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Abstract
We investigate, in the non-equilibrium Keldysh frame, a topological resistor–capacitor (RC) circuit
consisting of a quantum dot coupled to a Majorana edge mode formed around a chiral topological
superconductor. We implement both the adiabatic approximation and the numerical exact
calculations to find out the unique non-equilibrium features of the electric response of the
dissipative Majorana channel. First, the dependence of the dissipation on the frequency Ω of the ac
driving on the dot is found to be greatly different whether the time-dependent dot level crosses the
Fermi level or not during the driving. In the latter case, the relaxation resistance Rq, the measure of

the dissipation, obeys Rq ∝ Ω2 for small frequencies, and in the former case, Rq ∝ Ω−1/3 diverges
as Ω→ 0. In the former case, a universal scaling law for the dissipative part of the ac power is
observed and attributed to the δ-peak in the dot density of states due to a uncoupled dot Majorana
mode at the dot resonance condition. We compare the ac power, current, and the relaxation
resistance between Majorana and trivial Dirac channels and clarify the Majorana nature in the
dissipation.

1. Introduction

The most characteristic property of topological insulators [1] is that gapless states are formed around their
boundaries or at defects while a finite energy gap is fully formed inside their bulk. The surface states, being
topologically protected, open nontrivial conducting channels with interesting properties: for example, chiral
or helical transport, spin-momentum locking, quantized conductance through them, the relativistic
dispersion of massless-Dirac-cone shape, and so on. More interestingly, the surface states for topological
superconductors [2] are known to exhibit the properties genuine to Majorana-fermion-like excitations: the
creation and annihilation of those excitations are the same [3–7]. The realization and manipulation of
long-anticipated Majorana fermions in solid-state systems have attracted a plethora of theoretical and
experimental studies. Most of the studies have focused on the one-dimensional (1D) topological
superconductor [8] because of the possibility that the Majorana bound states formed at the ends of the
wires can be used for the topological quantum computation [9, 10]. A series of experimental studies have
been performed to detect the evasive charge-neutral and spinless Majorana states by measuring the
zero-bias peak in the density of state [11–18] and observing the ac fractional Josephson effect [19, 20],
developing more positive outlook on the realization of the Majorana states.

On the other hand, the two-dimensional topological superconductor [2, 21] can be more interesting
because it hosts continuum bands of Majorana states around its boundary, in contrast to the localized and
discrete ones in the 1D case. The typical gapped superconductor can support dissipationless supercurrent as
long as quasiparticle excitations above the gap are not involved. The Majonara boundary modes, however,
can be regarded as gapless quasiparticle excitations and should be dissipative even in the presence of the
finite bulk gap. Moreover, the Majorana states consist of particle and hole excitations in equal amplitude,
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which are topologically protected. This topological nature can give rise to nontrivial behaviors in the
transport through the Majorana edge modes [22]. For example, the chiral Majorana edge modes can lead to
half-integer quantized conductance through it due to their half-fermionic nature. A recent experiment [23]
on a quantum anomalous Hall (QAH) insulator-superconductor structure claimed that the chiral Majorana
mode is observed based on its measurement of the half-integer conductance plateaus over some parameter
ranges. However, it was found theoretically [24, 25] and experimentally [26] that such plateaus could be
observed in similar systems even without superconductivity if some conditions are met. It is evident that
more concrete corroboration for the chiral Majorana modes should go beyond the dc measurement.

One of simple but powerful transport setup for studying the electronic dissipation is the quantum
capacitor in which one plate of the capacitor consists of a quantum dot and the other is formed by a
macroscopic top gate on it. The quantum dot is tunnel-coupled to the metallic reservoir in interest. Such
setup was envisaged by Büttiker in references [27, 28] in which the capacitor is described by an equivalent
quantum resistor–capacitor (RC) circuit with quantum parameters, i.e. a quantum capacitance Cq and a
quantum resistance Rq. The RC device is driven by a time-dependent bias voltage that charges and
discharges the capacitor by the elementary charge e. Interestingly, in the quantum limit and in the
low-frequency limit the quantum relaxation resistance Rq becomes universal being, half the resistance
quantum RQ ≡ h/e2 per channel, regardless of the transmission between the quantum dot and the reservoir
[27–29]. The quantization of the resistance for small ac frequencies persists even in the presence of strong
electron–electron interaction (for example, in the Kondo regime), as long as the low-energy physics can be
dictated by the Fermi-liquid theory which fulfills the Korringa–Shiba relation [30–34]. The relaxation
resistance, therefore, surely reflects the characteristic of spectral structure of the attached metallic reservoir.
For example, the low-frequency relaxation resistance should vanish for a superconducting reservoir. The
relaxation resistance is attributed to the energy relaxation of particle–hole pair in the reservoir excited by
the ac driving [31, 35]. The finite gap in the superconductor forbids the excitation of the electron–hole pair
inside the gap, so no relaxation happens. Then, what about the Majorana reservoir? As noted before, the
Majorana modes feature both superconductivity (equal amplitudes of particle and hole excitations) and
dissipation. Therefore, the relaxation resistance for the Majorana reservoir should be highly nontrivial. It
might be worth noting that the similar studies based on the quantum RC circuit have been applied to the
quantum-dot systems having the Majorana bound states formed at the ends of 1D topological
superconductors [36, 37]. Even though these studies have revealed the genuine effect of the Majorana
physics on the transport, the Majorana states in these setups, being discrete bound states, are not main
culprit for the dissipation. However, in our RC circuit, the dissipation happens via the dispersive Majorana
edge modes, which distinguishes our work from the previous works.

The dissipation in the quantum RC circuit with chiral Majorana reservoir has been studied in the linear
response regime [35]. It finds that the relaxation resistance is suppressed for very low frequencies and
completely vanishes at zero-frequency limit. It is attributed to the exact cancellation between particle–hole
pair generation processes via charge-conserving and pairing tunneling between the dot and the reservoir,
reflecting the half-fermionic nature. On the other hand, the exactly same nature of Majorana fermion leads
to the enhancement of the relaxation resistance for finite frequencies when the dot level is near the Fermi
level, that is, near the resonance condition. On resonance, the density of states in the dot at the Fermi
energy increases divergingly, leading to proliferation of the particle–hole pairs. While the linear-response
study have investigated well the exotic dissipation via the Majorana edge modes, there remain some
limitations. First, the diverging density of states on resonance makes the linear-response theory unreliable,
giving rise to quantitatively wrong results as will be shown below. Second, the dissipation in itself involves
the non-equilibrium situation which is beyond the linear-response study.

In our study, we apply the non-equilibrium Keldysh formalism to a topological RC circuit consisting of a
quantum dot coupled to a chiral Majorana edge mode formed around a chiral topological superconductor.
We implement both the adiabatic approximation and the numerical exact calculations to explore the
dissipation mechanism via the Majorana channel. We found that the dependence of the dissipation on the
frequency Ω of the ac driving is greatly different whether the dot becomes resonant or not during the
driving. In the latter case, the relaxation resistance Rq, the measure of the dissipation, obeys Rq ∝ Ω2 for
small frequencies, and in the former case, Rq ∝ Ω−1/3 diverges as Ω→ 0. Interestingly, for a large ac driving
under which the dot level can be shifted to the Fermi level, the dissipative part of the ac power follows a
universal scaling law, which can be attributed to the δ-peak in the dot density of states due to a uncoupled
dot Majorana mode at the dot resonance. In order to clarify the Majorana nature in the dissipation, we
compare the ac power, current, and the relaxation resistance between Majorana and trivial Dirac channels
in details.

