3

12m2σ4
0(1 + η2) + 12mh̄ησ2

0t+ 3h̄2t2 + 8Dσ2
0t

3
(40)

where in the limit σ0 � x0 reduces

Γ(t) ≈ − t

τD
, τD =

3h̄2

2mγkBTd2
(41)

τD being the decoherence time which depends on the temperature, relaxation constant and

separation between the two initial wavepackets, d = 2x0 [23]. Thus, in this limit, the

stretching parameter η does not affect the decoherence time.
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IV. TWO IDENTICAL PARTICLES

For a system of two identical spinless particles, the state of the system must be (anti-

)symmetric for identical (fermions) bosons under the exchange of particles. If the initial

pure state is given by

Ψ±(x1, x2, 0) = N±{ψ(x1, 0)φ(x2, 0)± φ(x1, 0)ψ(x2, 0)} (42)

ψ and φ being one-particle wave functions, then the evolution under the two-particle CL

equation yields [8]

ρ±(x1, x2;x′1, x
′
2, t) = N 2

±{ρ11(x1;x′1, t)ρ22(x2;x′2, t) + ρ22(x1;x′1, t)ρ11(x2;x′2, t)

±ρ12(x1;x′1, t)ρ21(x2;x′2, t)± ρ21(x1;x′1, t)ρ12(x2;x′2, t)} (43)

where

ρ11(x, x′, 0) = ψ0(x)ψ∗0(x′) (44a)

ρ22(x, x′, 0) = φ0(x)φ∗0(x′) (44b)

ρ12(x, x′, 0) = ψ0(x)φ∗0(x′) (44c)

ρ21(x, x′, 0) = φ0(x)ψ∗0(x′) (44d)

Note that although ρ11(x, x′, t) and ρ22(x, x′, t) are one-particle densities, ρ12(x, x′, t) and

ρ21(x, x′, t) are not. However, all these functions are solutions of one-particle CL equation

(1) satisfying the continuity equation (6). Joint detection probabilities are given by the

diagonal elements of (43);

P±(x1, x2, t) = N 2
±[P11(x1, t)P22(x2, t) + P22(x1, t)P11(x2, t)± 2Re{P12(x1, t)P21(x2, t)}]

(45)

where

Pij(x, t) = ρij(x, x, t) (46)

For distinguishable particles obeying Maxwell-Boltzmann statistics, the probability density

is given by

PMB(x1, x2, t) =
1

2
[P11(x1, t)P22(x2, t) + P22(x1, t)P11(x2, t)] (47)
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The last term of (45) is due to particle indistinguishability. In this context, and due to the

environment, this term becomes zero along time and we have decoherence in the sense of

indistinguishability loss.

For the single-particle density Psp,±(x, t) =
∫∞
−∞ dx2ρ±(x, x2;x, x2, t), one obtains

Psp,±(x, t) = N 2
±[P11(x, t) + P22(x, t)± 2Re{P12(x, t)s(t)}] (48)

where the overlapping integral is

s(t) =

∫ ∞
−∞

dx′P21(x′, t) (49)

In Appendix A, a continuity equation has been derived for the single-particle density. Notice

that due to the continuity equation (6), s(t) is independent of time and does not depend on

environment parameters γ and T ; s(t) =
∫
dx′P21(x′, t) =

∫
dx′P21(x′, 0) = 〈φ(0)|ψ(0)〉.

If the system is isolated, states evolve under the Schrödinger equation and we have

Psp,±(x, t) = N 2
±[|ψ(x, t)|2 + |φ(x, t)|2 ± 2Re{〈φ(0)|ψ(0)〉ψ∗(x, t)φ(x, t)}] (50)

Comparison of (48) and (50) reveals that in open systems the quantity P12(x, t) plays the

role of ψ∗(x, t)φ(x, t). Thus, in analogy to Eq. (26) we have again

|P12(x, t)| =
√
P11(x, t)P22(x, t)eΓ12(t) (51)

leading to

Γ12(t) = log
|P12(x, t)|√

P11(x, t)P22(x, t)
(52)

Taking now one-particle states φ and ψ as minimum-uncertainty-product Gaussian wave

packets i.e., as (11) η = 0, with parameters x̄0, σ̄0, p̄0 and x0, σ0, p0 respectively, one obtains

