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Abstract: To realize a carbon negative power production technology, it is interesting the option of
coupling a Chemical Loping Combustor to a gas turbine. The development of this technology foreseen
in the project GTCLC-NEG has some technical barriers, the most important of which is the operation
of the chemical looping combustor at high temperature and high pressure conditions. To overcome
these limits CFD modeling can be performed to optimize the behavior of the combustor and its design
process. This work models the FUEL reactor of a chemical looping combustion plant working in
batch mode and based on the reactor available at the Instituto de Carboquimica in Zaragoza, Spain.
It is used an oxygen carrier mainly based on 60% mass Fe2O3 and 40% mass Al2O3. Biomethane is
fed to the bottom of the fluidized bed with different velocities and mass flows and the composition of
the gases at the outlet of the fuel reactor is measured. The results show that it is possible to model a
2 min duration reduction cycle by running the model for a time comprised between a minimum of
4 h and a maximum of 2 days of simulation. Another important result is the modeling of the chemical
reactions happening in the reactor. Kinetics is modelled based on Activation energy (66 kJ/mol) and
Pre-exponential factor (4.34 × 101 m3n mol−n s−1). The simple kinetic scheme gives reasonable first
approximations and can be used to determine the duration of the reaction, the composition of the
exhaust gases and the biofuel conversion.

Keywords: CFD; fluidized bed; air reactor; chemical looping; combustion; biomethane; carbon
negative technologies

1. Introduction

The Power Sector is undergoing a rapid technological change with respect to im-
plementation of low carbon technologies. The IEA Energy Outlook [1] shows that the
investments in Renewables for the first time are equal to those on the fossil sources. It
is likely that the conventional gas turbines and internal combustion engines will need
to be integrated in systems employing biofuels and/or CCUS (Carbon Capture Usage
and Storage). In addition, the European Union is moving rapidly towards low carbon
technologies (i.e., Energy Efficiency, Smart Grids, Renewables and CCUS), see the Energy
Union Strategy [2].

In this context a Marie Curie project has been funded in the Spanish National Research
Council (CSIC), Instituto de Carboquimica (ICB) named GTCLC-NEG which objective is
to promote a Carbon Negative Technology, able to burn multiple biofuels derived from
biomass (e.g., pyrolysis oil, biogas and syngas) and to capture the CO2 emissions at a very
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low cost. In this way there will be negative GHG emissions, due to the use of BECCS
(Bioenergy with Carbon Capture and Storage), a technology which is going to play an
important role in the design of future energy systems, according to IPCC scenarios [3].

One of the most critical aspects of the technology is the operation of the Chemical
Looping Combustor at high pressures. This has been rarely carried out on the large scale,
for this reason the modeling of the reactor and of the chemical reactions that happen during
pressurized chemical looping combustion appears to be of scientific interest [4].

Effective models have been already developed at 0D level in the Instituto de Carbo-
quimica [5], these are based on the Shrinking Core Model (SCM) which is widely adopted
in literature to describe the oxygen carrier behavior. In addition, CFD models have been
developed by [6–29]. Nevertheless, the effect of pressure on the CLC process has not yet
been fully described and experimented at pilot and industrial scale.

Advancement on CFD Models on Chemical Looping Combustion

A recent review on CFD modeling of fluidized beds further underlines the complexity
of this field [30]. This paper aims at presenting an innovative and simple approach, respect
to the different strategies which can be found in the literature, to model the fuel reactor
with CFD software with improved kinetic constants. The main research groups working on
CFD modeling of Chemical Looping Combustion are cited in Table 1.

Table 1. Most significant works on CFD modeling of Chemical Looping Combustion, Gasification
and Reforming.

Group Source Software DEM

Leeds Uni, IFP Energies Nouvelles
and Total [6] ANSYS FLUENT and

EDEM Yes

Singapore NUS [7] N.R. No
HUST, China [8] CPFD No

Nanjing [9] ANSYS FLUENT No
SINTEF [10] PFC3D Yes

Washington University [11] ANSYS FLUENT Yes
Masdar Institute of Science

and Technology [12] ANSYS FLUENT No

TU Darmstadt [13] ANSYS FLUENT No
Imperial College [14] ANSYS FLUENT No

NETL [15] Barracuda No
University of New South Wales [16] ANSYS FLUENT No

Harriot Watt University [17] MFIX No
CPFD Software [18] Barracuda-VRTM No

Indian Institute of Technology [19] ANSYS FLUENT No
The University of Nottingham [20] ANSYS FLUENT No

The University of Newcastle (Australia) [21] ANSYS FLUENT Yes
Harbin Institute of Technology [22] K-FIX No

Zhejiang University [23] MFIX No
University of Utah [24] Barracuda-VRTM No

IMFT Tolouse, TU Wien [25] NEPTUNE_CFD No
The University of Western Ontario [26] Barracuda-VRTM No

