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1. Introduction

The classical KJMA theory of transformation in solid state
assumes nucleation and growth processes which consider the
geometrical impingement between different growing regions.
This idea is summarized in the well-known Kolmogorov,[1]

Johnson and Mehl,[2] and Avrami[3]

(KJMA or JMAK) equation

X ¼ 1� expð�K · ðt� t0ÞnÞ (1)

where X is the transformed fraction, K is a
prefactor (in order to consider a dimension-
ally correct frequency factor, K ¼ kn can be
used instead), t0 is the induction time, and
n is the Avrami exponent. Kinetic data are
generally analyzed in the frame of
Equation (1) using the so-called KJMA-plot
which represents lnð� lnð1� XÞÞ as a
function of lnðt� t0Þ. The slope of
KJMA-plot is the Avrami exponent.

It is worth mentioning that Equation (1)
can be obtained after the useful definition
of the extended transformed volume, X�.
This magnitude corresponds to the fraction
transformed but neglecting the overlapping
between growing regions. On the one
hand, X� has no direct physical meaning
as it reaches values above 1 and, in fact,
it never saturates. On the other hand, X�

can be easily calculated when the nucle-
ation and growth laws are known.

In 1937, Kolmogorov mathematically developed the following
equation correlating the actual and the extended transformed
fractions for transformations in which randomly distributed
nuclei geometrically compete for the available space in the for-
mation of a new product phase.[4]

X ¼ 1� expð�X�Þ (2)

Kolmogorov found Equation (1) as a particular solution to
Equation (2) in two cases[4]: 1) constant nucleation rate and con-
stant linear growth rate (with n ¼ 4); 2) instantaneous nucleation
and constant linear growth rate (with n ¼ 3).

Independently from Kolmogorov, in 1939 Johnson and Mehl
were able to describe the pearlite formation from austenite by
using Equation (1) with n ¼ 4.[2] From then, and soon later
further developed by Avrami, KJMA theory has been widely used
in materials science[5–9] and in many other fields of research
including chemical reactions,[10–14] medicine,[15–17] biology,[18–22]

genetics,[23–25] food research,[26–30] sociology,[31] etc. Figure 1
shows the distribution of research works containing “Avrami”
in the different subject areas and years since 1960.
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The classical theory of solid-state transformation based on nucleation and growth
processes, developed by Kolmogorov, Johnson and Mehl, and Avrami (KJMA
theory), is widely used in many different fields of research. In KJMA theory, two
parameters (the frequency factor and, particularly, the Avrami exponent) can
supply information about the mechanisms involved in the transformation.
Despite its apparent simplicity, on the one hand, the results derived from this
theory can be strongly affected by the indetermination of experimental data
(e.g., onset of the transformation). On the other hand, KJMA theory is developed
for isothermal polymorphic transformations in which randomly distributed nuclei
grow in convex shapes. However, several procedures have extended KJMA theory
to nonisothermal regimes and to many different processes deviating from those
premises. Herein, the requirements of KJMA theory and the expected deviations
for these approximations are briefly discussed. In addition, some strategies are
proposed for recovering physical meaning from the effective parameters deduced
in several transformations including nanocrystallization and martensitic
transformations for which results can be interpreted under the approximation
of instantaneous growth.

REVIEW
60 years of pss www.pss-b.com

Phys. Status Solidi B 2022, 2100524 2100524 (1 of 21) © 2022 The Authors. physica status solidi (b) basic solid state physics
published by Wiley-VCH GmbH

mailto:jsebas@us.es
https://doi.org/10.1002/pssb.202100524
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.pss-b.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fpssb.202100524&domain=pdf&date_stamp=2022-03-18


Therefore, the use of KJMA analysis has been extended
beyond its rigorous limits. However, despite this lack of rigorous-
ness, deviations from KJMA requisites can be negligible allowing
for an effective interpretation of the mechanisms involved in the
transformation process. The aim of the present article is to show
some examples in which an effective KJMA analysis still
preserves some physical information of the transformation
process, although the strict conditions are somehow not fulfilled.

The article is structured as follows: Section 1 presents KJMA
equation and its wide use in a broad range of scientific areas.
In the next section, the requisites of KJMA equation, summarized
in the five postulates of Kolmogorov as collected by Burbelko
et al.,[4] are briefly described and negligibility of certain deviations
is discussed. Section 3 shortly describes the development of the
extended transformed fraction from known laws of
nucleation and growth. Section 4 describes the important role
of accurate determination of experimental data such as the
induction time and the final transformed fraction even for ideal
KJMA processes. Section 5 reviews some extensions of KJMA the-
ory to nonisothermal regimes. Melting of pure In is described as
an example. Section 6 describes some of our proposed strategies to
afford the results from effective KJMA analysis applied to systems
for which deviations from some of the postulates of Kolmogorov
are no longer negligible. Some simple simulations are performed
to evaluate the importance of deviations of ideal systems from the
strict requirements of KJMA theory, including diffusion controlled
growth and instantaneous growth approximation. Crystallization
of amorphous alloys, mechanical amorphization of ball-milled
powders, and martensitic transformation are described as exam-
ples. Finally, some conclusions are briefly summarized.

2. Requirements to Obtain the KJMA Equation

Burbelko et al.[4] summarized the requisites for KJMA theory to
be valid in the five postulates of Kolmogorov: 1) The initial parent

phase is progressively and completely replaced by a product
phase. 2) The volume of any transformed region is tiny with
respect to the whole volume of the system. 3) Nucleation is
random. 4) The shape of the growing phase is convex. 5) The
linear growth rate can be expressed as a product of a time-
dependent function and a direction-dependent function.

To require a progressive and complete replacement of the
initial phase by the product phase would restrict the use of
KJMA theory to none but polymorphic transformations.
However, KJMA theory is broadly applied beyond this limit as
we will show in Section 6. Postulates number 2 and 3 are not
very restrictive. In the first case, we are considering the formation
of polycrystalline systems and assuming an infinite limit for the
space to be transformed in comparison with the size of an indi-
vidual crystal. In the third postulate, we are not restricted to homo-
geneous nucleation but the heterogeneous nucleation centers
(defects, grain boundaries, etc.) must be randomly distributed.

Concerning postulates number 4 and 5, they can be reformu-
lated following the requisites appearing in the review article from
Korobov[32] on KJMA theory in which it is pointed that all nuclei
must have a common shape and orientation, and that the growth
rate of a nucleus must not depend on its growing time. Both con-
ditions prevent overestimation of transformed fraction avoiding
the overgrowth contribution from phantom nuclei, which are
those contributing to X� but formed in an already transformed
region. When these requisites are fulfilled, all the contribution
to the extended volume corresponding to the growth of a phantom
nucleus will overlap with the already transformed region of the
parent crystal where the phantom nucleus appears. Therefore,
KJMA equation is valid to describe the actual transformed fraction.

However, when linear growth rate decreases with the growing
time, a phantom nucleus (close enough to the interface of the
transformed region into which it appeared) can overcome the
limit of this transformed region as the boundary of the former
moves faster than the latter, leading to an overgrowth region
(see Figure 2a). This is the case of diffusion controlled growth,
for which the linear growth rate of a crystal decreases with the
growing time as ∝ ðt� τÞ�0.5, where t is the observation time and
τ is the nucleation time. In Section 6, we will show some simple
simulations to account for the importance of the effect of
overgrowth regions.

Moreover, when anisotropic growth occurs and orientation
is not the same for all the crystallites, nonoverlapped regions
of the extended transformed fractions can be physically banned
(schematic representations can be found in Figure 2b,c).

These problems were afforded in two dimensions by
Tomellini and Fanfoni[33] calculating the fraction transformed
without the contribution of the phantom nuclei. On the other
hand, Kooi,[34] using Monte Carlo simulations, modifies the
extended transformed fraction and finds the time at which the
transformation deviates from normal KJMA to a blocking regime
in systems for which dimensionality of growth is smaller than
that of the corresponding space.