P12(x, t) =

√
2σ0σ̄0

σ2
0 + σ̄2

0

1

2
√
πb2(t)

exp

[
b0 −

(x− b1(t))2

4b2(t)

]
(53)

where

b0 = − h̄
2(x0 − x̄0)2 + 4(p0 − p̄0)2σ2

0σ̄
2
0 − i4h̄(p0 − p̄0)(x0σ̄

2
0 + x̄0σ

2
0)

4h̄2(σ2
0 + σ̄2

0)
(54)

b1(t) =
x0σ̄

2
0 + x̄0σ

2
0

σ2
0 + σ̄2

0

+
p̄0σ̄

2
0 + p0σ

2
0

m(σ2
0 + σ̄2

0)
τ(t)− i

[
h̄τ(t)

2m

x0 − x̄0

σ2
0 + σ̄2

0

+ 2
(p̄0 − p0)σ2

0σ̄
2
0

h̄(σ2
0 + σ̄2

0)

]
(55)

b2(t) =
σ2

0σ̄
2
0

σ2
0 + σ̄2

0

+
h̄2τ(t)2

4m2(σ2
0 + σ̄2

0)
+

4γt+ 4e−2γt − 3− e−4γt

16m2γ3
D − i h̄(σ2

0 − σ̄2
0)

2m(σ2
0 + σ̄2

0)
τ(t).(56)
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Note that for σ̄0 = σ0 one has b2(t) = σ2
t /2 where σt = wt|η=0 is obtained from Eq. (16)

by imposing η = 0. P11(x, t) and P22(x, t) are given by (19) by using appropriate momenta.

For σ̄0 = σ0 and x̄0 = x0, corresponding to the one-slit diffraction, from (52) one obtains

Γ12(t) = −σ
2
0(p0 − p̄0)2

2h̄2

{
1− σ2

0

σ2
t

[
1 +

h̄2

4m2σ4
0

τ(t)2

]}
(57)

which is certainly negative as can be seen from (16). The decoherence function is the

same for bosons and fermions. The decoherence due to the last term of equation (48) is

here interpreted as loss of being indistinguishable as described in [8]. Notice that the case

p0 = p̄0 can occur only for bosons which then the wavefunction (42) takes the product

form just as classical states, revealing that quantum statistics is unimportant when the

decoherence function Γ12(t) becomes zero. However, this term vanishes if the overlapping

integral is negligible. In such a case the quantum statistics is unimportant. This situation

can also happen in isolated systems and it is not a result of interaction with the environment.

Therefore, one should consider the effect of environment on P12(x, t) and P21(x, t) as an

additional source of decoherence taking place for identical particle systems.

V. QUANTUM SHUTTER PROBLEM: DIFFRACTION IN TIME

Dynamics of a beam of particles described initially by a plane wave, confined to the

negative semi-infinite region x < 0, has been studied by Moshinsky [10] in the framework of

the Schrödinger equation when the shutter is suddenly removed at t = 0. This problem is of

fundamental importance in the framework of isolated systems where the so-called diffraction

in time was first reported [24].

Our aim here is to carry out the same dynamics but in the CL framework. In order

to simplify this analysis, we restrict ourselves to the case of negligible dissipation which

corresponds to time-scales much shorter than the relaxation time γ−1. In this limit, the

second term in Eq. (1) can be safely neglected. Propagator for the resulting master equation

in the free case is expressed as [18]

G(x, y, t|x′, y′, 0) =
m

2πh̄t
exp

[
im

2h̄t
{(x− x′)2 − (y − y′)2}

− Dt

3h̄2{(x− y)2 + (x− y)(x′ − y′) + (x′ − y′)2}
]
. (58)
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For D = 0, this propagator reduces to that of the free particle in the framework of the von

Neumann equation. If the initial state is eikxθ(−x) and using the center of mass and relative

coordinates R′ and r′ given respectively by (3a) and (3b) but with x′ and y′ instead of x

and y, the diagonal elements of the density matrix are written as

P (x, t) ≡ ρ(x, x, t) =
m

2πh̄t

∫ 0

−∞
dR′

∫ −2R′

2R′
dr′ exp

[
−Dt

3h̄2 r
′2 + i

(
k − m

h̄t
(x−R′)

)
r′
]

=
m

2πh̄t

∫ 0

−∞
dR′f(x, t, R′) (59)

with

f(x, t, R′) =
h̄

2

√
3π

Dt

(
erf

[
−4DRt2 + 3ih̄(h̄kt+m(R− x))

2h̄
√

3Dt3

]
− c.c.

