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Abstract— Long-distance human-robot collaborative tasks
require robust forms of knowledge-sharing among agents in
order to optimize the performance of the task. In this paper,
we propose to take advantage of the proliferation of mobile
phones to use them as a reliable low-cost communication
interface, as opposed to the use of specific gadgets or speech
and gesture recognition techniques that are highly prone to
failure in the presence of noise or occlusions. Our interface is
focused on search tasks, and it allows the user to share with
the other agents real-time information such as their position,
their intention or even what they would like the other agents
to do. To test its acceptability, a user study was conducted
with 20 volunteers in a human-human scenario. A second
round of experiments with other 30 volunteers was conducted
to test different ways to encourage user interaction with our
interface. Finally, real-life experiments were also conducted
with a robot to apply skills learned to the desired scenario.
We found a statistically significant improvement in the amount
of information exchanged between agents.

I. INTRODUCTION

Since the appearance of the iPhone in 2007, mobile phones
have become more and more present in our lives, to the
point of becoming small pocket computers equipped with
multiple sensors. The same hardware development that has
enabled this proliferation has also driven the development
of robotics, allowing it to reach greater heights of cognition
and sociability. Achievements in the fields, such as voice and
gesture recognition as well as natural language processing,
have enabled robots and humans not only to communicate,
but also to interact or work together. However, for long-
distance tasks, neither option allows reliable communication,
due to ambient noise or lack of resolution.

In the specific case of human-robot collaborative search,
the presence of obstacles or ambient noise makes it impossi-
ble to use the above alternatives to share information between
both agents and thus optimize the search. Due to the above,
in this paper, we present an user-friendly smartphone human-
robot interaction (HRI) interface, which makes it unnecessary
to use a specific gadget, and at the same time allows us to
simplify the knowledge sharing between both agents in a
way that is intuitive for the human and useful for the robot
(see Fig. 1).
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Fig. 1. Participant using our interface to communicate with the robot:
It is not necessary to maintain visual contact with the robot at any time.

In this article, first, we check that our interface is accept-
able by the user. To do this, we have designed a simplified
version of our interface, and we have performed an user
study on a search task between two humans in which one
of them simulates the robot. We have also analyzed how to
stimulate the use of the HRI interface in order to increase
the user’s collaboration in different aspects of the task.
Finally, we present the full version of our interface, through
which both the robot and the human can share all the
information necessary for the correct development of this
task, for example, their position and their intentionality.

In the reminder of the paper, we start describing the
related works in Section II. In Section III we introduce
the human-robot knowledge sharing in collaborative tasks.
Section IV and V present the conducted experiments and
the conclusions, respectively.

II. RELATED WORK

This research is focused on developing a new interface to
make robots capable of working cooperatively with people
on map-based tasks.

The coordination among robots in collaborative tasks can
be achieved with graphical model inference techniques as
variational methods [1], [2] or other coordination algo-
rithms [3] both for centralized [4] and decentralized col-
laborative scenarios [5], [6]. Examples can also be found
where one or more team members are human rather than
robots [7]. Regardless of the nature of the agents involved
in a collaborative task, some communication channel needs
to be established among them in order to optimize the per-
formance of the task. This is especially important in human-
robot teams as the two agents often represent in a different
way the world associated with the task. For example, the
TRADR project [8] focuses on enhancing human-robot teams
collaboration in urban search and rescue (USAR) scenarios.



For the communications of robots and humans, several
solutions have been stated. The two most commonly used
methods for proximity tasks are based on speech recogni-
tion [9], [10] and gesture recognition [11]. Both methods
can only be used in close proximity to the robot and are
not very robust to the acoustic or illumination noise. Other
solutions based on augmented reality or virtual reality can
also be found [12], but these solutions are often based on
specific hardware that is not available to everyone making
them unsuitable for potential mass use.

In the case of mobile phones, despite being such a
widespread gadget, their use in robotics has been limited
to teleoperation tasks [13], [14]. In this work we will
focus on the capabilities of mobile phones not only as
teleoperation means but as graphical interfaces to share
knowledge between humans and robots in a way that is
effective regardless of the distance between the two agents
and socially acceptable for the human. We also validate
all our hypotheses through user studies, something that is
usually absent in the mentioned works.