KAIST [27] ANSYS FLUENT No
University of North Dakota [28] MFIX No

In [6] a CFD-DEM model is realized to study the particles motion inside a cyclone
and their interaction with the walls. This is a particularly important theme if inserted
in the GTCLC project framework, where cyclones need to have very high efficiency to
avoid particles entrainment in the flow of exhaust gases exiting the air reactor. In this
model particular attention is also given to attrition, which is another factor which can
contribute to the generation of fine dispersed metal particles in the treated gases. In [7]
a CFD model is presented in which also chemical reactions are integrated, describing
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biomass pyrolysis (primary and secondary reactions), char gasification, water-gas shift
and metal oxide reduction. Biomass thermal behavior when used in a CLC process, is
also important for the GTCLC-NEG project, but in the case of this specific paper it was
decided to deal with biomethane to simplify the reaction scheme and calibrate the model
with previous experiments performed on CH4 Chemical Looping Combustion. The work
of [8] uses the software CPFD to model an entire CLC plant, comprehending both: the
fuel reactor and the air reactor and working with coal. The validation of the model is
performed using the pressure sensors of the plant. The model is used to optimize the fuel
reactor operation, but limited validation is performed comparing model results with the
analysis of exhaust gases produced from the reduction process. Contrary to what is done
in [8], in this paper the validation is based on the comparison of the concentrations (in
mass and volume) of the gases exiting the fuel reactor. This is due to the interest they have,
in particular because they can be used to calculate fuel conversion and carbon dioxide
production yields. In the work of [9] both the hydrodynamics and the chemical reactions
of the fluidized bed are taken into account. The hydrodynamics it is modelled with the
energy-minimization multi-scale (EMMS/matrix) model. Furthermore, heat exchange
between the gaseous and the solid phase is taken into account. The validation in this
case focuses the attention on the voidage, on the temperature profile and on the gaseous
products concentrations measured in the riser (which is the vertical part of the reactor). In
the work of [10] a 3D CFD-DEM is used to optimize the design of packed bed reactors. The
validation of the complex CFD model has been carried out referring mainly to empirical
equations. Banerjee et al. [11] mainly worked on another CFD/DEM model applied to
coal chemical looping combustion. In this work the chemical reactions are treated in detail
recurring to a complete kinetic scheme of the combustion reactions. In this case the kinetic
scheme, is derived from the work of [31]. In this last work the aspect of validation seems
less important. In the work of [12] attention is focused on bubble hydrodynamics and
diameter. In this model turbulence is simulated based on the k-epsilon turbulence model.
The approach to treat the multiphase model is similar to the one adopted also in this work
and is based on an Eulerian approach. Same approach is the one adopted also by [13]. The
work of Kruggel-Emdem et al. [14] presents a complex CFD model implemented in ANSYS
FLUENTTM which takes into consideration the chemical reactions which happen to the
oxygen carrier and models them with a reduced number of reactions which constants are
mainly taken from literature. In their work Breault et al. [15] present a CFD model realized
in the software Barracuda, which is based on the method called multiphase particle-in-cell
(MP-PIC). This is an approach to model particle behavior which is completely similar to the
so-called Eulerian-Lagrangian approach. The validation of the model is performed using
the data derived from a 50 kWth plant and in particular methane conversion efficiency is
taken as one of the key parameters to validate the model.

The work of [16] presents a 3D Euler-Euler model of a coal burning facility. The model
is based on a Two-Fluid approach using the standard kinetic theory of granular flow. In
another work of the Hariot Watt University [17] the fuel reactor is first modelled with a
MFIX CFD software (which is the same as that used in this work) and then the knowledge
gained with the CFD simulation is used to control the whole CLC plant model, performed
in ASPEN. As said the approach is similar to what will be implemented in the GTCLC-NEG
Marie Curie project, managed by ICB-CSIC. The difference between the work performed at
Herriot Watt University and the current work is that the type of catalyst is used in ref. [17]
is mainly represented by Nickel, while in this work we use iron adsorbed in alumina. The
reaction of methane with iron can be considered more simple that that of methane with
nickel, because in the first case methane reforming can be neglected.

In the work of Parker et al. [17] the software Barracuda is also used to model a chemical
looping combustion system. The entire plant mesh is constituted by 166,000 cells and the
simulation is developed in transient conditions and models a period of the length of about
50 s. Barracuda, as said before is a modeling software which is based on a Euler-Lagrangian
approach. It was designed to analyse multiphase problems where the fluid phase and the
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particles phase are encountered. The scale of Barracuda models is more often industrial,
while this work is mainly focused instead on lab scale equipment. Barracuda VR is based on
the CPFD (Computational Particle Fluid Dynamic) method. The advantages of Barracuda
software are the following:

- it is capable to model full particle size distribution (PSD) for all the solid species;
- it offers the possibility to model any solid load, from very diluted to packed (i.e.,

higher than 60% concentration in volume);
- can perform complete Lagrangian calculations for the solids, the mass, momentum,

heat transfer and wear;
- it has the possibility to model systems with more than 1E16 particles;
- it can perform calculation of chemical reactions, specifically for each particle it provides

highly accurate results, because they are dependent from the composition, temperature
and size of each particle.

Menon et al. [19] present in their work a 2D model realized in ANSYS FLUENTTM

(Canonsburg, PA, USA), simulating a fuel reactor fed with coal. The reaction scheme is
mainly taken from literature and the model implemented is based on Euler-Euler approach.
Chen et al. [20] in their work present a 3D model of the fuel reactor. The approach is always
Elulerian-Eulerian (i.e., the two fluids model). The equations are closed with the kinetic
theory of granular flow (KTGF). The chemical kinetic model is based on TGA experiments
mainly performed at the Instituto de Carboquimica in Zaragoza, Spain [32–34]. The kinetic
parameter determination is based on the shrinking core model (SCM), as also reported
in refs. [5,32,35]. The oxygen carriers taken into account are mainly cu-based. In [21] the
authors perform a CFD-DEM study of the circulation rate. In this way assuming cold flow
CFD software can be used to optimize the circulation rate of the reactor and so to optimize
its design parameters. Shuai et al. [22] simulate the hydrodynamics and also chemical
reaction kinetics of a fuel reactor using k-FIX, which is a precursor of MFIX software,
choosing the total variation diminishing method (TVD) scheme to solve the equations.
The work of [23] assumes a particularly interesting meaning, if compare with the work
presented in this paper, because it shows which could be the future developments, after
the simulation and optimization of the batch fuel reactor. Continuous process in fact will
have to be studied. In this case a whole plant comprising of FUEL reactor and air reactor
is modelled using MFIX software. The approach adopted is Euler-Euler (i.e., two fluids).
The validation of the model is based on the concentration of the gases exiting the reactors,
this is a similar approach to the one adopted in this paper. Chemical reactions are also
modelled and it is used a kinetic triplet available in the literature. Reinking et al. [24] in
their model use again BarracudaTM (CPFD Software Sulzer Pumps USA, Houston, TX,
USA) to simulate a continuous industrial plant. No significant differences exist with respect
to the already presented works. The work of Hamidouche et al. [25] presents a comparison
between 0D and 2D models. In [26] again BarracudaTM software (CPFD Software Sulzer
Pumps USA, Houston, TX, USA) is used to model a plant at industrial scale. The length
of the time period which is modelled is about 60 s. In [27] a model realized in FLUENT
is presented and it is solved with Phase-Coupled SIMPLE (PC-SIMPLE) algorithm that is
applied for the pressure-velocity coupling and correction. Finally in [28] a spouted bed
reactor is studied. It is modeled with a Eulerian-Eulerian approach, based on the twin fluid
model implemented in MFIX software. The parameters investigated to understand their
influence on the reactor behavior were the following: bed height, draft tube height from the
bottom, draft tube internal diameter, spout diameter, spout velocity, background velocity.
Where the draft tube is a tube inserted in the middle of the reactor to grant the generation
of the spout.