)
× exp

[
−3(h̄kt−m(x−R))2

4Dt3

]
(60)

where erf(·) means the error function and c.c inside the parenthesis the complex conjugate

of the first term. Integral (59) can not be carried out analytically and should be obtained

numerically. In the limit T → 0, the above equations read

f(x, t, R′) = − 2h̄t

h̄kt+m(R′ − x)
sin

[
2R′(h̄kt+m(R′ − x))

h̄t

]
(61)

P (x, t) =
1

2

(
C(ξ) +

1

2

)2

+
1

2

(
S(ξ) +

1

2

)2

, ξ =

√
m

πh̄t

(
h̄k

m
t− x

)
(62)

C(ξ) and S(ξ) being the Fresnel integrals. Eq.(62) is a known result in the context of closed

quantum systems. The well known time oscillations in the density profile are gradually killed

by the interaction with the environment.

VI. RESULTS AND DISCUSSION

Numerical calculations along this work are given in units of h̄ = 1 and m = 1. The first

aspect we want to analyze is time arrivals from the solutions of Eqs. (1) and (6). For this

goal, we present arrival time distributions at the origin from Eq. (7) for propagation of

a minimum-uncertainty-product Gaussian wave packet coming from the left . In figure 1,

these distributions are plotted for γ = 0.05 (left top panel) and γ = 0.2 (left bottom panel)

for different temperatures, kBT = 1 (brown curve), kBT = 5 (orange curve) and kBT = 10

(violet curve). In the right panels, mean arrival times, Eq. (8), and rms width of the

14
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FIG. 1: Arrival time distributions Πa(X, t) at the detector location X = 0 for γ = 0.05 (left

top panel) and γ = 0.2 (left bottom panel) for different temperatures: kBT = 1 (brown curve),

kBT = 5 (orange curve) and kBT = 10 (violet curve). In the right panels, mean arrival times (top)

and rms width of the arrival time distribution (bottom) at the detector location have been plotted

versus temperature for different values of damping constant: γ = 0.05 (black curve), γ = 0.1

(red curve), γ = 0.15 (green curve) and γ = 0.2 (blue curve). The initial state is chosen to be a

minimum-uncertainty-product Gaussian wave packet with parameters σ0 = 1, x0 = −5, p0 = 0.5,

in the absence of external force.

distribution, (9), are displayed versus temperature for different relaxation rates, γ = 0.05

(black curve), γ = 0.1 (red curve), γ = 0.15 (green curve) and γ = 0.2 (blue curve). The

peaks of these arrival time distributions move to shorter times as temperature increases. As

expected, the mean arrival time plotted in the right top panel increases with the relaxation

rate for a given temperature. This mean time is also a decreasing function of the tempera-

ture, independently on the value of the relaxation rate. The same behavior is observed for

the width of these distributions in the right bottom panel.

The second aspect to be analyzed is the role of the friction or relaxation rate and tem-

perature for two distinct Gaussian wave packet dynamics, minimum-uncertainty and non-

minimum-uncertainty product Gaussian wave packets. The decoherence function in the

interference of two minimum-uncertainty Gaussian wave packets is studied here for a zero

15
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FIG. 2: Decoherence function Γ(t), given by Eq. (31a), versus time for kBT = 1 (left panel) and

for γ = 0.05 (right panel). Curve color codes in the left panel are: γ = 0.005 (black), γ = 0.01

(red), γ = 0.015 (green), γ = 0.05 (blue); whereas in the right panel, kBT = 2 (brown), kBT = 5

(magenta) and kBT = 8 (cyan). Parameters for the two minimum-uncertainty Gaussian wave

packets are σ0 = 1, x0 = 5 and p0 = −2.
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FIG. 3: Coherence attenuation coefficient a(t), given by Eq. (28), versus time for γ = 0.005; and

for kBT = 1 (left panel) and kBT = 5 (right panel) for different values of stretching parameter;

η = 0 (black curve), η = 1 (red curve), η = 2 (green curve) and η = 3 (blues curve). Same

parameters as in Figure 2.

constant field, g = 0, with parameters p0 = −2, σ0 = 1 and x0 = 5 according to Eq.(29).