3. Development of KJMA Equation

Extended transformed fraction, X�, can be easily calculated
after adding the expected volume of each transformed region
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Figure 1. Distribution of research papers containing “Avrami” as a
function of the area of research (bars, left axis) and year of publication
(symbols, right axis). Data obtained from Web of Science (September
20, 2021).
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whether it was nucleated at a certain time or it existed before the
transformation started

X�ðtÞ ¼
Zt
0

IðτÞVðτ, tÞdτ þ
Z∞
0

dN0

dr0
Vðr0, tÞdr0 (3)

The first integral depends on the nucleation rate per unit
volume IðtÞ ¼ dNðtÞ=dt (being NðtÞ the number of nuclei per
unit volume) and corresponds to the contribution to X �ðtÞ at
the observation time t of those regions nucleated at time
τ (0 < τ < t) which should have grown (neglecting any impinge-
ment) to a volume

Vðτ, tÞ ¼ 4π
3

"
r�ðτÞ þ

Zt
τ

uðt0,TÞdt0
#3

(4)

For simplicity, spherical regions are assumed and r� ¼ 2γSLTE
ΔT·ΔH

is the critical radius for a nucleus to be stable,[35,36] with γSL is the
surface energy, TE is the equilibrium temperature between the
initial and final phases, ΔT ¼ T � TE is the thermal span from
the equilibrium temperature, and ΔH is the latent heat ascribed
to the transformation. Moreover, uðt0,TÞ is the linear growth rate
at time t0 and depends on temperature T.

The second integral corresponds to the contribution to X�ðtÞ
of the growth of dN0 preexisting regions per unit volume of the
product phases, with an initial radius between r0 and r0 þ dr0, to
a volume: Vðr0, tÞ.

Vðr0, tÞ ¼
4π
3

"
r0 þ

Zt
τ

uðt0,TÞdt0
#3

(5)

Equation (4) and (5) are valid for spherical crystals and, in gen-
eral, the size of the nuclei is small enough and can be neglected.
KJMA theory is a global theory of the transformation and many
characteristics of growth processes (e.g., cooperative movement
of atoms in coherent interfaces) are overseen in the KJMAmodel.
However, anisotropic growth can be considered but, as described
above, is only valid when shape and orientation are the same
for all the crystals, preventing overgrowth regions.[7,32,34] For
example, particularizing to an ellipsoidal crystal, in the case of
Equation (4)

Vðτ, tÞ ¼ 4π
3

"Zt
τ

uxðt0,TÞdt0
#"Zt

τ

uyðt0,TÞdt0
#"Zt

τ

uzðt0,TÞdt0
#

(6A)

where ux , uy, and uz are the linear growth on the corresponding
axes of the ellipsoid that should be common for all crystallites. A
general approach is to consider absence of growth in one or two
dimensions to represent the formation of needle-like crystals (1D
growth) or platelets (2D growth). Several authors have studied
this limitation in the growth dimensionality. Kooi[34] using
Monte Carlo simulations studied the formation of 1D
crystals in 2D and 3D spaces, founding that KJMA describes
the process at the initial state of the transformation. In that
article, a well-defined transition time was obtained after which
the transformation progresses in a blocking regime. Following
the interpretation of Korobov,[32] and assuming that the shape
and orientation of the crystals are common, Equation (6A) can
be approached to

Vðτ, tÞ ¼ π

4
D2

"Zt
τ

uðt0,TÞdt0
#

(6B)

for needle-like crystals of diameter D, and

Vðτ, tÞ ¼ πλ

"Zt
τ

uðt0,TÞdt0
#2

(6C)

for thin discs of thickness λ.
Similar equations could be obtained for Vðr0, tÞ, neglecting

the initial radius of those preexisting regions.
Therefore, Equation (3) can be explicitly stated as

X�ðtÞ ¼
Zt
0

IðτÞCI

"Zt
τ

uðt0,TÞdt0
#dI

dτþN0C0

"Zt
τ

uðt0,TÞdt0
#d0

(7)

where dI and d0 are the dimension of growth for the new
nucleated regions and for the preexisting ones, respectively,

Figure 2. Schematic pictures showing that: a) decreasing growth rate with
growing time, as it occurs in diffusion controlled processes, may lead to
the appearing of overgrowth regions (red area). b) Anisotropic growth can
also lead to overgrowth regions when orientation and shape is not share by
all the crystallites.[7,32,34] c) When orientation and shape are the same for
all the crystallites, overgrowth does not occur.
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and CI and C0 are geometrical factors with dimension of length
at the power ð3� dIÞ and ð3� d0Þ, respectively.

Concerning nucleation phenomenon, two simple cases
already analyzed by Kolmogorov are considered when analyzing
in the frame of KJMA theory.

On the one hand, assuming constant nucleation rate, neglect-
ing the presence of already transformed regions, Equation (7)
becomes

X�ðtÞ ¼ IðTÞ
Zt
0

CI

"Zt
τ

uðt0,TÞdt0
#dI

dτ (8)

but only in the case of isothermal conditions, as nucleation rate,
and generally the transformation rate,[37] strongly depends on
temperature following an Arrhenius law

IðTÞ ¼ I0exp �ðQ þWÞ
kBT

� �
(9)

whereQ is the activation energy for an atom to be incorporated to
the new phase and W is the work needed to form a stable
nucleus.[35]

On the other hand, in the case of neglecting the formation of
new nuclei and assuming that the transformation is only due to
the growth of preexisting nuclei, the second addition term in
Equation (7) is the only one to be considered.

Concerning growth phenomena, analysis in the frame of
KJMA theory considers two extreme cases: interface controlled
growth, when diffusion of heat and atoms is fast enough com-
pared to the time required for an atom to jump into the product
phase; and diffusion controlled growth, when the progress of the
transformation is governed by this mechanism. The latter mech-
anism, as described above, is not strictly valid in KJMA frame as
it leads to overgrowth of phantom nuclei (see Figure 2a). In fact,
KJMA theory accounts for the phantom nuclei but when linear
growth decreases as the crystal grows (as it occurs in diffusion
controlled growth) this implies that a phantom nucleus, which is
formed inside an already transformed region, grows faster than
its host region, and can go beyond its limit. We will show in
Section 6 that deviations due to this overgrowth are expected
to be negligible and, in agreement with other authors,[38,39]

KJMA theory can be used as a fair approach to describe diffusion
controlled growth processes.

On the one hand, assuming an interface controlled growth
leads to time independent linear growth rate uðTÞ, which implies
a volume of the growing particle

Vðτ, tÞ ¼ CI

"Zt
τ

uðTÞdt0
#d

¼ K1ðTÞðt� τÞd (10)

As the linear growth rate depends on temperature, only for
isothermal transformations it should be properly written the final
identity with K1ðTÞ ¼ CI uðTÞ½ �d. An Arrhenius law can be
approximated to the linear growth in the case of interface
controlled growth[37]

uðTÞ ¼ u0exp � Q
kBT

� �
(11)

which is constant for a constant temperature.
On the other hand, a diffusion controlled growth is character-

ized by a linear growth rate that depends on the observed time, t,
the time the nucleus was formed, τ, and the temperature, T

uðT , t, τÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðTÞ
ðt� τÞ

s
(12)

where DðTÞ is the diffusion coefficient, and the volume of the
growing particle (in isothermal conditions) would be

Vðτ, tÞ ¼ CI

2
64Z

t

τ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðTÞ
t0 � τ

r
dt0

3
75
d

¼ K2ðTÞðt� τÞd=2 (13)

In this case, the temperature-dependent prefactor is
K2ðTÞ ¼ 2CI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðTÞp

, with an Arrhenius law describing the
temperature dependence of the diffusion coefficient.

Therefore, in isothermal conditions and taking into account
the different possibilities described above, the extended volume
fraction can be expressed as

X�ðtÞ ¼ KðTÞðt� t0Þn (14)

where Avrami exponent n ¼ nI þ d · nG, with nI ¼ 1 for con-
stant nucleation process or nI ¼ 0 for absence of nucleation,
and nG ¼ 1 for interface controlled growth or nG ¼ 0.5 for diffu-
sion controlled growth. Restricted possibilities with physical
meaning (0.5 ≤ n ≤ 4) are collected in Table 1. As it is observed
in this table, ambiguity can be found for some values of n and,

Table 1. Possible physical meaningful values of Avrami exponent n in the
frame of KJMA theory.