Our paper is organized as follows: in section 2, our model is introduced and the Keldysh technique is
applied to find the exact formulas of the relaxation resistance in terms of the non-equilibrium Green’s
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Figure 1. (LEFT) Realization of a quantum RC circuit with chiral topological superconductor coupled to a quantum dot.
(RIGHT) Schematic diagram describing the coupling between a spinless dot level and two spatially separated Majorana edge
modes (j = 1, 2).

functions. For a limiting case study, especially for low-frequency response, we derive the analytical
expression in the adiabatic approximation. Also, the recipe for numerical exact solution is described in
details. Sections 3 and 4 are the main parts of our paper and give thorough analysis of the current, power,
and relaxation resistance for normal metallic reservoir and topological superconducting reservoir. We
summarize our work in section 5.

2. Model and methods

The physical implementation of our topological RC circuit is depicted in figure 1. Following the theoretical
proposal [21], the chiral topological superconductor can be implemented by depositing a slab of s-wave
superconductor on top of a film of QAH insulator. The QAH states can be induced by doping magnetic
impurities such as Mn and Cr into films of topological insulators such as HgTe or Bi2Te3 [38–40]. As a
result, there appear spin-polarized chiral modes along the edges that form a Dirac fermion, which
mathematically can be decomposed into two Majorana edge modes (j = 1, 2). The transition from two
Majorana modes into a half Dirac fermion is brought by placing a s-wave superconductor on top of the
topological insulator [21]. The proximity-induced pairing potential places one of the Majorana edge modes
(say j = 2) towards bulk, and the two edge modes become spatially separated from each other. Finally, this
system undergoes a topological phase transition when one of the two Majorana modes lies in the bulk,
being gapped now. By placing ferromagnetic insulators on top of the QAH film, one can turn the
underneath region into the trivially insulating state, and the boundary of the topological superconductor is
located between the superconductor and ferromagnet slabs. Also, a quantum dot can be also formed by
confining the QAH region by the ferromagnet-driven insulating region, as shown in figure 1. A tunnel
junction between the dot and the Majorana edge mode can be opened by controlling the width of the
ferromagnet bar between the dot and the topological superconductor.

Now we present the model Hamiltonian to describe the topological quantum capacitor formed by a
quantum dot that is tunnel-coupled to two Majorana edge modes formed around a topological
superconductor. The Hamiltonian is composed of the three contributions, namely from the reservoir, the
quantum dot and the coupling between them: H = Hres +Hdot +Htun. Since we focus on the low-energy
physics and disregard the bulk dynamics, only the edge modes are responsible for the dissipative reservoir
which is described by

Hres =
∑
j=1,2

∑
k>0

εkγ−k,jγk,j =
∑

k

εkc†kck, (1)

where γk,j = γ†
−k,j are chiral Majorana fermion operators with the linear dispersion εk = �vk, where k is the

momentum and v is the propagation velocity of the Majorana edge modes. Here we assume that k = 0 is
the Γ point in 1D Brillouin zone [21] for the Majorana edge mode, while this is not required for the QAH
edge mode. The linear combination of the two Majorana fermions can construct the chiral and spinless
Dirac fermion operators ck ≡ (γk,1 + iγk,2)/

√
2. In the single Majorana case we keep only j = 1 mode, while

j = 2 mode disappears into the bulk. Since the QAH state is already spin-polarized, the quantum dot can be
described in terms of a single spinless level εd:

Hdot = [εd + eV(t)] d†d ≡ εd(t)d†d. (2)

Here the time-dependent induced ac voltage V(t) = Vac cosΩt incorporates the external gate voltage and
the induced internal potential due to the geometrical capacitance between the dot and the gate.
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The coupling of the dot level to the chiral Majorana edge modes (j = 1, 2) with separate spatial
localizations takes a tunneling model [22]

Htun =
∑

k

[
t1d†γk,1 + it2d†γk,2 + (h.c.)

]
, (3)

in terms of the tunneling amplitudes tj between the Majorana mode j and the dot level. For simplicity, we
neglects the momentum dependence of the tunneling amplitudes. In terms of the Dirac fermion operator,
the tunneling Hamiltonian is expressed as

Htun =
∑

k

[
t+d†ck + t−d†c†k + (h.c.)

]
(4)

with t± ≡ (t1 ± t2)/
√

2. The first term (t+) represents the normal single-electron tunneling between the dot
and the reservoir, while the second one (t−) describes the creation of a Cooper pair from the dot and the
reservoir. One can note that if the two Majorana edge modes share the same spatial distribution so that
t1 = t2 or t− = 0, the system exhibits no superconductivity, restoring the QAH case. Assuming the flat band
structure in the reservoir, the coupling is conveniently described by the hybridization parameters
Γj ≡ πρ0|tj|2/� with the density of states ρ0 = 1/2π�v. Due to spatially separated localizations of the two
Majorana modes, Γ1 � Γ2; in particular, Γ1 = Γ2 only in the QAH phase and Γ2 = 0 in the chiral
topological superconducting (cTSC) phase.

Note that our model ignores the bulk states of the reservoir. Therefore, �Γj, eVac, and �Ω should be
sufficiently smaller than the bulk (superconducting) gap so that the ac driving in the gate does not invoke
the quasi-particle excitation in the bulk.

2.1. Electrical current and power in terms of non-equilibrium Green’s functions
Our interest lies on the study of charge current and energy dissipation with respect to the ac driving with
arbitrary frequency and amplitude. Knowing the time dependence of the dot occupation

nd(t) =
〈

d†(t)d(t)
〉

(5)

one can obtain the charge current from the dot to the reservoir via [41]

I(t) = −e
dnd(t)

dt
. (6)

Note that the dot is tunnel-coupled to the reservoir so that the charge current can flow into the reservoir
only. Also, this current should be equal to the displacement current in magnitude between the dot and the
gate, so the current can be measured by observing the ac current through the gate. The power supplied by
the ac source is given by

P(t) = −
〈
∂H
∂t

〉
= −e

dV(t)

dt
nd(t) (7)

which also measures the dissipation Q̇ = −P(t) in the reservoir [42].
In order to calculate the above quantities in the non-equilibrium condition, one needs to introduce the

Nambu–Keldysh Green functions. The lesser dot Green function in the Nambu space is defined by

− iG<
d (t, t′) =

[
〈d†(t′)d(t)〉 〈d(t′)d(t)〉
〈d†(t′)d†(t)〉 〈d(t′)d†(t)〉

]
(8)

and the other Green functions such as G>
d , Gt

d, and G t̄
d are defined accordingly. Then, the dot occupation can

be obtained via nd(t) = −i[G<
d (t, t)]11. By using the equation-of-motion technique, it is quite

straightforward to derive the Dyson’s equation

Ĝd(t, t′) = ĝd(t, t′) +

∫
dt′′Ĝd(t, t′′)V(t′′)τ3ĝd(t′′, t′)