2. Materials and Methods
2.1. GTCLC-NEG Plant Description

The proposed plant is based on the coupling of a Chemical Looping Combustor to a
gas turbine, as reported in Figure 1.



Processes 2022, 10, 588 5 of 28

Processes 2022, 10, x FOR PEER REVIEW 5 of 27 
 

 

background velocity. Where the draft tube is a tube inserted in the middle of the reactor 
to grant the generation of the spout. 

2. Materials and Methods 
2.1. GTCLC-NEG Plant Description 

The proposed plant is based on the coupling of a Chemical Looping Combustor to a 
gas turbine, as reported in Figure 1. 

 
Figure 1. GTCLC-NEG plant layout. 

As it can be seen in the proposed plant the compressed air used to oxidize the oxygen 
carrier in the air reactor is then expanded in a gas turbine to produce electricity. In the fuel 
reactor biofuels (in this case biomethane) are used to reduce the oxygen carrier. Possible 
technical barriers of the proposed plant are the following: (1) oxygen carriers with high 
oxygen transport capacity are needed; (2) low attrition rate oxygen carriers are needed, 
which can work in extreme conditions; (3) kinetics aspects under high pressure and tem-
perature conditions are not known; (4) reactor injection system has to be adapted to dif-
ferent types of biofuels (gaseous, liquid and solid biofuels); (5) the use of the hot air pro-
duced from the air reactor (see Figure 1) in a gas turbine has to be optimized; (6) exhausts 
should be filtered to retain the dust released by oxygen carrier attrition; (7) high electrical 
efficiency of the power system has to be granted and (8) high fuel conversion in the com-
bustor has to be achieved [35–37]. 

2.2. Batch Reactor Characteristics 
The geometric parameters of the reactor are shown in Figure 2. The used oxygen car-

rier is shown in Figure 3. We see from Figure 2 that for the modeling it is considered only 
the “active” part of the reactor, which is the one which is right above the gas injection part. 
This has a diameter of 56 mm and a height of 470 mm. The height of the bed is 10 mm. 
Another important thing to note is that the inlet of the gas is locate at the bottom of the 
reactor and together with methane also nitrogen is inserted with a volumetric ratio of 70% 
nitrogen and 30% methane. 

Figure 1. GTCLC-NEG plant layout.

As it can be seen in the proposed plant the compressed air used to oxidize the oxygen
carrier in the air reactor is then expanded in a gas turbine to produce electricity. In
the fuel reactor biofuels (in this case biomethane) are used to reduce the oxygen carrier.
Possible technical barriers of the proposed plant are the following: (1) oxygen carriers
with high oxygen transport capacity are needed; (2) low attrition rate oxygen carriers are
needed, which can work in extreme conditions; (3) kinetics aspects under high pressure
and temperature conditions are not known; (4) reactor injection system has to be adapted
to different types of biofuels (gaseous, liquid and solid biofuels); (5) the use of the hot
air produced from the air reactor (see Figure 1) in a gas turbine has to be optimized;
(6) exhausts should be filtered to retain the dust released by oxygen carrier attrition;
(7) high electrical efficiency of the power system has to be granted and (8) high fuel
conversion in the combustor has to be achieved [35–37].

2.2. Batch Reactor Characteristics

The geometric parameters of the reactor are shown in Figure 2. The used oxygen
carrier is shown in Figure 3. We see from Figure 2 that for the modeling it is considered
only the “active” part of the reactor, which is the one which is right above the gas injection
part. This has a diameter of 56 mm and a height of 470 mm. The height of the bed is 10 mm.
Another important thing to note is that the inlet of the gas is locate at the bottom of the
reactor and together with methane also nitrogen is inserted with a volumetric ratio of 70%
nitrogen and 30% methane.
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2.3. Mesh Characterization

The mesh is characterized by about 14,000 rectangular cells of the following dimen-
sions:

- x: 7.00E-4 m
- y: 2.61E-03 m.

A more refined mesh with 30,000 cells has also been realized, to perform a sensitivity
analysis on the influence of the mesh refinement grade on the final results. The Parameters
of the two final meshs are proposed in Table 2.

Table 2. Mesh characteristics.

Mesh< Mesh>

Scalar Standard Cells 14,000 30,000
Aspect ratio of scalar standard cells 1 1

From Table 2 it can be seen that all the cells are 100% scalar standard cells, which avoid
overlapping each other and cutting each other. Furthermore, in both cases the aspect ratio
of the cells is equal to 1 (which is the optimal value).

MFiX® software uses a meshing method different from the common ones. Specifically,
it uses the FAVOR (Fractional Area/Volume Method). Which is a full orthogonal meshing
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method. FAVOR can model complex geometric regions with simplicity. In the case of
meshes done in alert zones (i.e., in areas with large geometrical variations, such as areas
with curves or very small structures) no trouble appears, due to the fact that when these
difficulties appear the created cells are cut, and the centroid is moved to a new position. In
Figure 4 the used mesh is shown.
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2.4. The CFD Model

Based on the approach which is also shown in the work of Porrazzo et al., 2016 [17],
the continuum flow solver in open-source code MFIX 21.2, which is a multi-fluid Eulerian–
Eulerian code, with each phase treated as an interpenetrating continuum was used in this
study. Mass and momentum conservation equations are solved for the gas and solids
(i.e., particulates) phases, with kinetic granular theory providing the appropriate closure
relations [38].