Avrami
exponent n

Nucleation
exponent nI

Growth
exponent nG

Dimension of
growth d

0.5 No nucleation Diffusion controlled 1

1 Constant nucleation rate No growth 0

No nucleation Interface controlled 1

No nucleation Diffusion controlled 2

1.5 Constant nucleation rate Diffusion controlleda) 1

No nucleation Diffusion controlled 3

2 Constant nucleation rate Interface controlled 1

Constant nucleation rate Diffusion controlleda) 2

No nucleation Interface controlled 2

2.5 Constant nucleation rate Diffusion controlleda) 3

3 Constant nucleation rate Interface controlled 2

No nucleation Interface controlled 3

4 Constant nucleation rate Interface controlled 3

a)Diffusion controlled processes for which nucleation is extended along the
transformation are affected by overgrowth of phantom nuclei. The Avrami
exponent would correspond to a maximum limit when this overgrowth is negligible.
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therefore, it is important to combine this kinetic analysis
with microstructural observations to elucidate which are the
mechanisms involved in the transformation.

In a semiquantitative way, values of nI < 1 are ascribed to a
decreasing nucleation rate and nI > 1 to an increasing nucleation
rate. This can be implemented in Equation (7) assuming a power
expression for the number of nuclei as a function of time,[34] lead-
ing to a nucleation rate of the form: IðtÞ ¼ ta with �1 < a < 0
for a decreasing nucleation rate process and a > 0 for an increas-
ing nucleation rate process.

The relationship between actual transformed fraction, X, and
the extended one, X�, is obtained statistically as[40]

dX
dX� ¼ ð1� XÞη (15)

In KJMA theory, the impingement exponent η ¼ 1 but
other kinetic theories are developed assuming a stronger
impingement exponent. For example, Austin–Rickett model[41]

can be developed using η ¼ 2. Tagami and Tanaka[42] proposed
an intermediate value of η defining the overlap factor γ ¼ 2� η
to describe nucleation and halt in growth processes. These are
processes in which the crystals grow to a fixed size. The overlap
factor was developed to account for the phantom crystals
from phantom nuclei which should be accounted in X�. The
value of γ ¼ 0.75 corresponds to needle-like crystals,
γ ¼ 0.5865 to planar disc-like crystals, and γ ¼ 0.48675 to spher-
ical crystals. Starink[40] also proposed a variable impingement
parameter to approximate several deviations from KJMA
requirements.

The relation dX=dX� ¼ ð1� XÞ between the extended
and actual transformed fractions described by Equation (15) with
η ¼ 1 was obtained mathematically by Kolmogorov under rigor-
ous requirements (as we qualitatively collected in Section 2).
However, as an approximation, it can be understood as the sim-
plest relation between twomagnitudes being equal when they are
close to zero but describing the saturation behavior of X at 1
whereas X � never saturates. This may explain why KJMA kinetics
is a fairly good approximation even when the systems depart
from its strict requirements and why different kinetic approaches
lead to similar equations to KJMA one.[32]

Integration of Equation (15) leads to

ZX
0

dX
ð1� XÞη ¼

ZX�

0

dX� !
8<
:
η ¼ 1 ! �lnð1� XÞ ¼ X�

η 6¼ 1 ! 1�ð1�XÞ1�η

1�η ¼ X�
(16)

Substitution of Equation (14) in (16) for η ¼ 1 leads to
Equation (1). Therefore, experimentally, we will consider the
value of �lnð1� XÞ ¼ X� and, in the following, we will discuss
on the deviations of the different models from theoretical X�.
Therefore, the KJMA-plot represents lnð�lnð1� XÞÞ ¼ lnðX�Þ
versus lnðt� t0Þ.

4. Effects of Indetermination of Experimental
Data in KJMA Analysis

4.1. Effects of Indetermination in the Induction Time

In order to apply Equation (1), we need to obtain experimental
data on transformed fraction X as a function of the time of trans-
formation t. In this sense it is very important to take into account
that we also need an accurate estimation of the induction time, t0.

As we will see below, a wrong estimation of the induction time
leads to important deviation effects. Figure 3 shows how the
effective Avrami exponent becomes reduced when experimental
t0 delays with respect to the theoretical value at which the trans-
formation starts (i.e., Xðt0Þ ¼ 0 but we normally detect the onset
once the magnitude we use to follow transformation appreciably
changes from its baseline value). It is particularly important to
notice that the steepest slope method to obtain the onset, which
is widely used, supplies a correct value only for n ¼ 1.

The induction time measured from steepest slope method,
tslope, can be obtained as a function of Avrami exponent for
theoretical curves, taking into account that the time at which
the transformation rate is maximum corresponds to
tinf ¼ 1

k
n�1
n

� �
1=n:

tslope ¼ tinf �
Xðtinf Þ
dXðtinf Þ

dt

(17)

Results are shown in Figure 4 for the different values of n
along with the transformed fractions at this induction time
XðtslopeÞ, which can be �10% for high values of n. Taking into
account theoretical results from Figure 3 and 4, it is important to
know that this effect can lead to erroneous values. Definitely, the
steepest slope method is only valid when n ¼ 1. However, we can
estimate the correct induction time, t0, from the proportionality

shown in Figure 4c between time spans: α ¼ ðtslope�t0Þ
ðtinf�tslopeÞ, which

linearly depends on Avrami exponent: α ¼ ð�0.578� 0.009Þþ
ð0.564� 0.03Þn. Therefore, the correct induction time can be
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Figure 3. Effect of indetermination of induction time on the KJMA-plot for
three different values of the Avrami exponent. Limit values corresponding
to X ¼ 0.1 and X ¼ 0.9 are shown as horizontal lines.
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obtained as

t0 ¼ tslope � αðtinf � tslopeÞ (18)

Something similar would be obtained when applying the
steepest slope method to determine the induction time (or more
generally, the onset of the transformation) using dX=dt curves.
In such a case, the value obtained from steepest slope is generally
used as the calibration onset temperature in differential scanning
calorimetry.

Although KJMA assumes simple processes with constant
kinetic parameters through the transformation, complexities
of the actual process can be better evidenced by obtaining the
so-called local Avrami exponent, first proposed by Calka and
Radlinski:[43]

nðXÞ ¼ dlnð�lnð1� XÞÞ
dlnðt� t0Þ

(19)

Figure 5 shows how the effective local Avrami exponent devi-
ates from the theoretical values due to a wrong determination of
t0. Qualitatively, it is observed that overestimation of t0 leads to
an underestimation of n and vice versa. This behavior could be
used to detect errors in the determination of the onset of simple
transformations. In the case of n ¼ 1, deviations are almost
negligible for X > 0.2.

4.2. Effects of Indetermination in the Final Transformed
Fraction in Nonpolymorphic Transformations

Although first postulate of Kolmogorov assumes a complete
transformation of the system, this restriction is generally
overseen after normalizing the transformed fraction to 1 at
the end of the considered process by dividing the actual
transformed fraction xðtÞ by the final one, X ¼ xðtÞ=xend. In fact,
KJMA analysis was widely applied to primary crystallization,[44–51]

precipitation,[52–58] eutectoid,[59,60] and quasicrystals formation[61]

using this normalization. This yields an extra source of error in
the data, as the final transformed fraction must be measured.
Figure 6 shows the effect of indetermination in the final trans-
formed fraction xend.

Underestimating the final transformed fraction is not
seriously affecting n but at very high values of X. However,
overestimation can lead to two slopes artifact but n can be
obtained from the linear part (for such a high value as 30%
overestimation, Avrami exponent only changes �10%). In any

(a)

(b)

(c)

Figure 4. Variation with the Avrami exponent of a) the onset of the
transformation estimated from the steepest slope method, tslope, b) the
transformed fraction at this time, and c) the ratio between ðtslope � t0Þ
and ðtinf � tslopeÞ spans.

Figure 5. Effect of the indetermination of the induction time on the
effective local Avrami exponents for different values of n.
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Figure 6. Effect of indetermination in the final transformed fraction on
KJMA-plots for different values of n. Limit values corresponding to X ¼
0.1 and X ¼ 0.9 are shown as horizontal lines.
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case, it is important to be aware of using X data in a correct range,
avoiding the extreme values.

When compositions of initial and final phases are not the
same, a side effect can be derived from the compositional change
of the environment of the growing crystal. This may affect the
growth rate and even lead to soft impingement,[39,40,51,62,63]

which is generally used to distinguish between the pure geomet-
rical impingement considered in KJMA and that produced by the
overlapping of concentration gradients.

5. Extensions of KJMA Theory to Nonisothermal
Conditions

As described above, KJMA theory is strictly valid for isothermal
conditions. However, the advantages of constant heating rate
experiments[37] made the extension of KJMA to nonisothermal
regimes a desired goal since earlier times.[5,6,64–68] In this sec-
tion, we will briefly discuss on the consequences of a constant
heating rate regime for a hypothetical process following KJMA
kinetics.