With these values for the parameters of the initial wave packets one ensures negligible initial

overlap between them. Figure 2 displays the decoherence function versus time for a given

value of temperature kBT = 1 but different relaxation rates (left panel) and for a given

value of the damping constant γ = 0.05 but different temperatures (right panel). Curve

color codes in the left panel are as follows: γ = 0.005 (black), γ = 0.01 (red), γ = 0.015

(green), γ = 0.05 (blue); and in the right panel: kBT = 2 (brown), kBT = 5 (magenta)

and kBT = 8 (cyan). The decoherence function is negative and decreases with time for

both γ and T , reaching a stationary value in all cases. Thus, the coherence behavior as
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FIG. 4: Probability density plots (26) for the superposition of two minimum-uncertainty-Gaussian

wave packets, η = 0, for kBT = 1 and different values of the relaxation rate: γ = 0.0001 (left top

panel), γ = 0.001 (right top panel), γ = 0.003 (left bottom panel) and γ = 0.01 (right bottom

panel). Same parameters as in Figure 2.

well as the interference pattern is lost gradually with time; in other words, the decoherence

process is established gradually with time reaching a stationary value. However, with T , the

decoherece function decreases faster than with γ, total decoherence being reached at much

shorter times. Figure 3 depicts the coherence attenuation coefficient (28) versus time for

the cat state built from stretched wave packets for γ = 0.005 and kBT = 1 (left panel) and

kBT = 5 (right panel) for different values of the stretching parameter: η = 0 (black curve),

η = 1 (red curve), η = 2 (green curve) and η = 3 (blues curve). As one clearly sees, positive

values of η reduces the rate of decoherence and this reduction is more pounced for lower

temperatures.

To better illustrate the effect of damping on the interference pattern, in Fig. 4 probability

density plots (26) are shown for kBT = 1 and different relaxation rates: γ = 0.0001 (left top

panel), γ = 0.001 (right top panel), γ = 0.003 (left bottom panel) and γ = 0.01 (right bottom
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FIG. 5: Probability density (26) plots for kBT = 0. This corresponds to the evolution of the

initial state (29) issued from the Schrödiger equation. The right panel is a zoom-out of the left one

around the interference region. Same parameters as in Figure 2.

panel). The interference pattern is drastically reduced as seen in the right bottom panel.

For comparison, we have also plotted the probability density for the corresponding isolated

system described by the Schrödinger equation in Fig. 5 for kBT = 0 and γ = 0. The right

panel is a zoom-out of the left one around the interference region. Parameters of the initial

wave packets have been chosen in such a way that they do not spread substantially during

the time evolution. Bohmian trajectories have bee plotted in Fig. 6 for kBT = 1 and two

different values of γ : γ = 0.001 (left panel) and γ = 0.05 (right panel). Indigo (maroon)

trajectories correspond to Bohmian trajectories running for the left (right) wave packet.

Red trajectories correspond to Bohmian ones following the center of the wave packets. Same

parameters as in Figure 2. As this figure shows for the relaxation coefficient γ = 0.001, these

trajectories converge to three distinct bunches corresponding to the interference fringes in

Fig. 4. However, at higher γ values, the fringes have disappeared.

The third aspect deals with the interference of identical particles when an open dynamics

is considered; in particular, the role played by the temperature. Figure 7 shows decoherence

in the context of identical particles through the single-particle density (48). Here, the effect

of friction is considered for a given temperature. Scaled single-particle probability density

has been plotted versus distance for two identical spin-less bosons (red) and fermions (green)
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FIG. 6: A selection of Bohmian trajectories for the superposition of the two minimum-uncertainty-

Gaussian wave packets for kBT = 1 and for two different values of the relaxation coefficient:

γ = 0.001 (left panel) and γ = 0.05 (right panel). Indigo (maroon) trajectories correspond to

Bohmian trajectories running at the left (right) wave packet. Red trajectories correspond to