In kinetic granular theory, a granular temperature, proportional to the mean square of
the random particle velocity based on the Maxwellian velocity distribution, is defined to
model the fluctuating energy of the solid phase. Instead of solving a differential equation
for granular temperature, an equilibrium between its generation and dissipation is assumed
and an algebraic relationship, see Equation (19), is used. Using this simplified algebraic
form of the granular temperature equation has negligible effect on numerical results but
saves the computational time greatly, compared to solving the full partial differential
equation. Constitutive relations for the solids phase stress tensor are based on the kinetic
theory [39,40]. For the dense gas–solids flow considered in the current study, turbulence of
the gas phase is not of primary concern, as particle–particle collisions dominate the flow,
hence at the beginning it was taken the decision to avoid the use of turbulence models. In a
second moment it was decided to perform a sensitivity analysis on the k-epsilon model
by just comparing the results obtained without k-epsilon with those obtained using the
k-epsilon model.

The widely used drag correlation proposed by Gidaspow, 1994 [39] which is a combi-
nation of Wen and Yu [41] and Ergun [42] correlations is used to describe the interphase
interaction between gas and solids. The main governing equations solved in MFIX 21.2
are summarized in the following paragraph. More details on theory and numerical tech-
niques in MFIX can be found in [43] (see also Benyahia et al., 2012 [44], Syamlal, 1998 [45],
Syamlal et al., 1993 [46]). The list of the main equations used in the model is presented as
follows and it is taken by [38].
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Governing Equations

(a) Continuity Equations

∂

∂t
(
εgρg

)
+∇

(
εgρg

→
Vg

)
= 0 (1)

∂

∂t
(
εpρp

)
+∇

(
εpρp

→
Vp

)
= 0 (2)

(b) Momentum equations
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Governing Equations

(a) Gas stress tensor
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(b) Solid stress tensor
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5

η(3η − 2)g0εp

)
+

3
5

ηµb

]
(10)

µ∗p =
εpρpΘpg0µ

εpρpΘpg0 +
2βµ
εpρp

(11)

µ =
5
96

ρpdp

√
πΘp (12)

µb =
256
5π

µε2
pg0

(13)

η =
1 + e

2
(14)

=
σp, f ric = −Ps, f ric

(
=
I − sin Φ√

I2D

=
Dp

)
(15)

µ f ric =
Ps, f ric sin Φ

2
√

I2D
(16)
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Ps, f ric =

 1024
(

εp − ε∗p

)2
εp > ε∗p

0 εp > ε∗p
(17)

(c) Granular temperature

Θp =


−
(
K1εp + ρp

)
Tr

(
=
Dp

)
2K4εp

+

√(
K1εp

)2Tr2
(

=
Dp

)
+ 4K4εp

[
2K3Tr

(
=
D

2

p

)
+ K2Tr2

(
=
Dp

)]
2K4εp


2

(18)

K1 = 2(1− e)ρpg0 (19)

K2 =
4

3
√

π
dpρp(1 + e)g0εp −

2
3

K3 (20)

K3 =
dpρp

2

{ √
π

3(3− e)

[
(3e + 1)

2
+

2
5
(1 + e)(3e− 1)g0εp

]
+

8εp

5
√

π
g0(1 + e)

}
(21)

K4 =
12
(
1− e2)ρgg0

dp
√

π
(22)

g0 =
1− 0.5εp(
1− εp

)3 (23)

(d) Inter-phase momentum exchange

Igp = β

(→
Vg −

→
V p

)
(24)

β =


150

ε2
pµg

εgd2
p
+ 1.75

εpρg

∣∣∣∣→V p−
→
V g

∣∣∣∣
dp

i f εp > 0.2

3
4 Cdεg − 2.65

εpεgρg

∣∣∣∣→V p−
→
V g

∣∣∣∣
dp

i f εp 5 0.2

(25)

Cd =

{
24

Re·εg

(
1 + 0.15

(
Re·εg

)0.687
)

0.44 i f Re·εg = 1000
i f Re·εg < 1000 (26)

Re =
ρg

∣∣∣∣→V p −
→
Vg

∣∣∣∣dp

µg
(27)

In particular, the list of equations above, indicates the most important phenomena
which regulate the hydrodynamic aspects, but also heat transfer processes have to be
considered and also:

- the conservation of internal energy;
- the conservation of granular energy;
- the boundary conditions (with particular attention to the wall heat transfer phenomena).

For a detailed analysis of these phenomena the following document has to be consid-
ered: [46].

2.5. The Modeling Platform

The modeling platform is shown in Figure 5 and it is based on the MFIX 21.2 code
developed by NETL.
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The 2D model implemented in MFIX 21.2 code is based on the Eulerian–Eulerian
approach. Gas and solid phases are considered as continuum phases in the domain under
investigation. The solid phase is characterized by uniform spherical particles of constant
mean density and diameter. Continuity and momentum equations in two directions
(x and y) are solved for both phases and the exchange of mass and momentum between
them is taken into account. If the hydrodynamic model of the reactor is modeled with
MFIX 21.2 software (NETL US DOE, Houston, TX, USA), the kinetic part is simulated
with a User Defined Function (UDF) specifically determined from the model developed by
Cabello et al., 2014 [47]. The modeled oxygen carrier is prepared by impregnation of iron
on alumina and the kinetic is determined in a TGA by modeling particle reaction through
the Shrinking Core Model (SCM). The the physical properties and the kinetic properties of
the oxygen carrier are proposed in Table 2. The oxidation reaction is shown in Equation (1)
and the reduction reaction is shown in Equation (29).

4. Fe3O4 + O2 → 6Fe2O3 (28)

12. Fe2O3 + CH4 → 8Fe3O4 + CO2 + 2H2O (29)

The fuel used is assumed to be biomethane, because the technology to be developed
is a carbon negative emissions technology. The results obtained by the simulation are
then elaborated in the ParaView (Sandia National Laboratories, Kitware Inc., Los Alamos
National Laboratory, Los Alamos, NM, USA) Environment, which is open source. Both
ParaView and MFIX 21.2 are operated in Linux. This gives the possibility to access with
more detail the codes of MFIX 21.2, which GUI is coded in python while the model is coded
in Fortran. The simulations will also use the computational cluster of CSIC TRUENO, which
is equipped with 16 processors, has 64 GB RAM of memory and works with OPEN-MPI
parallelization.

2.6. The Modeling Conditions

Oxygen carrier properties are shown in Table 3, while the modeling conditions are
shown in Table 4. We can see that in Table 3 the support is called “promoting support”,
instead of “inert support”. It is believed in fact that alumina is reacting with iron and
modifies it to enhance its oxygen transport properties. As reported in ref. [48] alumina
could have a role on the formation of oxygen vacancies, which promote the oxygen carrier
properties of the adsorbed iron.
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Table 3. Oxygen carrier properties [47].