We will consider the case with no preexistent regions
(no quenched in nuclei) in nonisothermal conditions. In this
case, neither IðTÞ nor uðt0,TÞ can be extracted from the integral
in Equation (7) and thus, for nonisothermal cases, using
Equation (8), (11), and (12), it is possible to write

X�ðTÞ ¼ CII0

Zt
0

exp � QI

kBT

� �24Zt
τ

u0exp � QG

kBT

� �
dt0

3
5d

dτ

(20A)

for interface controlled growth, and

X�ðTÞ ¼ CII0

Zt
0

exp � QI

kBT

� �24Zt
τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0

ðt0 � τÞ

s
exp � QG

kBT

� �
dt0

3
5d

dτ

(20B)

for diffusion controlled growth. In both cases we will assume that
I0, D0, and u0 as well as the activacion energies do not change
during the transformation due to, for example, neglected temper-
ature dependence in our approximations, compositional changes
of the matrix, or activation of new mechanisms of nucleation.

Assuming a constant heating/cooling rate β ¼ dT=dt, some
further simplification can be obtained:

X�ðTÞ ¼ CII0u0d
ZT
T0

exp � QI

kBθ

� � ZT
θ

exp � QG

kBT 0

� �
dT 0

β

2
4

3
5d

dθ
β

(21A)

for interface controlled growth, and

X�ðTÞ ¼ CII0ð2D0Þd2
ZT
T0

exp � QI

kBθ

� �

ZT
θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðT 0 � θÞ

s
exp � QG

kBT 0

� �
dT 0

β0.5

2
4

3
5d

dθ
β

(21B)

for diffusion controlled growth (neglecting overgrowth of phan-
tom nuclei). We can have a more general equation to describe both
cases and taking out of the integral the heating rate dependency

X�ðTÞ ¼ C
βd·nGþ1

ZT
T0

exp � QI

kBθ

� �

ZT
θ

ðT 0 � θÞnG�1exp � QG

kBT 0

� �
dT 0

2
4

3
5d

dθ

(22)

which can be simplified to

X�ðTÞ ¼ ZðT ,T0Þ
βd·nGþ1 (23)

where ZðT ,T0Þ is the crystallization function. Ozawa[64]

proposed a method in which, for a fixed temperature, a plot of
lnð�lnð1� XÞÞ versus �lnðβÞ might supply a straight line with
the Avrami exponent as the slope. However, Ozawa’s method
implicitly assumes that all the kinetic parameters are constant
along the transformation process, as the transformation is com-
pared at different stages of the transformation (i.e., for a given
temperature, ZðT ,T0Þ is independent of X or β). Although this
is apparently consistent with KJMA theory, it prevents any analysis
on the local Avrami exponent and neglects any effect of T0.

Ozawa’s method was applied in the present study to the melt-
ing of an indium sample used as standard for calibration of the
differential scanning calorimeter (Perkin-Elmer DSC7). This
equipment has two independent furnaces which supply heat
to the sample and the reference, respectively, to keep them at
the same temperature. This minimizes the errors due to differ-
ences in temperatures[37] between reference and sample in other
thermal analyzers. The mass of the sample was 21.65mg and it
was heated at heating rates between 5 and 80 Kmin�1 (Figure 7a)
after correcting the thermal inertia of the equipment.
Transformed fraction X was obtained from the integral of the
heat flux (DSC signal) normalized to the area of the peak
ΔH ¼ 3302� 24Jmol�1. It is worth noticing that as the peak
shifts to higher temperatures, Ozawa’s method is comparing
the transformation in very different stages. Therefore, we limit
our analysis to the range 0.1 < X < 0.9, which corresponds to
�2.25 < lnð�lnð1� XÞÞ < 0.834. This prevents the use of all
the curves in a single analysis. Figure 7b shows the plot of
lnð�lnð1� XÞÞ for temperatures between 432 and 438 K
(1 K span) and Figure 7c shows the plot of lnð�lnð1� XÞÞ versus
lnðβÞ in the range for which at least three β curves can be used.

The resulting Avrami exponent from Ozawa analysis is
n ¼ 1.3� 0.2. Although the order of this value is correct, absence
of nucleation or low-dimensional growth is hardly expected in the
formation of the liquid.
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Returning to the Equation (23), it is worth mentioning that, for
any transformation, the temperature range of interest is limited
and when the transformation occurs in a sufficiently reduced
temperature range, substituting the exponential for an effective
average value leads to

X�ðTÞ ¼ C
βdnGþ1nGdðdnG þ 1Þ exp �QI þ dQG

kBT

� �
ðT � T0ÞdnGþ1

(24)

If we started from the second integral of Equation (3), we will
recover something similar but dnG would appear instead of
dnG þ 1. Therefore, the direct application of KJMA-plot in the
general nonisothermal case assuming an average temperature
in the exponential leads to

lnðX�Þ ¼ �QI þ dQG

kBT
� nlnðβÞ þ lnðBÞ

� �
þ nlnðT � T0Þ (25)

where B would be independent of temperature (although as it
was pointed above for Ozawa’s method, this implies that we have

to neglect also any dependence of B ¼ ln C
nGdðdnGþ1Þ

	 

on X or β).

On the one hand, the simple relationship n ¼ nGd þ nI can
still be valid. Moreover, the intercept of KJMA-plot,

lnðX int
�Þ ¼ � QIþdQG

kBT

D E
� nlnðβÞ þ lnðBÞ

h i
, depends on the

heating rate and on the average temperature used to simplify
the integrals.

This direct application of KJMA-plot to the melting of the
indium standard sample was also performed in the present
study. However, due to the high sensitivity of the results to
the indetermination of the induction time (temperature in the
case of nonisothermal regime) the procedure was done as
follows: 1) KJMA-plots were generated using the estimated T0

values from the measured T slope using Equation (18). 2) The aver-
age slope of KJMA-plots in the range 0.1 < X < 0.9 results
n ¼ 4.3� 0.6, which is consistent with an interface controlled
growth and constant nucleation rate. However, the plot of
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Figure 7. a) DSC signal of In standard sample in the melting region. b) lnð� lnð1� XÞÞ as a function of temperature, and c) lnð� lnð1� XÞÞ as a function
of lnðβÞ.
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lnðX int
�Þ þ Q

kBT

D E
(Q ¼ 790� 50 kJ

mol from Kissinger’s

method[69]) versus lnðβÞ with Th i � TP (the peak temperature
at which the transformation rate is maximum) yields an incon-
sistent n � 2, which is due to the strong effect of indetermination
of T0. 3) Fine-tuning of the value of To allows us to find the cor-
responding optimum T0values for n ¼ 4 in KJMA-plots for each
β. 4) Finally, using these values we obtain n ¼3.4 (n ¼4.1 neglect-

ing low heating rates) as the slope of lnðX int
�Þ þ Q

kBT

D E
versus

lnðβÞ. Figure 8a,b show the dependence of T0 and lnðX int
�Þ with

n; Figure 8c shows the Kissinger plot to determine the activation
energyQ; Figure 8d shows the corresponding values of estimated
T0, optimum T0, TP, and T slope for each β; and Figure 8e shows

the plot of lnðX int
�Þ þ Q

kBT

D E
versus lnðβÞ.

Figure 9 shows the local Avrami exponents (a) and
KJMA-plots (b) for the different heating rates in the range
0.1 < X < 0.9.