+

∫
dt′′
∫

dt′′′Ĝd(t, t′′)τ3Σ̂(t′′, t′′′)τ3ĝd(t′′′, t′)

(9)

for the dot Green function

Ĝd(t, t′) =

[
Gt

d(t, t′) G<
d (t, t′)

G>
d (t, t′) G t̄

d(t, t′),

]
(10)
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where τ i (i = 1, 2, 3) are the Pauli matrices in the Keldysh space. Here ĝd(t, t′) = ĝd(t − t′) is the
unperturbed dot Green function in the absence of the ac driving. The ac driving enters into the Dyson’s
equation via the term

V(t) ≡ e

�
V(t)σ3 ≡ v(t)σ3 (11)

where σi (i = 0, 1, 2, 3) are the Pauli matrices in the Nambu space. The derivation introduces the self energy

Σ̂(t, t′) = Σ̂(t − t′) =
∑

k

T †

�
ĝk(t − t′)

T
�

(12)

in terms of the unperturbed reservoir Green function ĝk(t − t′) (defined with respect to Hres) and the
dot-reservoir coupling matrix

T ≡
[

t∗+ −t−
t∗− −t+

]
. (13)

Direct calculation, assuming the flat-band structure in the reservoir, gives rise to the Fourier components of
the self energies,

ΣR/A(ω) = ∓iΓ and Σ<(ω) = 2if (�ω)Γ, (14)

where f(ε = �ω) is the Fermi–Dirac distribution function and Γ(ω) ≡ π
�

∑
kT †δ(�ω − εkσ3)T is the matrix

of escaping rate given by

Γ =

[
Γn Γa

Γa Γn

]
with Γn/a ≡

Γ2 ± Γ1

2
. (15)

For calculating explicitly the dot Green function needed for the charge current it is useful to define the
mixed spectral representation since the ac driving is periodic with a period τ = 2π/Ω and the Green
functions should reflect the same periodicity:

G(n,ω) =
1

τ

∫ τ

0
dt einΩtG(t,ω), G(t,ω) =

∫
dt′ eiω(t−t′)G(t, t′), (16)

and inversely

G(t, t′) =

∫
dω

2π
e−iω(t−t′)G(t,ω), G(t,ω) =

∑
n

G(n,ω)e−inΩt . (17)

Also, the Fourier components of the ac driving are similarly defined as

vn =
1

τ

∫ τ

0
dt eiΩtv(t). (18)

Rewriting the Dyson’s equation, equation (9), in the mixed spectral representation, one finds recurrence
relations for the retarded/advanced dot Green functions:

GR/A
d (n,ω) =

(
δn,0σ0 +

∑
n′

GR/A
d (n − n′,ω + n′Ω)Vn′

)
GR/A

d,0 (ω) (19)

with Vn ≡ σ3vn and the retarded/advanced dot Green functions in the absence of ac driving

GR/A
d,0 (ω) =

(
[gR/A

d (ω)]−1 − ΣR/A(ω)
)−1

. (20)

Similarly, the lesser dot Green function in the mixed spectral representation is found to satisfy

G<
d (n,ω) =

(∑
n′

G<
d (n − n′,ω + n′Ω)Vn′ + GR

d (n,ω)Σ<(ω)

)
GA

d,0(ω). (21)

By solving equations (19) and (21), one can compute the dot occupation and subsequently the charge
current and energy dissipation. In the following sections, we present analytical and numerical methods to
solve equations (19) and (21).

2.2. Adiabatic approximation
Unfortunately, no exact analytical solutions to equations (19) and (21) are available, so some limiting
approximation should be assumed. Here we introduce the adiabatic approximation which takes the ac

5
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quantum energy �Ω as the smallest one compared to other energy scales in the system such as �Γi and eVac

and so on. Here we expand the Fourier components of dot Green functions with respect to Ω, accordingly

Gd(n,ω) = Gf
d(n,ω) +ΩG(1)

d (n,ω) +O(Ω2) (22a)

Gd(n,ω + n′Ω) = Gf
d(n,ω) +Ω

(
n′∂ωGf

d(n,ω) + G(1)
d (n,ω)

)
+O(Ω2), (22b)

where the zeroth-order term, Gf
d is named as the frozen Green’s function. By substituting the Green

functions in equations (19) and (21) by equation (22), one can set up the self-consistent equations for Gf
d

and G(1)
d . The frozen Green functions are obtained as

GR/A,f
d (t,ω) =

[
ω − (εd/� + v(t))σ3 − ΣR/A(ω)

]−1
, (23a)

G<,f
d (t,ω) = GR,f

d (t,ω)Σ<(ω)GA,f
d (t,ω). (23b)

These are basically the equilibrium Green functions except the fact that the dot level is now time-dependent,
εd(t). This is truly adiabatic solution in that, since the time variation is slow enough, at every moment the
system is in equilibrium with respect to the dot level at the moment. The self-consistent equations for the
first-order terms are

GR,(1)
d (n,ω) =

∑
n′

[
n′∂ωGR,f

d (n − n′,ω) + GR,(1)
d (n − n′,ω)

]
Vn′GR

d,0(ω), (24a)

G<,(1)
d (n,ω) =

[∑
n′

(
n′∂ωG<,f

d (n − n′,ω) + G<,(1)
d (n − n′,ω)

)
Vn′ + GR,(1)

d (n,ω)Σ<(ω)

]
GA

d,0(ω). (24b)

These equations can be solved by applying the inverse Fourier transformation, giving rise to the resulting
Green functions

GR
d (t,ω) ≈ GR,f

d (t,ω) + i∂ωGR,f
d (t,ω)

dV(t)

dt
GR,f

d (t,ω), (25a)

G<
d (t,ω) ≈ G<,f

d (t,ω) + i

[
∂ωG<,f

d (t,ω)
dV(t)

dt
GA,f

d (t,ω) + ∂ωGR,f
d (t,ω)

dV(t)

dt
G<,f

d (t,ω)

]
. (25b)

For later use, we define the frozen dot density of states, ρf
d(t,ω) as

ρf
d(t,ω) = − 1

π�
ImGR,f

d (t,ω). (26)

Since the frozen Green functions satisfy the same properties as the equilibrium ones do, the following
relation holds

G<,f
d (t,ω) = i(2π�)f (�ω)ρf

d(t,ω). (27)

Using the dot Green functions in the adiabatic limit and the frozen density of states, the occupation
nd(t) ≈ n(0)

d (t) + n(1)
d (t) are found to be

n(0)
d (t) =

∫
dεf (ε)[ρf

d(t,ω)]11 (28a)

n(1)
d (t) = eπ�

∫
dε

(
− ∂f

∂ε

)(
[ρf

d(t,ω)]2
11 − [ρf

d(t,ω)]2
12

)
V̇(t) (28b)

and accordingly, the charge current I(t) ≈ I(1)(t) + I(2)(t) is found to be

I(1)(t) = e2

∫
dε

[(
−∂f

∂ε

)
[ρf

d(t,ω)]11 − f (ε)Im

[
2

π�2
[GR,f

d (t,ω)]2
12

]]
V̇ (29a)