Parameter Value Unit of Measure

Oxygen carrier Fe2O3 -
Promoting Support Al2O3 -

Total Fe2O3 content 1 20 wt%
Average Particle size 200–400 µm

Particle density 3950 kgm−3

Porosity 50.5 %
BET 39.1 m2/g

Order of reaction 0.25 -
Pre-exponential factor kinetics 4.34 × 101 m3nmol−ns−1

Activation energy kinetics 66 kJ/mol
Oder of diffusion - 0

Pre-exponential factor diffusion 9.80 × 1030 m3nmol−ns−1

Activation energy diffusion 672 kJ/mol
1 Determined by ICP-AES.

Table 4. Modeling conditions.

Parameter Value Unit of Measure

Temperature 950 ◦C
P 1 atm
D 56 mm
h 470 mm
u0 0.10 m/s
ε 0.5 -

Bh (bed height) 10 mm
Wall thermal behavior Adiabatic -

Grid size 14,000 cells
Solver Two-fluid model (MFIX-TFM) -

Drag model Syamlal-O’Brien -
C1 0.8 -
D1 2.65 -

Momentum formulation Model A, See Abanades et al. 1993 [49] -
UDF User Defined Function -

Thermal conductivity of solids Bauer and Schlünder -
Diffusivity Dilute mixture approximation (air) -

Pressure outlet “Pressure Outflow” 1.0132e + 05 Pa

The reactor diameter and height have been already presented in Figure 2. The data
reported in Table 3 have been measured at the Instituto de Carboquimica, Zaragoza, Spain.
For this purpose, different techniques have been adopted. The total iron content has been
measured using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with
a Jobin Yvon 2000 spectrometer (HORIBA Jobin Yvon, Kyoto, Japan). The mean particle
diameter was measured with laser diffraction technique, according to the ISO 13320 using a
LS 13320 Beckman Coulter equipment (Beckman Coulter, Pasadena, CA, USA). The skeletal
density of the particle was determined with a helium pycnometer Micromeritics Model
AccuPyc II 1340 (Micromeritics, Norcross, GA, USA). The crushing strength of the particle
was determined with a Shimpo FGN-5X measuring machine (ELECTROMATIC Equip’t Co.,
Lynbrook, NY, USA). Porosity was measured through Hg intrusion using a Quantachrome
Pore-Master 33 instrument (Quantachrome, Boynton Beach, FL, USA). Specific surface
of pores was determined instead using a Brunauer-Emmet-Teller (BET) method, through
adsorption/desorption in nitrogen at 77 K in a Micrometrics SAP-2020 (Micromeritics
Inc., Norcross, GA, USA). Crystalline structure of the oxygen carrier was determined by
powder x-ray diffraction (XRD) in a Bruker AXS D8 advance system (Bruker Inc., Billerica,
MA, USA). The reducibility of the Fe-based oxygen carrier particles was determined with
temperature-programmed reduction (TPR) experiments in an AUTOCHEM II, apparatus
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produced by Micrometrics (Micromeritics Inc., Norcross, GA, USA). Kinetic parameters
have been determined instead in a TGA CI Electronics type, described in [50]. From Table 3
it can be seen that the reactor temperature is set to 950 ◦C, this is obtained by inserting a
hot flow of methane from the bottom of the reactor which heats up all the internal part
of the reactor, exchanging heat with the particles of the bed and the produced gases. The
heat of the incoming gases is used also to supply the heat needed to perform the reduction
reaction. The height of the bed in the reactor is about 10 mm, the wall is supposed to be
adiabatic. As already said an initial grid size of 14,000 cells was chosen. Then a sensitivity
analysis on grid size was performed working with 30,000 also. The settings used for the
MFIX software are quite conventional, the only thing to note is the use of a UDF (User
Defined Function) to provide the reaction chemistry.

2.7. The Solver and Convergence Parameters

According to the document “MFIX Documentation Numerical Technique” [45], the
transport equation contains convection and diffusion terms which are discretized using
second order accurate discretization schemes. These are mainly based on the “universal
limiter” as proposed by [51].

The two equations of diffusion and convection represent the transient terms, these
two differential equations are used to produce an algebraic equation, which is integrated
over a control volume. The parameters for discretization are shown in the numerics section
of the software, see Table 5.

Table 5. Discretization parameters.

Temporal Discretization Implicit Euler -

Spatial discretization
Scheme Relaxation factor

Gas pressure First-order upwind 0.8
Volume fraction First-order upwind 0.5
U-momentum First-order upwind 0.5
V-momentum First-order upwind 0.5
W-momentum First-order upwind 0.5

Energy First-order upwind 1.0
Mass Fraction First-order upwind 1.0

Granular Energy First-order upwind 0.5
Scalar/k-ε First-order upwind 0.8

DES diffusion First-order upwind 1.0

An extension of SIMPLE [52] is used for solving the discretized equations. Several
issues need to be addressed when this algorithm, developed for single phase flow, is
extended to solve multiphase flow equations. In the work [53] three main issues are listed:

(i) There are more field variables, and hence more equations compared with single
phase flow. This slows the computations, but does not in itself make the algorithm any
more complex.

(ii) Pressure appears in the three single phase momentum equations, but there is no
convenient equation for solving the pressure field. The crux of SIMPLE algorithm is the
derivation of such an equation for pressure—the pressure correction equation. The pressure
corrections give velocity corrections such that the continuity equation is satisfied exactly
(to machine precision). There is no unique way to derive such an equation for multiphase
flow, since there is more than one continuity equation in multiphase flow.