In 1972, Nakamura et al.[67] proposed an approximation for the
Avrami equation to be extended to nonisothermal regimes, in
which, X�ðTÞ, for constant heating rate, is expressed as

X�ðTÞ ¼ 1
βn

ZT
T0

k0exp � Q
kBT 0

� �
dT 0

2
64

3
75
n

(26)

This approximation, developed for isokinetic transformations,
is coherent with Ozawa’s but comparing Equation (26) with (22)

shows that the former is an approximation compiling the
temperature dependence in just one exponential Arrhenius-type
dependence.

k0nexp � nQ
kBT

� �
�
ZT
T0

d
dθ

Cexp � QI

kBθ

� � ZT
θ

ðT 0 � TRÞαexp � QG

kBT 0

� �
dT 0

2
4

3
5d8<

:
9=
;dθ

(27)

However, Equation (26) is strictly equal to Equation (22) for
transformations for which the growth is so fast that new crystals
are only observed with its final size. These conditions define the
instantaneous growth approximation (d ¼ 0)[70,71] and explains
why a direct approach to nonisothermal conditions works so well
in the case of nanocrystallization processes.[72] This latter
approximation, derived from Nakamura et al. work, assumes
an effective onset temperature T 0

0 � TP=2, where TP is the peak
temperature (i.e., the temperature at which the transformation
rate is maximum), to simplify Equation (26) to[73]

X�ðTÞ ¼ 1
βn

k00exp � Q 0

kBT

� �
ðT � T 0

0Þ
� �

n
(28)

The application of expression (19) to determine the local
Avrami exponent is thus modified after taking into account
the temperature dependence of the frequency factor
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Figure 8. KJMA analysis applied to the melting of In standard. Relationship between Avrami exponent and a) the induction temperature, and b) lnðX int
�Þ.

c) Kissinger plot to determine the activation energy Q. d) Peak temperature, TP, and onset temperatures estimated from the steepest lope, Tslope, and

from Equation (18), and optimum T0 value chosen as the value leading to n ¼ 4 in (a). e) lnðX int
�Þ þ Q

kBT

D E
versus lnðβÞ using the intercepts in (b) for the

optimum T0 and TP as the average temperature.
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nðXÞ ¼ dlnð�lnð1� XÞÞ
dlnðt� t0Þ

1þ Q 0

kBT
1� T 0

0

T

� �� ��1
(29)

This approximation works well for very broad transformations
(e.g., temperature range of nanocrystallization can be over 100 K)
and presents the advantage over Ozawa’s method that the local
values nðXÞ are obtained for a single non-isothermal experiment
(which can be compared to experiments at other heating rates to
study whether isokinetic behavior is observed. However, the
average nðTÞ from Ozawa needs to assume that at the same
temperature (and very different X values for different β) the
kinetic parameters are the same.

6. Effects of Breakdown of Kolmogorov Postulates

6.1. Deviation from the First Postulate of Kolmogorov:
Overlapped Processes

A particular case of deviation from the first postulate occurs in
overlapped processes. In this case, interpretation of application
of KJMA theory is not straightforward. However, neglecting coa-
lescence or other recrystallization processes, Avrami exponents
of the individual processes can be extracted from the analysis
of the effective Avrami exponent resulting from a direct
KJMA analysis.[74] To do this we can consider two different
situations when two transformations overlap: 1) processes
which are not competing for the same type of atoms and
2) processes which are competing for the same type of atoms.
The former case implies that the geometrical impingement acts
independently for each process and there are restricted regions
for each transformation. The latter case implies that geometrical
impingement is common to the different processes and
evolution of one transformation restricts the progress of the
other ones.

6.1.1. Independent Geometrical Impingement

This should occur when the processes are not competing for the
same type of atoms and thus volume of the region to be
transformed in product phase one is not overlapping with the
volume of the region to be transformed in product phase
two. This idea is summarized in the addition of the individual
transformed fractions to obtain the total transformed one

X ¼
XN
i

f iX i ¼
XN
i

f ið1� expð�Xi
�ÞÞ (30)

where f i is the maximum transformed fraction corresponding to
i process and

PN
i f i ¼ 1. Several consequences can be obtained

from the study of the effective local Avrami exponent n�ðXÞ
(applying Equation (19) for isothermal case or Equation (29)
for nonisothermal case) obtained in the limit case of nonover-
lapped processes[74]

Despite the individual processes were isokinetic, this behavior
is not preserved in the effective Avrami exponent of the whole
process, unless the different overlapped processes have the same
activation energy.

When individual processes show different activation energies,
their overlapping can be tuned by changing the annealing
temperature (isothermal) or the heating rate (nonisothermal).

Transformed fractions of the different phases at the end of the
process are independent of the annealing conditions or the heat-
ing rate.

The individual Avrami exponent of the earlier process, n1, can
be recovered as the limit value n1 ¼ limX!0n�ðXÞ.

The individual Avrami exponent of the last process, nN, can be
recovered from the behavior of n�ðXÞ at high values of
X > 1� f N
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Figure 9. KJMA-plots a) and local Avrami exponent b) for melting process of an In standard sample at different heating rates.
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nN ¼ n�ðXÞ � dn�ðXÞ
dX

ð1� XÞlnð1� XÞ (31)

Moreover, the fraction f N corresponding to the last process
can be also obtained from the analysis of n�ðXÞ at high values
of X

lnðf NÞ ¼ � 1
nN

ð1� XÞ lnð1� XÞ½ �2 dn
�ðXÞ
dX

(32)

Equation (31) and (32) allow for deconvolution of two over-
lapped processes once recalculating X1 ¼ X=ð1� f 2Þ and
X2 ¼ ðX � ð1� f 2ÞÞ=f 2

This analysis has been applied to the crystallization of
different amorphous Fe(Co)–Zr[75,76] and Fe–Nb[77] alloys.
Moreover, the assumption of multiple overlapped microproc-
esses reproduces the low Avrami exponents found in nanocrys-
tallization. Numerical calculations performed using numerous
overlapped microprocesses with ni ¼ 2.5 successfully
reproduced the experimental effective Avrami values found in
the crystallization of FINEMET alloys.[78]

6.1.2. Common Geometrical Impingement

When geometrical impingement affects to all the overlapped
processes in a common way, the total extended transformed
fraction can be calculated as the addition of the different
individual contributions[74,79] leading to

X ¼ 1� exp �
XN
i

X i
�

 !
(33)

And the individual rates of transformations can be
expressed as

dXi

dt
¼ ð1� XÞη dXi

�

dt
(34)

In the case of two overlapped processes fulfilling this
condition with η ¼ 1, several statements can be derived[74]:
1) The overlapped process cannot be experimentally deconvo-
luted: when one of the processes is delayed, its fraction becomes
reduced. 2) Transformed fractions at the end of the complete
process depend on the annealing conditions or the heating rate.
3) As it occurs in noncompetitive processes, isokinetic character
is not preserved for the effective Avrami exponent. In the case
of competitive processes, nonisothermal analysis using
Equation (29) showed that, for a given transformed fraction X,
n�ðXÞ increases with the heating rate if the activation process
is higher for the process with the highest Avrami exponent.
On the other hand, n�ðXÞ decreases with β when the activation
energy is higher for the process with the lowest Avrami exponent.

This analysis was applied to the nanocrystallization of
α-Fe(Ga) of bulk amorphous alloys with the presence of
quenched in crystallites of this phase.[73]

6.2. Deviation from the Fourth and Fifth Postulates of
Kolmogorov

6.2.1. Overgrowth in Diffusion Controlled Growth Processes

As it was shown in Figure 2a, for those transformations in which
the growth rate is decelerated, when statistically a phantom
nucleus appear close to the edge of an already growing crystal,
its faster growth rate may lead to an overgrowth region accounted
by KJMA expression. In order to appreciate the importance of
this effect in diffusion controlled growth, we have performed
simple simulations in 1D space using MatLab. The simulation
acts iteratively, being each iteration step a time unit. We define
a line of length L (with boundary conditions) and each iteration
step a nucleus is formed in a random point of the line. The radius
of a nucleus formed at iteration step τ is updated every iteration
step t as: rðt, τÞ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiðt� τÞp
following Equation (12) (parameter

A was tailored between A=L ¼ 2� 10�5 to 2� 10�3step�0.5),
which allows us to obtain the extended transformed fraction,
X�, adding the size of each formed region (phantom and real
ones) divided by L. Once a new nucleus is formed we labeled
whether the nucleus is real or phantom (the nucleation point
belongs to an already transformed region). To obtain the actual
transformed fraction we check equidistant points in the line and
distinguish whether the point belongs to an already transformed
region or not and, in the former case, whether the transformed
region is covered only by a phantom crystal. This procedure
allows us to obtain the actual transformed fraction, X, as well
as the overgrowth fraction, Xover. The latter is the transformed
fraction only covered by the growth of a phantom nucleus.