I(2)(t) = −e2π�

∫
dε

(
−∂f

∂ε

)
∂t

[(
[ρf

d(t,ω)]2
11 − [ρf

d(t,ω)]2
12

)
V̇
]
. (29b)

The total power supplied by the ac source, equation (7) is then easy to compute so that P(t) = Pcon(t)
+ Pdis(t) with Pcon(t) = enf

d(t)V̇(t), and Pdis(t) = en(1)
d (t)V̇(t). Besides, when time-average P(Ω) =

1
τ

∫ τ
0 dt P(t) is considered, the conservative power vanishes, Pcon(Ω) = 0. This is the purely ac component

associated with the reversible energy produced by a conservative force. On the contrary, the dissipative

6
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power P(Ω) = Pdis(Ω) � 0. From the average dissipative power and the time-average charge current the
charge relaxation resistance is obtained via

Rq(Ω) =
P(Ω)

I2(Ω)
. (30)

2.3. Numerical exact solution
Since the adiabatic approximation is valid only for sufficiently slow ac fields we provides here the guidelines
about how to addresses the previous calculations for the charge current and ac power by numerical
integration. Using the Dyson’s equation, equation (9), one can express G<

d (t, t′) in terms of GR
d (t, t′) as

G<
d (t, t′) =

∫
dt′′
∫

dt′′′GR
d (t, t′′)Σ<(t′′, t′′′)GA

d (t′′′, t′) (31)

so that the equal-time lesser dot Green function is found to be

G<
d (t, t) =

∫
dω

2π
GR

d (t,ω)Σ<(ω)[GR
d (t,ω)]†. (32)

Since nd(t) = −i[G<
d (t, t)]11 and I(t) = −eṅd(t), one can find the formulas for the occupation and the

charge current in terms of GR
d (t,ω):

nd(t) =

∫
dω

2π
f (�ω)

[
GR

d (t,ω)(2Γ)[GR
d (t,ω)]†

]
11

(33a)

I(t) = −2e

∫
dω

2π
f (�ω)Re

[
∂tGR

d (t,ω)(2Γ)[GR
d (t,ω)]†

]
11

(33b)

The closed-form equation for GR
d (t,ω) and ∂tGR

d (t,ω) can be found by applying the inverse Fourier
transformation to the recurrence relation for GR

d (n,ω), equation (19):

GR
d (t,ω)[GR

d,0(ω)]−1 = σ0 +
∑

n′
GR

d (t,ω + n′Ω)Vn′ e−in′Ωt (34a)

∂tGR/A
d (t,ω)[GR/A

d,0 (ω)]−1 =
∑

n′

(
∂tGR/A

d (t,ω + n′Ω) − in′ΩGR/A
d (t,ω + n′Ω)

)
Vn′ e−in′Ωt . (34b)

These are coupled linear equations for GR
d (t,ω + nΩ) and ∂tGR

d (t,ω + nΩ) for all integer n, respectively, at
given t and 0 � ω < Ω. The dimensions of the linear equations, being infinite, can be made finite by noting
that in the large |ω| limit the solutions can be well approximated by

GR
d (t,ω) ≈ GR,f

d (t,ω) and ∂tGR
d (t,ω) ≈ ∂tGR,f

d (t,ω). (35)

We choose two integers N1 and N2(> 0) properly so that for ω < N1Ω and N2Ω < ω, the dot Green
functions are replaced by corresponding approximated values, equation (35), and the
2(N2 − N1 + 1) × 2(N2 − N1 + 1) coupled linear equations are directly solved to obtain GR

d (t,ωm + nΩ)
and ∂tGR

d (t,ωm + nΩ) for N1 � n � N2. This process is repeated for discrete values of ωm = mδω
(m = 0, . . . , M − 1), where the frequency spacing δω ≡ Ω/M is chosen to be sufficiently small, and for
properly chosen discrete times t. Then, the occupation and the current, equation (33), at zero temperature
can be computed numerically by summing over discrete frequencies via

nd(t) =
∑

N1Ω�ωn�0

δω

π

[
GR

d (t,ωn)Γ[GR
d (t,ωn)]†

]
11
+ nd,c(t) (36a)

I(t) = −2e
∑

N1Ω�ωn�0

δω

π
Re
[
∂tGR

d (t,ωn)ΓGR†
d (t,ωn)

]
11
+ Ic(t), (36b)

where the correction terms nd,c(t) =
∫ N1Ω

−∞ dε [ρf
d(t,ω)]11 and Ic(t) = −eṅd,c(t) can be analytically calculated

by using the frozen dot Green functions, equation (35). The conservative and dissipative parts of the power
P(t), equation (7), are identified by their parity nature, odd and even with respect to the time, respectively:

Pcon(t) =
P(t) − P(τ − t)

2
and Pdis(t) =

P(t) + P(τ − t)

2
, (37)

leading to Pcon = 0 and Pdis � 0.
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2.4. Gauge transformation
It is instructive to consider a unitary transformation of the Hamiltonian in order to examine the scope in
which the non-equilibrium condition is important. We introduce a gauge transformation defined in terms
of a unitary operator U = exp[ i

�
S(t)] where

S(t) =

∫ t

dt′eV(t′)d†d. (38)

Under the transformation, the Hamiltonian H is changed into H′ = UHU† − ∂tS(t). While Hres is
invariant, two changes happen: (1) the time-dependent part in the dot Hamiltonian is eliminated:
H′

dot = εdd†d and (2) the reservoir-dot tunneling amplitudes acquire a time-dependent phase:

t± → t± ei
∫ t dt′ v(t′) = t± ei eVac

�Ω sin Ωt . (39)

In the gauge-transformed Hamiltonian H′, the ac amplitude Vac appears only in the form of the ratio
Vac/Ω. That is, it is the ratio Vac/Ω, not Vac that does matter physically. Using this fact, one can argue that
in the large Ω limit the response to the ac driving is well captured by the linear-response theory. Note that
the linear-response theory, treating the ac driving as a perturbation, takes the Vac → 0 limit. In this limit the
ratio Vac/Ω, the only physically relevant parameter, is very small. Interestingly this small ratio can be also
achieved by taking Ω→∞ limit. It proves our argument mentioned above. In the next sections, the exact
calculations confirm this clearly. So, the effect peculiar to the non-equilibrium condition should occur in
the small and intermediate Ω regimes. The adiabatic limit, taking Ω→ 0 limit, is surely expected to display
the non-equilibrium features of the system.

3. Results: case of the QAH reservoir

In this section we consider the reservoir in the QAH phase, where the dot-reservoir hybridizations are set to
be Γ1 = Γ2 ≡ Γ. We briefly review the adiabatic limit of this case which was already studied in reference
[42] and present the numerical analysis for general non-equilibrium case.