(iii) The multiphase momentum equations are strongly coupled through the momen-
tum exchange term. Making this term fully implicit for the success of the numerical scheme
is essential. This is the main idea in the Implicit Multifield Field (IMF) technique presented
in [54], which is encoded in the K-FIX (Kachina- Fully Implicit Exchange, Los Alamos
National Laboratory, Los Alamos, NM, USA) program of [55]. In the MFIX algorithm
the momentum equations are solved for the entire computational domain. To make the



Processes 2022, 10, 588 13 of 28

exchange term implicit all the equations for each velocity component (e.g., u-equations for
gas and all solids’ phases) must be solved together, which leads to a nonstandard matrix
structure. A cheaper alternative is to use the Partial Elimination Algorithm (PEA) of [53].
The parameters used for the solver are shown in the numerics session. BICGSTAB solver,
which stands for, Conjugate Gradient(CG), Bi-Conjugate gradients stabilized (BiCGStab) is
used to solve the linear systems, see [56,57] (see Table 6).

Table 6. Settings for the solver.

Solver Iterations Tolerance

Gas pressure BICGSTAB 20 0.0001
Volume fraction BICGSTAB 20 0.0001
U-momentum BICGSTAB 5 0.0001
V-momentum BICGSTAB 5 0.0001
W-momentum BICGSTAB 5 0.0001

Energy BICGSTAB 15 0.0001
Mass fraction BICGSTAB 15 0.0001

Granular energy BICGSTAB 15 0.0001
Scalar/κ-ε BICGSTAB 15 0.0001

DES diffusion BICGSTAB 10 0.0001

The preconditioner parameters are shown in Table 7.

Table 7. Settings for the preconditioner.

Preconditioner Sweep

Gas pressure Line relaxation Red-black sweep
Volume fraction Line relaxation Red-black sweep
U-momentum Line relaxation Red-black sweep
V-momentum Line relaxation Red-black sweep
W-momentum Line relaxation Red-black sweep

Energy Line relaxation Red-black sweep
Mass fraction Line relaxation Red-black sweep

Granular energy Line relaxation Red-black sweep
Scalar/κ-ε Line relaxation Red-black sweep

DES diffusion Line relaxation Red-black sweep

The time step for the iterations of the model is 1.0E-03. The various numerical parame-
ters used to solve the case are reported in the Numerics section. This describes:

- residuals: these are the criteria used for convergence for each type of equation, as well
as the maximum number of iterations and residuals normalization options;

- discretization: defines temporal, special discretization schemes and relaxation factors
for each equation;

- linear solver: defines the linear equation solver, tolerance and maximum number of
iterations for each equation;

- preconditioner: defines the preconditioner options for each equation;
- advanced: defines less common parameters, such as the maximum inlet velocity factor,

drag and IA theory under-relaxation factors and fourth order interpolation scheme.

Advanced parameters for the simulation are shown in Table 8. The chosen residuals
input values are reported in Table 9.
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Table 8. Advanced setting.

Maximum Inlet-Velocity Factor 1

Dilute threshold 0.0001
Minimum tracked solids volume factor 1E-08

Skip continuing residuals if volume fraction below 1E-07
Drag under-relaxation factor 1.0

IA theory conductivity under-relaxation factor 1.0

Table 9. Residuals input values.

Parameter Value

Maximum iterations 50
Fluid normalization 0.0

Fluid pressure correction scale factor 10.0
Solids normalization -

Solids volume fraction correction scale factor 10.0
Maximum residual at convergence

Continuity + momentum
Energy
Species

Granular energy
Scalar κ-ε

0.001
0.0001
0.0001
0.0001

Maximum residual for divergence 10,000.0

3. Results

In Figure 6 it is shown the trend of the gas velocity magnitude. This is the typical value
which can be derived also by the 0D or 1D models developed in the group of gasification
of the Instituto de Carboquimica, CSIC in Zaragoza.
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Trends similar to that produced in Figure 6 can be obtained also with 0D software,
such that developed by [5]. In [5] we see for example the representation of the trend
of the composition of the gases throughout the reactor which qualitatively confirms the
trends shown in this work. In another publication [58], always realized by the group of the
Instituto de Carboquimica, we have a clear idea of what is instead the trend of the velocity
inside the reactor. The model is applied in that case to a plant of the thermal power of
100 kWth. The reactor, compared to the one which is taken into consideration in this study
has a height of 5 m and we see that the value of the velocity goes increasing from a starting
value of 1 m/s to a final value of 4 m/s (after touching a peak of 5 m/s). In the results
presented in Figure 6 we see that the final values are much lower, but this can depend on
the smallest scale of the reactor and reduced height. What we see is that with the CFD
software we can measure many oscillations that with 1D models may be not tracked. In
both cases a big influence in the flow is exerted by the bed, which fills the reactor and is
responsible for the oscillations.

Another 1D model that indicates the trend of the velocity inside the reactor is that
shown in [59]. A similar trend of velocities as in [58] is reported. It can also be noted that
the velocity is influenced by the gas conversion, which in this case is different between the
2 reactors modelled in [58,59] and this work.

As it can be seen from Figure 7, despite the inlet temperature of the gas is set to 950 ◦C
the fact that the iron and the reactor temperature at the second equal to zero are set at
ambient temperature, implies that the average temperature inside the reactor reaches after
120 s an average value of about 750 ◦C.

In Figure 8 the average numbers of the gas velocity inside the reactor are shown. The
data represent the average at each point in time of all the values of velocity which have
been calculated in the different cells of the geometrical model.

In Figure 9 it is reported the average volumetric flow inside the reactor. This is
calculated based on the average gas velocity inside the reactor, by applying the following
script (which has been inserted in ParaView calculator tool, Sandia National Laboratories,
Kitware Inc., Los Alamos National Laboratory, Los Alamos, NM, USA):

mag(Gas Velocity)×D2× π/4× 1000× 60 (30)

the Gas Velocity variable is a vector, for this reason it is required to perform the module of it
(see the command “mag”). D is the diameter expressed in meters (the value in millimeters
is reported in Table 5). The value is multiplied for 1000 to convert from cubic meters to
liters and then it is divided for 60 to convert from seconds to minutes, so the final unit of
measure of L/min is obtained.

In Figure 10 the mass fraction of the biomethane through all the surface of the reactor
is presented. We can see that the biomethane enters the reactor with a mass fraction of
the gas which is high at the beginning, i.e., at the bottom of the reactor, and it is equal to
0.57 (the mass fraction of nitrogen gas is about 0.43). While the gas passes through the
fluidized bed it decreases its concentration and progressively is converted into water and
carbon dioxide.