Bohmian ones following the center of the wavepackets. Same parameters as in Figure 2.

for a closed system (left column). The same probability is shown for kBT = 10 but different

damping constants γ = 0.2 (middle column) and γ = 0.4 (right column) at different times:

t = 0.1 (top row), t = 0.5 (middle row) and t = 2 (bottom row). For comparison, the

behavior of distinguishable particles obeying classical Maxwell-Boltzmann statistics is also

shown by black curves. This black curve almost coincides with the red one (bosons) for our

choice of parameters. Both one-particles states ψ and φ have been taken as superposition

of two motionless minimum-uncertainty-product-Gaussian wavepackets, (29), with x0 = ±5

but different widths σ0 = 1 and δ0 = 0.5. With γ, the widths increase with time, for the

considered region of time, and quantum statistics becomes less and less important. The

oscillations observed for fermions in the closed system scenario are totally suppressed by

γ and T . The space distributions of fermions are always slightly wider than for bosons

due to the well-known anti-bunching property displayed by the former. Bimodality of the

corresponding single-particle probability densities also tends to disappear with friction and

time. In other words, the symmetry of the wave function is not robust enough to keep the

corresponding statistics along time. This feature was also observed previously when only

friction was considered [8] in a different context, the Caldirola-Kanai approach.

In figure 8, the joint detection probability for finding both particles with one at the
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FIG. 7: Scaled single-particle probability density versus x (48) for two identical spin-less bosons

(red) and fermions (green) for an ideal closed system (left column). The same is plotted for

kBT = 10 but different damping constants γ = 0.2 (middle column) and γ = 0.4 (right column) at

different times: t = 0.1 (top row), t = 0.5 (middle row) and t = 2 (bottom row). For comparison,

distinguishable particles obeying classical Maxwell-Boltzmann statistics, this probability is also

shown by black curves. Both one-particles states ψ and φ have been taken as superposition of two

motionless minimum-uncertainty-product-Gaussian wavepackets, (29), with x0 = ±5 but different

widths σ0 = 1 and δ0 = 0.5.

origin, has been depicted for a given damping constant but different temperatures; scaled

joint detection probability versus distance (45) for two spin-less distinguishable particles

(black) identical bosons (red) and fermions (green) for a closed system (left column). This

probability is also plotted for γ = 0.4 but different temperatures kBT = 15 (middle column)

and kBT = 25 (right column) and at different times, t = 0.5 (top row), t = 1 (middle row)

and t = 1.5 (bottom row). Both one-particles states ψ and φ have been taken again as

superposition of two motionless minimum-uncertainty-product-Gaussian wavepackets, (29),

with x0 = ±5 but different widths σ0 = 1 and δ0 = 0.5. For the closed dynamics, the

20



-10 -5 0 5 10
0

0.001

0.002

0.003

0.004

0.005

-20 -10 0 10 20
0

0.05

0.1

0.15

0.2

-20 -10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

-10 -5 0 5 10
0

0.005

0.01

0.015

0.02

-20 -10 0 10 20
0

0.5

1

1.5

2

2.5

3

-20 -10 0 10 20
0

0.5

1

1.5

2

2.5

3

1
0

3
×

P
(x

, 
0
, 

t)

-10 -5 0 5 10

x

0

0.5

1

1.5

2

-20 -10 0 10 20

x

0

0.5

1

1.5

2

2.5

3

-20 -10 0 10 20

x

0

0.5

1

1.5

2

2.5

3

FIG. 8: Scaled joint detection probability versus x (45) for two spin-less distinguishable particles

(black) identical bosons (red) and fermions (green) for a closed system (left column). One of the

two particles is at the origin. This probability is also shown for γ = 0.4 but different temperatures

kBT = 15 (middle column) and kBT = 25 (right column) at different times; t = 0.5 (top row),

t = 1 (middle row) and t = 1.5 (bottom row). Both one-particles states ψ and φ has been taken as

superposition of two motionless minimum-uncertainty-product-Gaussian wavepackets, (29), with

x0 = ±5 but different widths σ0 = 1 and δ0 = 0.5.

corresponding probability of finding the second particle at the origin is nearly zero. However,

with T and time this probability is small but different from zero. Furthermore, the widths

also increase with T and time; and the joint detection distribution are wider and wider, being

wider for fermions than for bosons. The same features are then observed in this analysis.