3.1. Adiabatic limit
For the QAH reservoir, the frozen dot density of states has a simple form

[ρf
d(t,ω)]11 =

1

π�

Γ

(ω − ωd(t))2 + Γ2 and [ρf
d(t,ω)]12 = 0 (40)

having no anomalous term, with ωd(t) ≡ εd(t)/�. The dot occupation and the charge current at zero
temperature, equations (28) and (29) are then readily found to be

n(0)
d (t) =

1

2
− 1

π
tan−1ωd(t)

Γ
and n(1)

d (t) =
e

π�
V̇(t)

(
Γ

[ωd(t)]2 + Γ2

)2

(41a)

I(1)(t) =
e2

π�
V̇(t)

Γ

[ωd(t)]2 + Γ2 . (41b)

Interestingly, the dissipative part of the power, Pdis(t) up to the second order of Ω satisfies the instantaneous
Joule law at any time t [42]:

Pdis(t) = en(1)
d (t)V̇(t) = Rq[I(1)(t)]2 (42)

with the quantized relaxation resistance Rq = e2/2h = RQ/2. It should be noted that the instantaneous
Joule law is satisfied for arbitrary values of the dot level εd and the ac amplitude Vac. In particular, it is quite
interesting that the relaxation resistance obtained in the linear-response regime (Vac → 0) is still valid in
deep non-equilibrium regime.

3.2. Numerical calculation
Numerical calculations find out that the instantaneous Joule law does not hold for finite frequencies.
Therefore, we examine the time-averaged values, I2(Ω) and P(Ω), whose dependence on vac and Ω are
displayed in figure 2. For sufficiently small frequencies, the numerical fitting confirms that the results in the
adiabatic approximation, equations (41) and (42) are in good agreement with the exact numerical
calculations. Specifically, the numerical calculations for small frequencies find

I2(Ω) ≈ 2e2cQAH(vac)v2
ac

(
Ω

2Γ

)2

and P(Ω) ≈ hcQAH(vac)v2
ac

(
Ω

2Γ

)2

(43)

8
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Figure 2. (a) and (b) Time-averaged ac power P/v2
ac and (c) and (d) time-averaged squared current I2/v2

ac as functions of Ω for
several values of vac for (a) and (c) εd = 2�Γ and (b) and (d) εd = 0 with respect to the QAH reservoir. The arrow indicates the
direction along which the chosen values of vac/Γ = 1, 2, 3 increases as shown in the legend. The insets show the corresponding
logarithmic plots.

Figure 3. Relaxation resistance Rq as a function of Ω for several values of vac/Γ as annotated for (a) εd = 2�Γ and (b) εd = 0,
obtained by using the data in figure 2. The black dotted line represents the linear-response result (vac → 0).

with the dimensionless constant

cQAH(vac) ≡ 2

π2

∫ τ

0

dt

τ

(
Γ2 sin Ωt

[ωd(t)]2 + Γ2

)2

. (44)

For εd = 0, cQAH = Γ/π2
√
Γ2 + v2

ac, which explains the decrease of the normalized power P/v2
ac with

increasing vac [see figures 2(b) and (d)].
For finite frequencies, both P and I2 increase monotonically with increasing ac amplitude Vac. On the

other hand, they exhibit non-monotonic behavior as functions of Ω, having a maximum at Ω ∼ 2Γ. It
means that the dissipation is maximized when the ac frequency is comparable to the dot-reservoir coupling.
Also, the dissipation is the larger as the dot level is closer to the Fermi level; compare figures 2(a) and (b).

The relaxation resistance, equation (30), is readily calculated, as can be seen in figure 3. In the Ω→ 0
limit, Rq(Ω) = RQ/2 for all values of the amplitude Vac, as predicted by the adiabatic approximation. For
finite frequencies, on the other hand, Rq(Ω) increases with increasing Vac. In the intermediate regime of Ω,
a kink structure at Ω ∼ 2Γ happens, which is more clearly visible for larger amplitude Vac. For large
frequencies, all the Rq curves almost collapse into a single curve, following the linear-response behavior
(marked by Vac = 0) for all values of the amplitude Vac. It is exactly as discussed in section 2.4: when the ac
source oscillates very fast, the system cannot keep up with it so that the system is effectively in equilibrium,
making the linear response theory accessible.

9
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4. Results: case of the cTSC reservoir

In this section, the reservoir is in the cTSC phase where only the one (γk,1) of the Majorana channels
remains as the edge mode, leading to Γ2 = 0. As will be demonstrated, the ac response of the system is
found to be critically different, depending on whether the dot can be on resonance (εd(t) = 0) even
temporally during the ac driving or not. Let the interval I be [εd − eVac, εd + eVac]. Then, two physically
different cases can be distinguished as follows: (1) for the case 0 /∈ I, the time-varying dot level never
crosses the Fermi level, more specifically either εd(t) < 0 or 0 < εd(t) for all time t, and (2) for the case
0 ∈ I, the dot can be on resonance since εd − eVac � 0 � εd + eVac.

4.1. Adiabatic limit
In the cTSC phase, the frozen dot density of states acquires the finite anomalous term as well:

[ρf
d(t,ω)]11 =

Γ

2π�

(ω + ωd(t))2

(ω2 − [ωd(t)]2)2 + (ωΓ)2 ,

[ρf
d(t,ω)]12 =

Γ

2π�

[ωd(t)]2 − ω2

(ω2 − [ωd(t)]2)2 + (ωΓ)2 .

(45)

At zero temperature, equations (28) and (29) give rise to the dot occupation and the charge current given
by

n(0)
d (t) =

1

2
+

2ωd(t)

πΓ
η(t) and n(1)

d (t) = 0 (46a)

I(1)(t) =
e2

2π�
V̇(t)

4Γ

[2ωd(t)]2 − Γ2 (1 + η(t)) (46b)

with

η(t) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− Γ√

[2ωd(t)]2 − Γ2
tan−1

√
[2ωd(t)]2 − Γ2

Γ
, |2ωd(t)| > Γ

Γ

2
√
Γ2 − [2ωd(t)]2

ln
Γ−
√
Γ2 − [2ωd(t)]2

Γ +
√
Γ2 − [2ωd(t)]2

, |2ωd(t)| < Γ.

(47)

The vanishing of n(1)
d (t) is due to the fact that [ρf

d(t,ω = 0)]11 = [ρf
d(t,ω = 0)]12 [see equation (45)],

implying that the normal and anomalous contributions (at the Fermi level) to the occupation cancel each
other exactly. This cancellation results in the vanishing dissipation up to the order of Ω2

Pdis(t) = en(1)
d (t)V̇(t) = 0 = Rq[I(1)(t)]2 (48)

or the zero relaxation resistance, Rq = 0. It should be noted that this result coincides with that of the
linear-response study [35]. In the linear-response analysis, the vanishing dissipation is attributed to the
canceling in the particle–hole pair generation in the reservoir between the charge-conserving and pairing
processes: the particle–hole pair amplitude of the two processes are same in magnitude but opposite in sign
due to the fermion ordering. Such canceling effect is well manifested in equation (28b) which shows that
the first-order correction to the occupation is proportional to the difference between the normal and
anomalous contributions to the density of states. Consequently, the instantaneous Joule law with Rq = 0
still holds in the cTSC phase.