The average gas yields during time are reported in Figure 11, they are normalized
concentrations, calculated once the concentration of nitrogen is subtracted.
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Figure 7. Average temperature inside the reactor; the line corresponds to the average value, which
is derived through statistical calculations which also calculate the quartiles of the temperature
distribution at a given time (that are indicated in a stronger color and are closer to the average) and
the extreme values which are the lower and upper limit of the temperature distribution (that are
indicated in a more light color and are more external respect to the quartiles).
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Figure 8. Average gas velocity in the reactor; the line corresponds to the average value, which is
derived through statistical calculation which also calculate the quartiles of the velocity distribution at
a given time (that are indicated in a stronger color and are closer to the average) and the extreme
values which are the lower and upper limit of the velocity distribution (that are indicated in a more
light color and are more external respect to the quartiles).
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Figure 9. Average volumetric flow inside the reactor; the line corresponds to the average value,
which is derived through statistical calculation which also calculate the quartiles of the volumetric
flow distribution at a given time (that are indicated in a more stronger color and are more close to
the average) and the extreme values which are the lower and upper limit of the volumetric flow
distribution (that are indicated in a more light color and are more external respect to the quartiles).
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As we have already stated in the introduction exhaust gases composition in the reactor
can be an effective way to validate many CFD models, developed on such batch reactors.
In this case, the paper [60] presents a set of tests performed with the same catalyst on
both batch and continuous reactors. Dealing with the batch reactor this was operated with
similar conditions to the ones tested in this CFD model and most of all with the same solid
inventory, equal to 55 kg/MW. We can say that the validation proposed in Figure 11 is still
qualitative in the sense that in the model the gases are inserted already heated, while in the
real case the reactor is heated externally and this makes the two cases comparable only in
part. The publication [60] shows that with similar conditions the duration of the conversion
process of biomethane into CO2 and H2O is in the range of few seconds, the fact that in our
case the conversion of the gas lasts much more time can be due to the not perfect control of
the heating ramp of the reactor which, as said, is more controlled by the inlet temperature
of the gases, than from external electrical heating. This affects the internal temperature of
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the reactor, which results to be lower than that used in the experiments performed in [60].
On the other hand, once that the reaction happens the composition of the exhaust gases
results comparable with that measure during the experiments.

Figure 12 reports the increase in bed height. From the figure we infer that since the
first seconds of the simulation we assist to the bed expansion phenomenon, which brings
the height to an increase of 1.5 times (the bed height of the reactor before starting the flow of
fuel gas was 0.1 m and it becomes during reactor operation about 0.15 m). This is confirmed
by several studies, among which [61].
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In Figure 13 we show how the concentration of Fe2O3 changes during time in the bed
of the reactor, this confirms that in 120 s we are able to convert all the bed material to Fe3O4
in an efficient way. This figure can be correlated with Figure 10 of this same paper, in which
we see that after about 120 the biomethane inserted in the reactor ceases to convert into
water and carbon dioxide because the oxygen carrier has reduced its action. Figure 13
explains also the increase in the concentration of biomethane which is noted in Figure 11
and the change in velocity, temperature and volumetric flow which is shown in Figures 7–9.
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4. Discussion
4.1. Further Validation

To understand well the results of the modeling performed, we can base on the results
of the 0D models developed at the Instituto de Carboquimica in Zaragoza, Spain. In [5] for
example we see the trend of gases and solids along the longitudinal direction of the reactor
length. In this case it can be noted a significant increase in products concentration along
the bed and a clear difference in the behavior of the bottom bed from the freeboard. In the
same work an interesting sensitivity analysis on the effect of the ratio between fuel and
oxygen carrier has been performed. The 0D model can be used effectively for reactor design,
for example for the calculation of the optimal inventory per MWth of primary energy of
fuel entering the reactor. In [60] we see that the main trends, which can be determined
experimentally are related to the concentration of gases during time (a total duration of the
test lower than 100 s is presented, this is made to avoid that in batch conditions a significant
quantity of FeO is formed and to work only with the two forms of Fe2O3 and Fe3O4). We
see interestingly that a significant amount of CO is generated in the combustion tests of
methane, this suggests that in the future more chemical reactions have to be considered,
respect to those presented in Equations (28) and (29).

In another work of the Instituto de Carboquimica (Zaragoza, Spain) the batch reactor is
used to assess the effect of mixed iron and nickel oxides as oxygen carriers for gaseous fuels
combustion. Additionally, in this case the tests [62] performed in the batch reactor were
several oxidation-reduction multi-cycles with the final aim to assess the gases composition
at the outlet of the fuel reactor and also the ultimate combustion efficiency. The tests in
this case were performed in conditions very similar to those applied in this work, such
a temperature of 950 ◦C and inlet fuel gas velocity of 0.1 m/s. A difference instead is
represented by the fact that in [62] it is used a mixture of nitrogen and methane in a ratio
of 20v% and 80v%, respectively. The reduction periods were varied between 60 and 300 s.
Once again in this case the results of the gas analysis at the outlet show an important
concentration of CO which again has to be better taken into account by the model.
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In the same paper [60], it is reported an interesting chart on the reaction rate vs. the
conversion of the oxygen carrier. This data can be also used to validate our model and
can be compared with the data presented in Figure 14, in which we see on the left side the
conversion rates of the solids and on the right side the reaction rate.
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Figure 14. Conversion of the oxygen carriers (left); Reaction rates during time (right). The line
corresponds to the average value, which is derived through statistical calculation which also calculate
the quartiles of the volumetric flow distribution at a given time (that are indicated in a stronger color
and are more close to the average) and the extreme values which are the lower and upper limit of the
volumetric flow distribution (that are indicated in a more light color and are more external respect to
the quartiles).

In [60] the reaction rate (dXr/dt) is defined as reported in Equation (31), where Mo is
the atomic weight of oxygen, nout is the molar flow at the outlet, mox is the recirculation
rate expressed as mass of carrier fully oxidized, Ro is the oxygen ratio of the oxygen carrier
and yi molar fraction of the specie i.

dXr

dt
=

MO
.
nout

moxRo

(
2yCO2,out + yCO,out − yH2,out

)
(31)

From [60] it can be seen that the reaction rate varies between 0.03 and 0.04 s−1. If we
compare these values with the ones which are shown in Figure 14, we see that in our case
the average reaction rate ranges between 0.0005 and 0.0028 which corresponds to the lower
limit reached in the tests described in [60], this confirms that once again the heating of
the reactor has to be carefully checked and improved. It has also to be noted that the first
results are very encouraging anyway.