III. HUMAN-ROBOT KNOWLEDGE SHARING IN
COLLABORATIVE SEARCH TASKS

When a set of agents, humans, robots or mixed groups,
must perform a task collaboratively, they should share not
only information but knowledge. Focused on collaborative
search tasks, it is necessary to know for example, the
explored areas in order not to waste time re-exploring them.
Moreover, due to the fact that we do not have access to
the human mental knowledge about the task, neither its
intentions, we need to design a HRI interface that facilitates
getting information about the task for both the robot and the
human and making a search plan agreement between them.
The objective of the proposed HRI interface is that it can
show the map, the explored areas, the human’s and robot’s
pose, the human’s intention, the shared human-robot plan
and the possibility to modify the plan by the human agent.

It should be noted that collaborative search tasks can
be carried out over arbitrarily large areas. Therefore, the
communication between agents must be able to be achieved
regardless of the distance, occlusions or obstacles between
agents making voice or gestures inappropriate for the job.

A. Mobile Phone App as HRI

Fig. 2 depicts our proposed HRI diagram for performing a
collaborative search task between a human and a robot. We
propose to use something that almost all of us carry in our
pockets, such as a smartphone, as the HRI interface. Based
on the work from Kohler et al. [15], we have designed an
interface that makes use of the touch screen and connectivity
capabilities of any mobile phone. Through this interface,
the human can see the same map on which both agents
are working collaboratively and indicate on it their position
and their intention. This interface is in charge of reading
the human’s clicks on the map and converting them into
messages that the robot can understand. These messages are
sent to the robot and used, together with the environmental

Fig. 2. Information flow considered in our proposal. Smartphone acts
as an HRI interface converting graphic information understandable by the
human into messages understandable by the robot and vice versa.

information it receives from its own sensors, to calculate
the route that optimizes the search. The specific planner and
sensors used are irrelevant as they are transparent to the HRI
interface. Finally, the robot sends its position and the routes it
calculates to the interface, which translates them into visual
information on the HRI map.

Fig. 3 depicts the interface’s appearance. Human users
can indicate their position using the ’My pose’ functionality
and their intention using ’My goal’ and ’Robot goal’ options
allowing them to also indicate to the robot what they would
like it to do. The ’Replan’ button is used to indicate to the
robot that the updated data is completed and that it can be
used to redo its calculations. Note that it is not shown which
areas have been explored and which have not for clarity and
ease of use. However, the generality of this interface makes
it possible to display this or any other information deemed
necessary by simply modifying the layout of the main screen.

The communication can be done through a local wifi
network or with a mobile network (3G or 4G) solving the
problem of distance or occlusions that communication via
voice or gestures could not solve. Regarding the human’s
pose accuracy in the map, it is not very good since it is
done by the human by looking in the HRI map, but in our
case it can be improved if the robot can detect the person
using the its sensors.

B. Triggering Behaviours

The HRI performance is highly dependent on the users
indicating their pose in the map. If the robot does not know
the user’s intention, it can still take control and tell the
user which route it thinks they should follow to optimize
the search, but it does need the user’s position to do those
calculations. In general, this problem is repeated in every
situation and task, where the user’s active participation is
required.

Based on Fogg [16], we have designed three triggers or
reminders that encourage the user to indicate their pose: (1)
a toast (small message) on the screen to indicate to the user
that more than a threshold time has elapsed since their last
known position, (2) a pop-up window that blocks the usage
of the interface until the user accepts and indicates their new
position, and (3) a ’multimodal’ trigger, i.e., a vibration of the
device and a blink of the ’My pose’ option with the same time



Fig. 3. Mobile App main screen. Top: Screenshot of an ongoing
human-robot collaborative search where the human has used every available
functionality. 1) Replan button. 2) Input data selection menu. 3) Robot’s
current position. 4) Human’s desired goal for the robot. 5) Path calculated
by the robot. 6) Human’s current position. 7) Human’s intended goal. 8) Path
calculated for the human. Bottom: Execution using a simplified version of
the interface for human-human collaborative search experiments. 1) Input
data selection menu. 2) Human’s current position. 3) Human’s intended goal.
4) Human’s partner position 5) Human’s partner intended goal

threshold as the two previous triggers. Additionally, based
on the results obtained with gamification techniques [17],
a fourth trigger adds a counter to each available option to
indicate to the user how many times they have indicated their
positions or intentions1.