Contrast to the QAH case, however, the Joule law, equation (48) is not valid for arbitrary values of εd(t).
For example, the current I(1)(t) [see equation (46b)] diverges logarithmically at εd(t) = 0, making it
undefined: I(1)(t) ∝ ln |2ωd(t)|/Γ for |2ωd(t)| � Γ. In fact, as will be shown in the following numerical
analysis, Rq diverges as Ω→ 0 in the case 0 ∈ I, that is, for the ac driving which can make the dot crosses
the Fermi level (εd(t) = 0). It is quite in contrast to the vanishing dissipation, equation (48), which holds
only for the case 0 /∈ I. This kind of singular behavior at resonance can be understood by considering the
εd(t) → 0 limit of the dot density of states:

[ρf
d(t,ω)]11/12 →

1

2
δ(�ω) ± 1

2π�

Γ

ω2 + Γ2 . (49)

In order to explain the appearance of the half δ-peak, one needs to introduce the dot Majorana fermion
operators: γd,1 = (d − d†)/

√
2i and γd,2 = (d + d†)/

√
2. The dot and tunneling Hamiltonians then read

Hdot = iεd(t)γd,2γd,1 (50a)

10
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Figure 4. Time dependence of (a) and (b) the dot occupation nd(t), (c) and (d) current I(t)/Ω, and (e) and (f) the ac power
P(t)/ΓΩ for (a), (c) and (e) εd = 2�Γ and vac = Γ and (b), (d) and (f) εd = 0 and vac = Γ with respect to the cTSC reservoir.
The value of the ac frequency Ω/Γ for each curve is as annotated. The dotted lines correspond to those calculated by the
adiabatic approximation. The insets in the upper-right corner of (a) and (b) displays the time variation of εd(t) (here the
horizontal line is the Fermi level) and those at bottom are the odd parts of the dot occupation. The insets in (e) and (f) are the
even part of the ac power, responsible for the dissipation. nd,odd(t) and Pdis(t)/ΓΩ for Ω/Γ = 0.1 in the insets are amplified for
better presentation.

Htun =
∑

k

√
2i(t2γd,2γk,2 − t1γd,1γk,1). (50b)

It should be noted that the tunneling Hamiltonian, equation (50b) remains in the same form even if the
tunneling amplitudes have the momentum dependence, t1/2 → t1/2,k as long as they are real and symmetric,
t1/2,k = t1/2,−k. Since t2 = 0 (or t2,k = 0) in the cTSC phase, the dot Majorana operator γd,2 is completely
decoupled from the system for εd(t) = 0, making the half δ-peak contribution to the dot density of states.
Whenever εd(t) crosses the Fermi level, this singularity in the dot density of states affects the system
critically, no matter how slow the ac driving is, and accordingly the adiabatic approximation fails.
Therefore, even the adiabatic-limit study in the cTSC case requires the exact solving of equations (19) and
(21), which is to be done in the next section.

4.2. Numerical calculation
Figure 4 displays the typical time dependence of the dot occupation, the current, and the ac power for the
two cases, 0 /∈ I and 0 ∈ I, obtained by the exact numerical calculation. First, we check the validity of the
adiabatic approximation obtained in the previous section. For the case 0 /∈ I [see figures 4(a) and (c)], for
sufficiently small frequencies (say Ω/Γ = 0.1), the adiabatic approximation is in good agreement with the
exact results, while the discrepancy between two grows with increasing the ac frequency. In contrast, for the
case 0 ∈ I, there is huge discrepancy between the results by the adiabatic approximation and the exact
calculation even for the very small frequencies [see figures 4(b) and (d)]. The discrepancy increases as the
dot level approaches the Fermi level, becoming maximal when εd(t) = 0: moreover, at εd(t) = 0, I(t) from

11
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Figure 5. Logarithmic plots of (a) and (b) time-averaged ac power P/v2
ac and (c) and (d) time-averaged squared current I2/v2

ac as
functions of Ω for several values of vac/Γ (as annotated) for (a) and (c) εd = 2�Γ and (b) and (d) εd = 0 with respect to the
cTSC reservoir. The insets show the corresponding linear-scale plots. The arrows indicate the direction along which the chosen
values of vac/Γ increases.

the adiabatic approximation diverges. Therefore, as commented before, for the case 0 ∈ I, the adiabatic
approximation is not valid.

On the other hand, interestingly, in the opposite limit, that is, for very large frequencies (say Ω/Γ = 5)
the response of the dot occupation and the current is quite sinusoidal with respect to the time t. It is similar
to that of the linear-response theory. In general non-equilibrium situation, the ac response is
non-sinusoidal because of the delayed response and the interplay between different energy scales. This
sinusoidal behavior, therefore, is the another evidence supporting the argument in section 2.4 that at high
frequencies the system reacts linearly.

Since the odd part of the ac power is time-averaged out, only its even part explains the dissipation [see
the insets in figures 4(e) and (f)]. From the definition of the ac power, equation (7), and the odd nature of
V̇ ∝ sin Ωt, one can find that the odd part of the dot occupation, nd,odd(t) is responsible for the dissipation,
which is displayed in the insets of figures 4(a) and (b). The results show us the time when the system is
most dissipative. At low frequencies [see the case of Ω/Γ = 0.1], most of the dissipation occurs when the
system is closest to the resonance: for the case 0 /∈ I, it happens at Ωt ≈ π [see figure 4(e)] and for the case
0 ∈ I, at t ≈ tR where εd(t = ±tR) = 0 or ΩtR = cos−1(−εd/eVac) [see figure 4(f) and in this case with
ΩtR = π/2]. On the other hand, at high frequencies [see Ω/Γ = 5 case], the maximal dissipation happens
when ε̇d(t) (or nd,odd(t)) is the largest in magnitude, that is, at Ωt ≈ π/2, 3π/2 for both 0 /∈ I and 0 ∈ I
cases.

Now we investigate the time-averaged values of I2 and P as functions of Ω and vac, which are shown in
figure 5. The frequency dependence of I2 is quite similar to that in the QAH case [see figures 2(c) and (d)]:
(1) at sufficiently low frequencies, I2 ∝ Ω2 and (2) in the intermediate range of frequencies, I2 is maximized
around a frequency comparable to Γ. While the amplitude-normalized I2/v2

ac decreases with increasing vac,
its raw value increases with increasing vac in both 0 /∈ I and 0 ∈ I cases. This qualitative similarity in the
current response of the QAH and cTSC reservoirs can be attributed to the fact that the current between the
dot and the reservoir is driven directly by the gate voltage on the dot, making it less affected by the physical
properties of the reservoir.

However, the dissipation in the cTSC reservoir is clearly different from that in the QAH reservoir,
especially at low frequencies. In the case 0 /∈ I [see the cases of vac < εd/� = 2Γ in figure 5(a)], P follows a
power law, P ∝ Ω4 for small frequencies. The appearance of finite Ω4 term is expected from the adiabatic
approximation which predicted that Pdis(t) = 0 up to the second order of Ω, together with the fact that the
odd powers of Ω of P(t) belong to the conservative power and are time-averaged to zero.
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Figure 6. Scaled plot of Pdis(t) around t = tR with respect to the cTSC reservoir [see the inset in figure 4(f)]. The points with
different colors correspond to the results obtained from different values of vac and (sufficiently small) Ω. All the data, properly
scaled, collapse into the corresponding single curves (depending on the value of b̃) which are fitted into Gaussian-like ones (black
dotted lines) [see the text for detailed form of the fitted curves].