Figure 10 summarizes the results obtained from the
simulations for an average over 100 curves with
A=L ¼ 2� 10�4step�0.5. Figure 10a,b show X and Xover, respec-
tively, as a function of the iteration step. As expected, Xover is null
at the beginning (negligible probability to appear a phantom
nuclei) and at the final stages (negligible probability of a phantom
nuclei to appear close to an active boundary). Moreover, the
maximum Xover is about 1.5%. Symbols in Figure 10c show
the relation between X and 1� expð�X�Þ. Regression is fairly
good (R2 ¼ 0.99997) with a slope of 0.9921� 0.0002. Linear
fitting of X þ Xover versus 1� expð�X�Þ leads to R2 ¼ 0.99999
and slope of 1.00024� 0.00008, showing the expected improve-
ment in correlation. Finally, Figure 10d shows the KJMA-plot
from which Avrami exponent is obtained for 0.05 < X < 0.95
as n ¼ 1.4807� 0.0006. The difference with respect to the theo-
retical Avrami value for constant nucleation rate and diffusion
controlled growth, n ¼ 1.5 (see Table 1) is below the typical
errors obtained in the experiments and therefore, KJMA theory
seems to be a fairly good approximation to describe the diffusion
controlled growth processes. Changes in parameter A lead to the
same conclusions.

6.2.2. Mechanical Amorphization of Ball Milled Powders

KJMA theory assumes that a nucleus is formed in a very small
region, which can be even approximated to a point as we did in
Equation (7). From this point-like nucleus, the spherical trans-
formed region grows. We pointed the possibility of anisotropic
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growth in Equation (6A), which describes an ellipsoidal shape for
the growing transformed region. Any of these cases fulfill the
convex shape required by the fourth postulate. However,
mechanical amorphization,[80,81] first reported by Yermakov
et al.[82] and Koch et al.[83] in early 1980, is a solid-state transfor-
mation which disobeys the fourth postulate. This transformation
practically occurs at a constant temperature as stationary condi-
tion (about 10 K rise in vial temperature) is rapidly achieved in
planetary mills.[84] In mechanical amorphization, concerning
first postulate, the amorphous phase can completely substitute
the supersaturated solid solution previously formed during mill-
ing. Concerning the second postulate, the size of the regions to
be amorphized is in the order of 5–10 nm and the third postulate
is fulfilled from a global point of view. Moreover, concerning the
fifth postulate, a constant linear growth rate of the amorphous
regions (interface controlled) is feasible as the amorphous-
crystalline boundary advances at low temperature in a supersat-
urated solid solution where, once it is formed, diffusion should
not be the determinant mechanism.

During mechanical amorphization, the polycrystalline powder
particles become mixed and, independently whether the powder
becomes comminuted or agglomerated, the size of the crystallites
progressively reduces to nanoscale.[80,81,84] From this nanocrystal-
line supersaturated solution, some compositions amorphize. This

solid-state transformation does not fulfill the fourth postulate of
Kolmogorov as the transformed regions are concave (the nanocrys-
tals become progressively amorphous from the surface to the
core). This fact completely changes the functional form of the
extended transformed volume, which should be[85]

X� ¼ D0
3 � ðD0 � 2LðtÞÞ3

D0
3 ¼ 1� 1� 2

L0
D0

þ u
D0

ðt� t0Þ
� �� �

3

(35)

where D0 is the initial diameter of the nanocrystals; LðtÞ ¼ L0 þ
u · ðt� t0Þ is the thickness of the amorphous layer, with L0 its
initial value; u, the linear growth rate and t0 the induction time.
Equation (29) can be rewritten as a third-order polynomial shifted
in time to ðt� τ0Þ

�lnð1� XÞ ¼ X� ¼ A · ðt� τ0Þ þ B · ðt� τ0Þ2 þ Cðt� τ0Þ3
(36)

with τ0 ¼ t0 � L0=u; A ¼ 6u=D0; B ¼ �12ðu=D0Þ2, and
C ¼ 8ðu=D0Þ3. It is worth mentioning that, whereas in KJMA
model we have three parameters to fit the transformation curve
(k, t0, and n, as shown in Equation (1)), in Equation (34) there
are only two fitting parameters: τ0 and ðu=D0Þ. However, we
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Figure 10. Results from 1D simulation of diffusion controlled growth with A=L ¼ 2 · 10�4step�0.5. a) Averaged actual transformed fraction, 〈X〉 over 100
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can flexibilize the requirements by using independent A, B, and C
parameters in Equation (36) and to check how the relation between
them departs from the theoretical one. This model was success-
fully applied to the amorphization of mechanically alloyed Fe–Nb–
B alloys.[85]

This analysis is here applied to the mechanical amorphization
of two binary alloys: Fe70Zr30 and Fe70Nb30 produced by mechan-
ical alloying.[86] The amorphous fraction X was measured from
Mössbauer spectrometry, which is a very sensitive technique to
detect tiny fractions of paramagnetic (ferromagnetic) Fe sites con-
tributions in ferromagnetic (paramagnetic) matrices. However, in
the case of mechanical alloying, the earlier paramagnetic Fe sites
must correspond to those Fe atoms in still remaining Nb of Zr
crystals[86] but not in amorphous phase. This may affect the
determination of the induction time. Figure 11 shows
X� ¼ �lnð1� XÞ as a function of the milling time for Fe70Zr30
and Fe70Nb30 mechanical alloys and fitted to Equation (36).
Table 2 collects the resulting data. Assuming an induction time
t0 � 5h, the starting layer of amorphous phase is L0 < 1nm.

In a series of papers, Delogu et al.[87–89] developed a different
kinetic model to describe mechanically induced transformation
during milling. This model is based on the probability of an
untransformed region to be trapped a certain number of
collisions that will deterministically drive the transformation
of that region. The transformed fraction (extended transformed
fraction is not considered in this model) is

X ¼ 1� e�f q 1þ
Xj
i¼2

ðf qÞi�1

ði� 1Þ!

 !
(37)

where f is the fraction of sample trapped in a collision, and q the
total number of collisions at time t. This equation is further sim-
plified by Delogu and Cocco[87] assuming that transformation
occurs after a single event and, changing from discrete
parameter number of collisions q to continuous parameter time
t, then

X ¼ 1� expð�kcoltÞ (38)

And now kcol is the fraction of sample trapped in collisions per
unit time. This kinetic expression is equivalent to KJMA with
n� ¼ 1, which also agrees with the results of direct application
of KJMA analysis to mechanical amorphization, with
0.5 ≤ n� ≤ 1.5.[90–97]

The ideas of concave growth of amorphous layers to degrade
the nanocrystals as well as the probabilistic character of the
nucleation phenomenon (P is the probability of activation of a
fraction f trapped in the collision to drive the amorphization)
were implemented with the statistical model of Delogu.[98]

This was done in order to improve the description at short mill-
ing times assuming a distribution of induction times instead of a
single value used in the study by Blázquez et al.[85] However, the
model (in the following, the extended concave model) does not
yield simple expressions but numerical solutions are needed.
Comparison of the extended concave model and Delogu’s one
assuming more than one event to drive amorphization leads
to the following conclusions:

1) Development of Delogu’s model predicts a maximum in the
transformation rate depending on the number of collisions
needed to drive the transformation j and frequency parameter
k at time

tmax ¼
j � 1
kcol

(39)

2) This time for maximum transformation rate, which is
observed in experiments at tmax 6¼ 0,[98] is not predicted
neither by KJMA model with n� ¼ 1 nor by Delogu’s model with
j ¼ 1.

3) When results from Delogu’s model are fitted to an effective
KJMA curve, the effective Avrami exponent, n�, increases from 1
to �2.4 as the number of collisions required for transformation
increases, whereas the effective frequency factor, keff decreases
with j.

4) KJMA analysis applied to the extended concave model pre-
dicts n� ¼ 1 for PL0

u 	 1; n� ¼ 1.15 for PL0
u ≫ 1 and a peak of

n� ¼ 1.5 at PL0
u � 5. These predictions are in a better agreement

with the reported Avrami exponents[90–97] than those from
Delogu’s model.

5) In the case of keff from KJMA analysis, for PL0
u 	 1,

keff ¼ Pf , i.e., growth rate is so fast that information on growth
processes is lost and the frequency factor only informs about the
nucleation frequency.

6) For PL0
u ≫ 1, corresponding to high nucleation probability or

slow growth rate, keff decreases being keff � 3f u=L0 allowing us,
theoreticaly, to obtain information on the linear growth rate.

7) The extended concave model predicts a steady state between
activation of new regions and the growth of the amorphous
phase. In this steady state, a saturation value of the size of the
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Figure 11. Extended transformed fraction as a function of the milling time
for mechanical amorphization of Fe70Nb30 and Fe70Zr30 alloys along with
the corresponding fittings to Equation (36).