Finally, the last aspect studied here is the problem of sudden release of the initially

confined plane wave from a hard wall which is known as the quantum shutter problem. For

fulfilling the negligible dissipation limit we take γ = 0.0001 in the time region t ≤ 100.

For a given γ and T , as time increases, oscillations of the function f2(x, t, R′) in Eq. (60)

are drastically reduced; in particular, when R → −∞. For our parameters replacing the
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FIG. 9: Density plots of the probability density P (x, t) for the released beam eikx in the shutter

problem for isolated closed system (left top panel) and the open system in the context of the CL

framework for γ = 0.0001 and for different values of temperature: kBT = 1 (right top panel),

kBT = 2 (left bottom panel) and kBT = 4 (right bottom panel). Momentum is k = 1.

lower limit of the integral by −200 suffices and yields reasonable results. Figure 9 depicts

probability densities (62) for the isolated system (left top panel) and (59) for the open

system for γ = 0.0001 and different temperatures (the remaining panels) in the space and

time regions 0 ≤ x ≤ 20 and 10 ≤ t ≤ 50, respectively. While diffraction in both space

and time is seen in the isolated case, oscillations are gradually killed in the presence of

environment as temperature increases (red curves). In figure 10, the probability densities

versus time at a given place (left panel) and versus space coordinate at a given time (right

panel) have been plotted to show explicitly oscillations around the classical pattern. Black

curves refer to the the same problem but in the framework of isolated systems described

by the von Neumann equation, the dashed green shows the classical pattern. As one sees
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FIG. 10: Probability density P (x, t) for the released beam eikx in the shutter problem, in the

negligible dissipation limit, versus time at the space coordinate x = 10 (left panel) and versus x

at t = 50 (right panel) for kBT = 2; and γ = 0.00005 (red curves), γ = 0.0001 (blue curves) and

γ = 0.00015 (orange curves). Black curves refer to the the same problem but in the framework of

isolated systems described by the von Neumann equation and the dashed green shows the classical

pattern. Momentum is k = 1.

oscillations are gradually killed in the presence of environment as the relaxation rate increases

for a given temperature.

VII. CONCLUDING REMARKS

In this work, we have explored several new aspects of decoherence within the CL frame-

work; in particular, arrival time distributions, identical spinless particles and diffraction in

time. The role of a positive stretching parameter in the Gaussian wave packets has also been

investigated leading to a reduction of the decoherence rate. As mentioned previously, the

source of decoherence is in the last term of Eq. (1) where the diffusion coefficient depends

on the temperature and friction or damping rate. Here the decoherence is analyzed in terms

of the so-called decoherence function and attenuation coefficient when typical interference

pattern expressions are studied for indistinguishable and distinguishable particles.

For identical particles, we have clearly shown that the symmetry of the wave function

is not robust enough to keep the statistical signature of the particles leading to a gradual

decoherence. This can be seen as a gradual lost of being indistinguishable when the tem-

perature and friction are present. The corresponding analysis for arrival time distributions

as well the diffusion process should also be investigated.

Finally, the decoherence process has also been observed in time itself, in the well-known
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process of diffraction in time. A gradual reduction of the oscillations which are the hallmark

of this type of diffraction is clearly seen with temperature and low frictions.

Appendix A: Continuity equation for the single-particle density

Taking time derivative of both sides of Eq. (48) yields

∂

∂t
Psp,±(x, t) = N 2

±

{
∂

∂t
P11(x, t) +

∂

∂t
P22(x, t)± Re{

∫
dx′

∂

∂t
[P12(x, t)P21(x′, t)]}

}
(A1)

Now using the continuity equation (6) and imposing appropriate boundary condition yielding

zero boundary terms we obtain the following continuity equation,

∂

∂t
Psp,±(x, t) +

∂

∂x
Jsp,±(x, t) = 0 (A2)

where

Jsp,±(x, t) = N 2
±[J11(x, t) + J22(x, t)± Re{J12(x, t)s(t)}] (A3)

and Jkl(x, t) given by diagonal elements of (5) satisfies Eq. (6) with Pkl(x, t).
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