On the other hand, in the case 0 ∈ I [see figure 5(b) and the cases of vac � εd/� in figure 5(a)], the

numerical calculation finds out that another power law is operative: P ∝ Ω
5
3 . In order to find out the origin

of this interesting power law, we examine more carefully the time dependence of Pdis(t) at low frequencies.
As seen in the inset of figures 4(e) and (f), Pdis(t) exhibits two peaks centered at t = ±tR, implying that the
dissipation is maximized at resonance. Interestingly, the numerical data shows that Pdis(t) around the peaks
(t = ±tR) follows a universal scaling law at sufficiently low frequencies, as can be seen in figure 6:

Pdis(t) =
h

Δt2
d

P̃

(
t ± tR

Δtd
,
εd

�Γ
(Δt3

dΓΩ
2)

5
6

)
, (51)

where P̃(̃t, b̃) is a dimensionless function, which is well fitted into a Gaussian-like form, P̃(̃t, b̃) = a0

exp
[
−a2 t̃2 − a4 t̃4 − b̃(a1 t̃ − a3 t̃3)

]
with a0 ≈ 0.065, a1 ≈ 0.046, a2 ≈ 0.73, a3 ≈ 0.018, and a4 ≈ 0.071.

The parameters Δtd = |ε̇d(tR)/�Γ
1
2 |− 2

3 = |Ωvac sin ΩtR/Γ
1
2 |− 2

3 = |Ω
√
v2

ac − (εd/�)2/Γ
1
2 |− 2

3 and
b̃ = (εd/�Γ)(Δt3

dΓΩ
2)

5
6 = (εd/�Γ)(

√
v2

ac − (εd/�)2/Γ)−
5
3 define the time interval during which most of

the dissipation occurs and the measure of the asymmetry of the time distribution of the dissipation with
respect to the peak, respectively. Note that b̃ is Ω-independent. For εd = 0, P becomes symmetric with
b̃ = 0, and the time-averaged ac power is calculated into

P =
2

τ

∫ ∞

−∞
dtPdis(t) = 2h

Ω

2π

Δtd

Δt2
d

∫ ∞

−∞
dt̃ P̃(̃t, b̃ = 0) ∝ v

2
3
acΩ

5
3

Γ
1
3

(52)

which explains Ω and vac dependence of P at low frequencies: P/v2
ac ∝ v

− 4
3

ac Ω
5
3 so the normalized

dissipation decreases with increasing vac. For εd �= 0 or b̃ �= 0, P acquires non-trivial dependence on vac, but

still one can find that P ∝ Ω
5
3 .

The scaling law for the case 0 ∈ I tells us that the dissipation occurs during a very small fraction of the

period around the resonance: Δtd/τ ∝ Ω
1
3 , which becomes the smaller for the smaller frequencies. In

addition, the fact that the time Δtd depends only on the value of ε̇d(t) at t = tR suggests that this universal
scaling is attributed to the resonance, that is, the scale-less δ-peak in the density of states [see equation
(49)]. The infinitely enhanced density of states only near resonance greatly boosts the generation of the
particle–hole pair into the reservoir and increases the dissipation even when the ac bias is very slowly

varying with time: note that Ω
5
3 � Ω4 for small frequencies. While the singularity of the density of states at

resonance explains the observed peculiar scaling behavior, it also, unfortunately, defies any analytical
explanation for the fractional exponent 5/3 because any expansion technique does not work at resonance.

For the last comment on P, we go back to the case 0 /∈ I but when the resonance is very close to one of
the boundaries of I: for example, see the cases of vac/Γ = 1.9 and 1.99 in figure 5(a). As discussed before,
P ∝ Ω4 for sufficiently low frequencies. However, as |εd/� ± vac| → 0, the Ω4-region appears for the much
smaller frequencies, and instead, in the intermediate frequencies, P behaves as in the 0 ∈ I case: P exhibits

the Ω-dependency close to Ω
5
3 , which is more clearly seen as vac approaches εd/� [see the case of

vac/Γ = 1.99 in figure 5(a)]. This behavior which happens when the ac driving is relatively fast may be
attributed to the boosted Landau–Zener transition: the probability of the transition to the states close to
resonance is enhanced so that the enhanced density of states near resonance becomes effective in the
transport and the dissipation. Numerical calculations find that this intermediate frequency region featuring
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Figure 7. (a) and (b) Linear-scale and (c) and (d) logarithmic-scale plots of relaxation resistance Rq as a function of Ω for
several values of vac/Γ as annotated for (a) and (c) εd = 2�Γ and (b) and (d) εd = 0, obtained by using the data in figure 5. The
black dotted line represents the linear-response result (vac → 0).

the Ω
5
3 dependency expands into the lower frequency exponentially with respect to |εd/� ± vac|, reaching

up to the zero frequency when εd/� ± vac = 0.
Finally, we examine the relaxation resistance Rq as the measure of the dissipation, which is displayed in

figure 7. For not small frequencies (Ω/Γ�1), a few general statement about Rq can be made whether
0 /∈ I or 0 ∈ I: (1) numerical calculation is in good agreement with the linear-response predication [35] in
the Vac → 0 limit, (2) Rq increases with increasing vac, and (3) for sufficiently large frequencies, Rq follows
the linear-response behavior for all values of the amplitude Vac. These properties are quite similar to those
for the QAH reservoir, implying that the dissipation for relatively large frequencies (Ω/Γ�1) cannot
distinguish between the QAH and cTSC reservoirs.

For small frequencies, however, Rq features the frequency dependence clearly different from the QAH
case. First, for 0 /∈ I, since P ∝ Ω4 and I ∝ Ω2, Rq = P/I2 ∝ Ω2 and decreases to zero in the Ω→ 0 limit.
The vanishing of Rq(Ω = 0) matches well with that predicted by the adiabatic approximation and is valid
regardless of the values of εd and vac, as long as 0 /∈ I. It is also observed that the magnitude of Rq increases
with increasing the ac amplitude vac, exhibiting a quite non-linear dependence on vac. For 0 ∈ I, on the

other hand, since P ∝ Ω
5
3 and I ∝ Ω2, Rq ∝ Ω− 1

3 , indicating that Rq →∞ as Ω→ 0. This divergence was
also predicted in the linear-response study [35] [see the dotted line in figure 7(d)]. This diverging resistance
at low frequencies is definitely attributed to a decoupled dot Majorana mode (γd,2) with the infinitely large
density of states near zero energy and the elongated time for the dot to stay near resonance for slower ac
oscillations. Note that the dot electron is coupled equally to the particle and hole components of the single
Majorana edge mode so that the Majorana nature, leading to the proliferation of the particle–hole pairs, is
highly enhanced at the resonant condition. Interestingly, for 0 ∈ I, Rq decreases with increasing vac [see the
arrow in figure 7(c)]. It may be attributed to the decrease in the time for the dot to remain near the
resonance with increasing vac at given Ω: note that Δtd ∝ (v2

ac − (εd/�)2)−
1
3 . Since most of the dissipation

happens only near the resonance, the decreased Δtd surely decreases Rq.