Table 2. Parameters obtained from fitting evolution of amorphous fraction
to Equation (36).

τ [h] u
D0

[1 h�1] D0 [nm][86] u [nm h�1]

Fe70Zr30 2.7� 0.4 0.028� 0.003 10� 2 0.28� 0.09

Fe70Nb30 4.2� 0.5 0.0174� 0.0011 5� 2 0.09� 0.04
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remnant crystallites, Rsat, appears at amorphous fractions above a
certain value, X sat

Am.
8) Moreover, the extended concave model predicts these two

magnitudes rescale with PL0
u . For 0.01 < PL0

u < 10, relative values
of Rsat decreases from 1 to 0 and X sat

Am increases from 0 to 1. In
fact, for u ≫, the transformed regions almost amorphize instan-
taneously and remnant crystallites are only those which are not
still activated. For u 	, there is no saturation in the size of the
remnant crystallites.

The point (8) can be the reason why we observed a larger size
of the remnant crystallites in Fe70Zr30 than in Fe70Nb30 alloy

[86]

(see Table 2). As it is shown in Figure 12, crystal size is smaller
for Fe70Nb30 alloy and the saturation value is achieved at a higher
X sat

Am than for Fe70Zr30 alloy. In fact, a reduction of 50% in Rsat

corresponds to about threefold increase in PL0
u parameter,[98]

which is in agreement with the observed change in the growth
rate u in Table 2.

The extended concave model, considering the probability of
activation of regions after a fixed number of collisions, could
be also extended to other mechanically driven physical transfor-
mations observed during milling, such as mechanically
induced nanocrystallization for which values of n� � 1.5 are
reported.[99,100]

6.3. Instantaneous Growth Approximation

The way the transformation of a certain process is registered (the
characteristic acquisition time) affects the information available
from the time evolution of the transformed fraction. This is the
case when growth is strongly impinged, as in nanocrystallization
processes.[70,71,101,102] On the other hand, very fast growth, as it
occurs in martensitic transformations (in the order of the speed
of sound[36]), prevents from registering the time a crystal is
growing by using conventional calorimetric or similar methods
to follow the transformation. Therefore, once a nucleus is
formed, the contribution to the measured property

(e.g., enthalpy, magnetization, resistivity, etc.) corresponds to
the crystal with its final size.

6.3.1. Effective Values of Avrami Exponent in Instantaneous
Growth Processes

In the instantaneous growth model, the only information avail-
able corresponds to nucleation phenomenon and for isothermal
conditions, Equation (3) can be simplified to

X�ðtÞ ¼ V c

Zt
0

IðτÞdτ ¼ V c

Zt
0

I0exp � QI

kBT

� �
dτ (40)

where V c is the volume of the crystals and Arrhenius dependence
has been assumed for nucleation rate, whereas for nonisother-
mal conditions Equation (21) can be simplified to

X�ðTÞ ¼ V c

β

ZT
T0

I0exp � QI

kBθ

� �
dθ (41)

As it was commented above, this expression is a particular
case of Nakamura’s equation (for n ¼ 1). Taking into account
Equation (40) and (41) and (15), we can obtain the nucleation rate
for isothermal regimes

IðXðtÞÞ ¼ 1
Vc

dX�

dt
¼ 1

V cð1� XÞη
dX
dt

(42)

And for nonisothermal regimes

IðX ,TÞ ¼ β

V c

dX�

dT
¼ β

V c

1
ð1� XÞη

dX
dT

(43)

In order to understand how this interpretation departs from
KJMA analysis, Figure 13 shows application of Equation (42) to
theoretical KJMA curves for different values of the Avrami
exponent (n > 1, indicating increasing nucleation rate). For
n ¼ 1, both interpretations are fully coherent and in this case
the classical Koistinen–Marburger[103] equation to determine
the amount of remnant austenite in quenching experiments
can be justified.[104,105] For n > 1, an apparent increase in the
nucleation rate would be appreciated or vice versa (i.e., transfor-
mation for which nucleation increases would show effective
Avrami exponent above 1). Fitting curves of Figure 13 to straight
lines in the 0.1 < X < 0.9 range leads to a relative value of the
intercept at X ¼ 0, Ið0Þ=Ið0.5Þ, which decreases from 1 to almost
zero as n increases from 1 to 4. Moreover, the departure from
linearity of this apparent increase in IðXÞ increases as n
increases. This preliminary discussion would be helpful in
discussing the adequacy of instantaneous growth approximation
to the two cases that will be shown below.

6.3.2. Simulations Performed in the Frame of Instantaneous
Growth

In order to explore how instantaneous growth processes depart
from KJMA predictions, we have performed simulations based
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Figure 12. Size of the remnant crystallites as a function of the amorphous
fraction for mechanical amorphization of Fe70Nb30 and Fe70Zr30 alloys.
The arrows approximately indicate the corresponding transformed
fraction, Xsat

Am, at which a constant size of the remnant crystallites, Rsat,
is achieved. The horizontal lines indicate the corresponding Rsat values.
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on 2D cellular automata. We explore the transformation of a
square formed by 1000� 1000 cells using two parameters, a
constant nucleation rate, I (number of nuclei formed per step),
and a maximum linear size of the nuclei, 2D� 1 cells. In every
simulation step, a number of nucleation sites are randomly
chosen. For those sites corresponding to untransformed cells,
the nuclei grow to their maximum size, taking into account
the geometrical impingement between the contemporary and
earlier nuclei. At every iteration step, the transformed fraction
is obtained.

Figure 14 shows the simulated microstructure formed. For
low enough values of I · D2 regularly shaped crystallites can
be identified, whereas irregular crystals due to geometrical
impingement appear as I · D2 increases.

Results of the effective KJMA analysis on the simulated results
are summarized in Figure 15. This figure shows that KJMA-plot
can be generally described as a two slope curve. Effective Avrami

Figure 14. Simulated 2D microstructures in the frame of instantaneous growth processes. Upper row corresponds to a nucleation rate of
250 nuclei/steps in a 106 cells space which linearly grows 1, 2, 5, 10, 50, and 100 cells (from left to right) before a new nucleation event occur.
Lower row corresponds to nucleation rates of 1, 2, 5, 10, and 100 nuclei/steps (from left to right) which linearly grows 100 cells.
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Figure 13. Application of instantaneous growth analysis to theoretical
KJMA curves for different values of the Avrami exponent. An increasing
nucleation rate with the transformation is reproduced for effective
Avrami exponent above 1.
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row in Figure 14). b) KJMA-plots corresponding to the microstructure
developed in the upper row of Figure 14.
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exponents obtained from linear regression of KJMA-plot in the
range 0.05 < X < 0.5 lead to n � 0.93, which is close to the the-
oretical prediction of KJMA for a constant nucleation process
without growth (n ¼ 1). However, deviations appear at high
transformed fractions and n � 0.6 is found in the range
0.5 < X < 0.95.

6.3.3. Instantaneous Growth Process Applied to
Nanocrystallization

The instantaneous growth model was applied to nanocrystalliza-
tion processes.[70,71] Equation (42) and (43) were applied to

the nanocrystallization of melt-spun amorphous ribbons of
Fe60Co18Nb6B16 composition using η ¼ 1. This alloy shows, after
nanocrystallization, a microstructure formed by spherical nano-
crystals of �5 nm diameter but agglomerated in groups of
�20 nm embedded in a residual amorphous matrix (Figure 16).