Section IV-B shows more in detail the results obtained
using the different triggers.

IV. EXPERIMENTS

It is necessary to carry out an user acceptability study
to find out if the user feels comfortable using our interface,
what is the added value and what is the cost to be paid. To do
this, we have used a simplified version of the interface (see
Fig. 3 - Bottom). This simplified interface has been tested
with two persons, instead of a person and a robot to perform
the search so that we can measure the effect of the interface
on task performance by comparing the case of having it
versus not having it. The same version has been used to test
the effectiveness of the four triggers by stimulating the user
to use the interface. The full version (Fig. 3 - Top), along
with what is learned in these experiments, has been used for
testing with the robot.

A. Experiments Setup and Methodology

The experiments were carried out in the Barcelona Robot
Lab using an area of approximately 750 m2, half of which
corresponds to an open space and the other half to a covered

1Four triggers: https://youtu.be/-xCuymEaoAY

Fig. 4. Experiment examples. Left: Human-human pair collaboratively
searching. Center: Human-robot pair doing the same task. Right: Group of
three green Parcheesi tokens object of the search.

area with multiple occlusions (walls and columns). (see
Fig. 4).

We divided the experiments into two rounds. In the first
round, 20 volunteers (age: µ=21.1, σ=3.46; most common
ongoing or finished studies: B.Sc.) performed two collabora-
tive search tasks, always teaming up with the same research
assistant (so that the second component of all pairs always
had the same effect on the outcome of the experiment). In
the first task, they did not have the simplified interface to
communicate, so they had to resort to voice, gestures and
other instruments of human communication2. In the second
task, they did have our interface running on two mobile
phones, one for each member of the pair3. At the end of
the second task, all volunteers were given a questionnaire to
evaluate different aspects of interest using ANOVA tests.

In the second round, 30 different volunteers (age: µ=27.8,
σ=5.21; most common ongoing or finished studies: M.Sc.)
tested the effectiveness of the four triggers. As they are a
different population sample, it is necessary to perform a first
experiment with the interface and no triggers in order to
standardize the results with those obtained in the previous
round. After this, each volunteer performed two collaborative
search tasks using in each one a different randomly selected
trigger and again always with the same research assistant. At
the end of all the tasks, another questionnaire was given in
order to evaluate their subjective perception of the different
aspects related to the triggers also using ANOVA tests.

In order to have objective data, the flow of messages sent
through the two interfaces in all experiments was saved in
.csv files. A total of 50 volunteers participated in up to
130 experiments. The interface was executed on two mobile
phones, a Nexus 5 and a Galaxy S10, both with Android 10
(kernel 4.14, October 2020 compilation).

B. Acceptability and trigger experiments

Our first hypothesis is that the interface does not impair
task performance, but can enhance it. The results of the
questionnaires filled out by the volunteers after the first round
of experiments (one search without the interface and one
search with the interface) are depicted in Fig. 5.

As for the quickness, i.e., how much time the user needs to
communicate relevant information, no statistically significant
increase is shown (using the criterion of p< 0.05): without
interface µ=4.20, σ=1.54; with interface µ=5.00, σ=1.83;

2Episode without interface: https://youtu.be/G-w5QlThqu0
3Episode with interface: https://youtu.be/a205ZKZC_XA



Fig. 5. Main aspects of the acceptability user study. Top: Valuation from
1 (low) to 7 (high) of the main aspects related to the use of the interface.
Bottom: Number of times each option was selected in the comparison
where the user had to chose among three options instead of valuate them
numerically. As they are 20 volunteers, the maximum is 20 for each option.

t(20)=−1.45, p=0.162. The same does not occur with the
ease of communicating with the partner: without µ=4.45,
σ=1.60; with µ=5.45, σ=1.09; t(20)=−3.01, p=0.007. This
helps us to confirm that the interface does not affect the
speed of communication, but can make it easier. If we look
at robustness, i.e., how difficult it is for the information
to be misinterpreted, there is a significant improvement:
without µ=3.60, σ=1.46; with µ=5.15, σ=1.22; t(20)=−4.01,
p<0.001. This is even more noticeable when the amount of
information received is analyzed: without µ=2.70, σ=1.78;
with µ=6.35, σ=0.83; t(20)=−7.17, p<0.001. This shows
that the interface can provide more and better information.
The price to pay is a decrease in task concentration, although
not statistically significant: without µ=5.50, σ=1.63; with
µ=4.60, σ=1, 75; t(20)=1.76, p=0.09.