4.2. Sensitivity Analysis on Mesh Refinement

In this section the authors wanted to check the solidity of the assumption that mesh
refinement did not affect the final results. Less refined mesh has an important advantage on
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the reduction of computational times, in fact to perform a simulation with 14,000 cells can
take about 4 h while performing a simulation with 30,000 cells will take about 4 days. The
use of a geometric model with 14,000 cells (indicated as “mesh<”) produces results which
are fully comparable with those obtained with a mesh, which is more refined (“mesh>”).
This can be seen from Figures 15 and 16.

Processes 2022, 10, x FOR PEER REVIEW 22 of 27 
 

 

4.2. Sensitivity Analysis on Mesh Refinement 
In this section the authors wanted to check the solidity of the assumption that mesh 

refinement did not affect the final results. Less refined mesh has an important advantage 
on the reduction of computational times, in fact to perform a simulation with 14,000 cells 
can take about 4 h while performing a simulation with 30,000 cells will take about 4 days. 
The use of a geometric model with 14,000 cells (indicated as “mesh<”) produces results 
which are fully comparable with those obtained with a mesh, which is more refined 
(“mesh>”). This can be seen from Figures 15 and 16. 

 
Figure 15. Comparison between the mass fraction of biomethane during time obtained with the 
refined mesh (mesh>) and the one obtained with the loose mesh (mesh<). 

 
Figure 16. Regression analysis performed on the data on the mass fraction of biomethane during 
time obtained with the refined mesh (mesh>) and the one obtained with the loose mesh (mesh<). 

In Figure 16 especially, we can see that the coefficient of correlation between the two 
datasets is more than 0.99.  

Figure 15. Comparison between the mass fraction of biomethane during time obtained with the
refined mesh (mesh>) and the one obtained with the loose mesh (mesh<).

Processes 2022, 10, x FOR PEER REVIEW 22 of 27 
 

 

4.2. Sensitivity Analysis on Mesh Refinement 
In this section the authors wanted to check the solidity of the assumption that mesh 

refinement did not affect the final results. Less refined mesh has an important advantage 
on the reduction of computational times, in fact to perform a simulation with 14,000 cells 
can take about 4 h while performing a simulation with 30,000 cells will take about 4 days. 
The use of a geometric model with 14,000 cells (indicated as “mesh<”) produces results 
which are fully comparable with those obtained with a mesh, which is more refined 
(“mesh>”). This can be seen from Figures 15 and 16. 

 
Figure 15. Comparison between the mass fraction of biomethane during time obtained with the 
refined mesh (mesh>) and the one obtained with the loose mesh (mesh<). 

 
Figure 16. Regression analysis performed on the data on the mass fraction of biomethane during 
time obtained with the refined mesh (mesh>) and the one obtained with the loose mesh (mesh<). 

In Figure 16 especially, we can see that the coefficient of correlation between the two 
datasets is more than 0.99.  

Figure 16. Regression analysis performed on the data on the mass fraction of biomethane during
time obtained with the refined mesh (mesh>) and the one obtained with the loose mesh (mesh<).

In Figure 16 especially, we can see that the coefficient of correlation between the two
datasets is more than 0.99.

4.3. Sensitivity Analysis on the Approaches Used to Model Turbulence

After performing a sensitivity analysis on mesh refinement rate, also a sensitivity
analysis on turbulence was performed. Results are shown in Figures 17 and 18 and also in
this case we see that the coefficient of correlation of the two data sets is higher than 0.99.
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5. Conclusions

The Marie Curie IF project GTCLC-NEG wants to develop a carbon negative emissions
technology for power generation, based on the coupling of a CLC combustor to a gas
turbine. To do so both the air reactor and the fuel reactor have to be operated at pressurized
conditions. To design and optimize the operation of a fuel reactor in pressurized conditions
a CFD model has been developed in this work based on the MFIX 21.2 software (NETL US
DOE, Houston, TX, USA). The model has been first tested at atomspheric conditions and
results have been compared with available 0D models and main experimental campaigns
performed in batch CLC reactors. The trends of the reaction products during time are
correspondent to the results available in the literature. The only aspect to be optimized
on the chemical reactions scheme (which is implemented in a User Defined Function) to
account for the production of carbon monoxide, which has been detected in significant
concentrations in the experimental campaigns. Another improvement will be that of the
introduction of the distributor plate which is actually used in the plants of the Instituto de
Carboquimica to insert the gas in the fuel reactor. Then the model will be tested at different
pressures carefully adapting the kinetics of the reactions.
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Nomenclature
Abbreviations
CLC Chemical Looping Combustion
CFD Computational Fluid Dynamic
GHG Greenhouse Gases
DEM Descrete Element Model
PCLC Pressurised Chemical Looping Combustion
Greek letters
α Constant; (-)
β Coefficient for the interphase force between the fluid phase and the mth solids phase;

kg/m3·s
ε phase volume fraction; (-)
η Function of restitution coefficient; (-)
θ granular temperature; (m2/s2)
µ molecular viscosity; (kg/(m·s))
ρ microscopic density density; (kg/m3)
=
τ stress tensor; (Pa)
Φ angle of internal friction; (rad)
Symbols
Bh bed height; (mm)
d diameter of particles; (m)
e coefficient of restitution for the collisions of solids; (-)
D reactor diameter; (mm)
=
D Rate of strain tensor; (s−1)
=
I Identity tensor; (s−1)
I2D Second invariant of the deviator of the strain rate tensor; (s−1)
Igp momentum transfer from fluid phase to solid phase; (N/m3)
g acceleration due to gravity; (m/s2)
g0 radial distribution at contact
h reactor height; (mm);
P pressure; (Pa)
Re Reynolds number; (-)
=
S phase stress tensor; (Pa)
Tr Radiation temperature; (K)
→
V velocity vector; (m/s)
Pedices
g gas phase; (-)
fric frictional; (-)
p solid phase; (-)
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