Figure 17a,b shows, for as-melted ribbons, the isothermal and
nonisothermal DSC scans recorded in a Perkin-Elmer DSC7 cal-
orimeter calibrated using the melting temperatures of lead and
K2CrO4 standards, and Figure 17c shows the local Avrami expo-
nents obtained using Equation (19) and (29), respectively.
Average value of n � 0.25 from Ozawa’s method is also shown.
Combining isothermal and nonisothermal experiments is highly
recommended to determine kinetic properties as concluded

Figure 16. Bright field image (left), selected area diffraction pattern (center), and high resolution transmission electron image (right) of a nanocrystallized
Fe60Co18Nb6B16 alloy (further details in ref. [71]).
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by the International Confederation for Thermal Analysis and
Calorimetry (ICTAC).[37]

Figure 18a shows the nucleation rate I as a function of trans-
formed fraction X and, finally, Figure 18b shows the value of
I0ðXÞ assuming an Arrhenius dependence for IðX ,TÞ.
Kissinger method was used to obtain the activation energy
Q ¼ 380� 20kJmol�1 (Q ¼ 3.9� 0.2eV at�1).[106]

From KJMA analysis, isokinetic behavior can be observed and
low n values should be interpreted qualitatively as characteristic
of a strongly impinged process. In the frame of the instantaneous
growth approximation, it can be observed that isothermal nucle-
ation rate is not constant along the process but it initially
increases and then decreases. This behavior is coherent with
the values of nðXÞ, which initially increases above 1 and then
decreases below 1. The early increase in IðXÞ (nðXÞ > 1) is
ascribed to a second nucleation mechanism in the surface of
already formed nanocrystals (leading to the formation of agglom-
erates). After the maximum, the continuous decrease in IðXÞ
(nðXÞ < 1) was understood due to the depletion of the amor-
phous matrix in Fe. Although this semiquantitative analysis
agrees with the isothermal values of IðXÞ, it does not correspond
to the IðXÞ values obtained in nonisothermal conditions (see an
almost constant value in Figure 18a). This is due to the strong
effect of the exponential dependence on temperature, which
enhances nucleation rate. Moreover, the decrease in the

Avrami exponent as the transformation progresses agrees with
the previous simulations shown here.

It is worth reminding that the assignment of decreasing
nucleation rate as nI < 1 (or increasing I as nI > 1) is based
on a functional form of the nucleation rate IðtÞ ¼ ta. If this is
not the case, and nucleation rate changes during the transforma-
tion, the relationship between Avrami exponent and evolution of
IðtÞ is no longer straightforward. However, in Figure 18b a fairly
good agreement is observed for I0ðXÞ for isothermal and noni-
sothermal curves. This is found despite the simple Arrhenius
approximation used and the strong effect of Q (see dashed lines
in Figure 18b).

6.3.4. Instantaneous Growth Process Applied to Martensitic
Transformation

As an example of martensitic transition, we present the martens-
ite to austenite transformation of a Ni50.53Mn33.65In15.82
metamagnetic shape memory alloy. This system has a change
at �285 K from paramagnetic martensite to ferromagnetic
austenite on heating. Therefore, the transformation can be
registered from the change in specific magnetization σðH,TÞ
(see upper inset in Figure 19) as well as from calorimetric
measurements.[107]

Isothermal curves as a function of the applied magnetic field,
μ0H, were obtained in a Lakeshore 7407 vibrating sample
magnetometer (VSM) with LN2 cryostat.[107] Specific heat,
cP, measurements were obtained at a very slow rate
(β � 0.1 K h�1)[107] in a home-made calorimeter[108] following a
protocol that prevents the measurement of latent heat ascribed
to the transformation.[109]

Figure 19 shows Xðμ0HÞ curves from the isothermal curve
obtained at 285 K. In order to extract Xðμ0HÞ, the specific
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magnetization of both pure martensite and pure austenite phases
was estimated at 285 K. In the case of pure martensite phase, a
linear field dependence is assumed which slope was extrapolated
from the values of the slopes of the magnetization curves in the
range 265 ≤ T ≤ 275K. In the case of pure austenite phase, the
magnetization curve measured at 290 K was rescaled to the sat-
uration value of the isothermal curve at 285 K. The correspond-
ing estimated values of specific magnetization along with the
experimental isothermal curve at 285 K are shown in the lower
inset of Figure 19.

On the other hand, the ferromagnetic behavior of austenite
phase leads to an extra contribution to the specific heat
with respect to the paramagnetic martensite (see inset of
Figure 20). Therefore, an abrupt change in cP is observed in
the transition. Above 310 K, cP falls due to the Curie transition
of the austenite phase. This allows us to understand the change
of cP during the transition as a sum rule of the weighted contri-
bution of each phase: cP ¼ ð1� XÞcMP þ XcAP (superindex M and
A identify the martensite and austenite phases, respectively).
Therefore, XðTÞ can be obtained and it is shown in Figure 20.

Despite the controversy[110,111] about the athermal (nonther-
mally activated) or isothermal (thermally activated) character
of martensitic transformations, an effective KJMA analysis can
be performed. However, the meaning of the resulting parame-
ters may be out of the frame of the KJMA theory. In fact, several
kinetic models developed for martensitic transformations yield
equivalent expressions for the transformed fraction to KJMA with
effective Avrami exponents n� ¼ 1[103] and n� ¼ 2.[104]

The corresponding KJMA-plots for isothermal and noniso-
thermal curves are shown in Figure 21 for the 0.1 < X < 0.9
range. The effective Avrami exponents are n� � 3.5 for isother-
mal magnetization curve and n� � 5 for nonisothermal specific
heat curve. In both cases, the onset values were estimated to be
H0 ¼ 0T and T0 ¼ 279.5 K, respectively, using analogous equa-
tions to Equation (18) and assuming n ¼ 4. It has been discussed
above how indetermination in the onset affects, particularly at
high values of n. Moreover, we have neglected any field and/
or temperature dependence of the kinetic parameters, using
an average exponential as it was done in the case of the melting
of indium. For athermal processes, this would not be a limitation
but it should be important in the case of thermally activated

processes. In the frame of KJMA theory, a 3D interface controlled
growth with constant nucleation will be roughly in agreement
with the resulting values of n.

However, taking into account the high speed of growth in
martensitic transformations, in the frame of an instantaneous
growth, these results should just mean that nucleation rate is
increasing during the process as it is shown in Figure 22.
This figure shows the transformation rate (although with respect
to field change and temperature change, respectively) divided by
the untransformed fraction, i.e., a magnitude proportional to
IðXÞ once field change and heating rate are constant,
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Figure 20. Austenite fraction estimated from specific heat measurements.
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respectively. This increase, approximately linear, should indicate
that new nucleation sites appear in contact with the already trans-
formed regions.

This leads to an expression of the transformation rate:
dX
dt ¼ kMXð1� XÞ, which corresponds to the kinetic equation
of an autocatalytic transformation of the first order[35] which
has been used to describe the kinetics of martensitic transforma-
tion of Ni–Fe–Ga alloys.[105]

In the case of the martensite-to-austenite transformation
studied here, a KJMA process with n ¼ 4 and a first-order auto-
catalytic transformation yields similar and apparently satisfactory
descriptions of the transformation curve. However, the interpre-
tation of the data yields strongly different mechanisms depend-
ing on the model assumed. In the former case, although an
interface controlled growth is feasible in martensitic transforma-
tion, n ¼ 4 also implies a constant nucleation rate without no
activation of new nucleation sites and a 3D growth despite the
lath structure of martensitic samples. Moreover, the problem
arises when we consider the growth rate of martensitic transfor-
mations, which is in the order of hundreds of meters per second.
This high speed implies that our acquisition time (�20 and 720 s
in the magnetic and specific heat measurements) is much larger
than the time an austenite region grows to its final size.
Therefore, the interpretation of instantaneous growth, which
has been classically used[112–114] would be more convenient to
describe the process assuming that new nucleation sites are acti-
vated as the transformation progresses, probably ascribed to the
boundary of the formed regions where new dislocations are
formed to store the elastic energy and those dislocations are
expected to act as heterogeneous nucleation sites.[110,113] In fact,
reported slow growth rates extracted from kinetic analysis could
be an artifact from imposing an inappropriate kinetic model such
as KJMA.

7. Conclusions

KJMA theory is broadly used to interpret the kinetics of transfor-
mation in solid state in many different cases. However, a consid-
erable number of them are beyond the applicability conditions.
Understanding the restrictions allows us to interpret whether a
physical meaning of the Avrami exponent is straightforward
or not.

Even for those ideal processes following KJMA theory,
determination of experimental parameters, particularly the
induction time, is critical to obtain the correct Avrami exponent.

Taking into account an Arrhenius-like temperature depen-
dence for the frequency factors, a direct extension to nonisother-
mal regimes works well for processes with Avrami exponent
close to 1. For processes with a small temperature span, assum-
ing an average frequency factor may lead to fair local values of n
at low transformed fractions.

Despite decelerated growth processes, such as diffusion con-
trolled one, are out of the KJMA theory and lead to overgrowth
artifact, our simulations show that deviations are small and
KJMA theory is a fairly good approximation to describe diffusion
controlled growth processes.

In addition, some strategies for recovering parameters with
physical meaning from KJMA analyses are proposed. Finally,

when growth process is not registrable, interpretation of the data
in the frame of an instantaneous growth approximation allows us
to analyze the nucleation rate.
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