Our non-equilibrium study predicts that the diverging Rq obeys a scale-free power law ∝ Ω− 1
3 , for all

values of vac as long as 0 ∈ I [see figures 7(c) and (d)]. The linear-response study at εd = 0, however,
predicted more complex frequency dependence: Rq ∝ 1/Ω(lnΩ)2 at εd = 0 [35] [see the dotted line in
figure 7(d)]. Now we know that this logarithmic dependence is an artifact of the linear-response study: The
linear-response approach assumes the equilibrium effectively so at εd = 0 the dot remains on resonance at
all time and the δ-peak dot density of states, equation (49), is used to calculate the relaxation resistance.
However, it is not true in true non-equilibrium condition. Even for very small ac amplitude,
εd(t) = εd + eV(t) is finite at most of the time. Accordingly, the dot density of states, equation (45), varies
with time. Especially, its value at ω = 0 varies greatly even for small change in εd(t): the shape of the density
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of states alters between the δ-peak (εd(t) = 0) and the sharp but finite peak (εd(t) �= 0). It should be noted
that this kind of artifact does not take place in the QAH reservoir because the dot density of state has no
singular feature even at resonance.

5. Conclusion

In closing we have analyzed a topological RC circuit, a device manufactured by a quantum dot
tunnel-coupled to a Majorana edge mode that is generated around a chiral topological superconductor. We
have considered the scenario in which the dot is driven by a time-dependent dot gate potential and
investigated the charge current and the associated dissipation that is represented by the ac power and the
charge relaxation resistance. The exact non-equilibrium transport properties have been thoroughly
examined within the nonequilibrium Keldysh Green function formalism and by using exact numerical
integration. In the adiabatic regime the analytical forms of the physical quantities are available, helping
clarifying the effect genuine to Majorana physics.

In contrast to the QAH reservoir for which the low-frequency relaxation resistance remains fixed at the
universal value Rq = RQ/2 for arbitrary values of the ac driving Vac and the dot level εd, the dissipation
through the Majorana edge mode is found to be dramatically sensitive to their values. Specifically, it
changes abruptly depending whether the time-dependent dot level εd(t) = εd + eV(t) crosses the Fermi level
during the ac cycle or not. If the dot is kept away from the resonance for a whole ac cycle, the low-frequency
resistance vanishes with decreasing the ac frequency Ω as Rq ∝ Ω2, which is attributed to the canceling
effect of particle–hole pairs from two different processes. On the other hand, when the dot can be on
resonance even temporally, the relaxation resistance features a singular behavior with the scaling law
Rq ∝ Ω−1/3 with the exotic exponent. The reason for such singular behavior, not captured by the adiabatic
approximation, is found in the existence of a δ-peak dot density of states due to the decoupling of a dot
Majorana fermion from the reservoir on resonance. We found that this decoupling originates from the
Majorana nature of the edge mode, being immune to non-essential complexities such as the
momentum-dependent dot-reservoir tunneling amplitudes and the detailed form of the energy dispersion
relation of the edge mode. Unfortunately, the physical explanation of the interesting power-law exponent
− 1

3 is currently not available and to be studied in the future.
We therefore propose the topological RC circuit as a probe of chiral Majorana edge modes. Its singular

behavior with the exotic power-law exponent can unambiguously detect the existence of the Majorana
modes. In experimental point of view, the measurement of the relaxation resistance in the RC circuit may
be challenging [43], but our setup is non-invasive to the Majorana modes in that it requires only the
tunneling junction to a quantum dot and no direct contact to other metallic probes which can degrade the
formation of Majorana modes.
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[43] Fève G, Mahé A, Berroir J-M, Kontos T, Plaçais B, Glattli D C, Cavanna A, Etienne B and Jin Y 2007 Science 316 1169–72

16

https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1103/physrevb.87.241401
https://doi.org/10.1103/physrevb.87.241401
https://doi.org/10.1103/physrevlett.110.126406
https://doi.org/10.1103/physrevlett.110.126406
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1103/physrevlett.123.107703
https://doi.org/10.1103/physrevlett.123.107703
https://doi.org/10.1103/physrevlett.107.236401
https://doi.org/10.1103/physrevlett.107.236401
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1103/physrevb.82.184516
https://doi.org/10.1103/physrevb.82.184516
https://doi.org/10.1103/physrevb.83.195137
https://doi.org/10.1103/physrevb.83.195137
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1103/physrevlett.120.107002
https://doi.org/10.1103/physrevlett.120.107002
https://doi.org/10.1103/physrevb.97.100501
https://doi.org/10.1103/physrevb.97.100501
https://doi.org/10.1126/science.aan5991
https://doi.org/10.1126/science.aan5991
https://doi.org/10.1126/science.aan5991
https://doi.org/10.1126/science.aan5991
https://doi.org/10.1016/0375-9601(93)91193-9
https://doi.org/10.1016/0375-9601(93)91193-9
https://doi.org/10.1016/0375-9601(93)91193-9
https://doi.org/10.1016/0375-9601(93)91193-9
https://doi.org/10.1103/physrevlett.70.4114
https://doi.org/10.1103/physrevlett.70.4114
https://doi.org/10.1103/physrevlett.70.4114
https://doi.org/10.1103/physrevlett.70.4114
https://doi.org/10.1126/science.1126940
https://doi.org/10.1126/science.1126940
https://doi.org/10.1126/science.1126940
https://doi.org/10.1126/science.1126940
https://doi.org/10.1103/physrevlett.97.206804
https://doi.org/10.1103/physrevlett.97.206804
https://doi.org/10.1103/physrevb.83.201304
https://doi.org/10.1103/physrevb.83.201304
https://doi.org/10.1038/nphys1690
https://doi.org/10.1038/nphys1690
https://doi.org/10.1038/nphys1690
https://doi.org/10.1038/nphys1690
https://doi.org/10.1103/physrevlett.107.176601
https://doi.org/10.1103/physrevlett.107.176601
https://doi.org/10.1103/physrevb.87.115312
https://doi.org/10.1103/physrevb.87.115312
https://doi.org/10.1103/physrevlett.113.076801
https://doi.org/10.1103/physrevlett.113.076801
https://doi.org/10.1103/physrevb.86.241105
https://doi.org/10.1103/physrevb.86.241105
https://doi.org/10.1016/j.cap.2018.08.001
https://doi.org/10.1016/j.cap.2018.08.001
https://doi.org/10.1016/j.cap.2018.08.001
https://doi.org/10.1016/j.cap.2018.08.001
https://doi.org/10.1103/physrevlett.101.146802
https://doi.org/10.1103/physrevlett.101.146802
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1103/physrevb.94.165425
https://doi.org/10.1103/physrevb.94.165425
https://doi.org/10.1103/physrevb.89.161306
https://doi.org/10.1103/physrevb.89.161306
https://doi.org/10.1126/science.1141243
https://doi.org/10.1126/science.1141243
https://doi.org/10.1126/science.1141243
https://doi.org/10.1126/science.1141243

	Nonlinear electric response of chiral topological superconductors
	1.  Introduction
	2.  Model and methods
	2.1.  Electrical current and power in terms of non-equilibrium Green's functions
	2.2.  Adiabatic approximation
	2.3.  Numerical exact solution
	2.4.  Gauge transformation

	3.  Results: case of the QAH reservoir
	3.1.  Adiabatic limit
	3.2.  Numerical calculation

	4.  Results: case of the cTSC reservoir
	4.1.  Adiabatic limit
	4.2.  Numerical calculation

	5.  Conclusion
	Data availability statement
	Acknowledgments
	References