In addition to rating the above aspects from 1 to 7, we also
asked the volunteers to choose between the two possibilities
(without interface and with), giving them also the draw as a
valid option. The result is shown in Fig. 5 - Bottom. There is
consensus that it is easier and faster to communicate through
the interface as it is less prone to misunderstandings. There is
unanimity that the interface provides more information when
in line-of-sight with the partner. However, there is debate
about which is the best way to obtain information when the
partner is in view as well as which is easier to maintain
concentration with.

Focusing on the exchange of ’My pose’ messages, which is
the most important for the robot to know where its partner is
when it cannot see it and thus optimize the search, there is
a clear difference between the control user (someone with
extensive knowledge of robotics and, therefore, perfectly
aware of the needs of the robot for its optimal operation)
and volunteer users (users with average or low knowledge
of robotics and typical target of research in social robotics).

Fig. 6. ’My pose’ messages rate throughout the experiment. Evolution
of the average number of messages per minute sent by both volunteers (blue)
and the control user, always the same research assistant (red).

TABLE I
PERCENTAGE OF ’MY POSE’ TBM<10 S [%]

User Experiment evolution Complete
Experiment60 s 90 s 120 s

Control 94.79 94.36 94.25 90.95
Volunteer 81.82 81.76 70.59 72.94

Fig. 6 shows that the control user sends more than twice
as many ’My pose’ messages as the average user, both if
we look at the temporal evolution over the experiments or
if we just look at the average of all experiments. This is
only a problem if the frequency with which the average user
refreshes their position is not high enough for the robot to
interpolate its path. Considering that the search task involves
searching for a small-sized object at ground level (see Fig. 4 -
Right), the movement speed of the users ranges from 0.5 to
1.0 m/s. Therefore, we can set 10 s as a good threshold for
the time between messages (TBM) of ’My pose’ type.

Table I shows the percentage of messages that are sent
before exceeding this 10 s threshold with respect to the
previous message. This percentage is calculated as the total
number of messages sent in all experiments below this
threshold divided by the total number of messages sent in
all experiments. Roughly speaking, between 18% and 29%
of the average user’s messages do not meet this threshold,
which can greatly complicate the robot’s planning.

Our second hypothesis is that we can change user’s behav-
ior and encourage them to increase the number of messages
they send within the recommended interval. This is also
useful for other situations where it is necessary that the user
performs some specific type of interaction. For this purpose,
we have used the four triggers or reminders presented in
Section III-B.

As mentioned in Section IV-A, volunteers in this second
round of experiments correspond to a different population
sample, so it is necessary to perform them a first experiment
without any trigger in order to standardize the measurements.
The results are shown in the first row of Table II. It was
necessary to reduce the threshold from 10 s to 8.32 s to
obtain similar percentages (76.77 vs. 76.82 on average).
Therefore, this is the threshold we used to test the triggers.
In other words, we repeated the search experiment two more
times to each of the 30 volunteers in the second round using



TABLE II
PERCENTAGE OF ’MY POSE’ TBM<8.32 S DEPENDING ON TRIGGER [%]

Trigger Experiment evolution Complete
Experiment60 s 90 s 120 s

None 77,98 77,91 76,26 75,12
Toast 71,57 77,07 78,67 74,69
Pop-up 89,33 86,86 87,11 80,01
Multimodal 89,22 88,50 86,19 82,04
Counters 84,46 84,77 81,31 80,21

Fig. 7. Main aspects of the triggers user study. Valuation from 1 (low)
to 7 (high) of the main aspects related to the effects of triggers.

a different trigger each time and tested the percentage of
messages sent before 8.32 s. The result can be seen in the
remaining rows of Table II.

Toast is counterproductive. The user relies on something
to remind them to use the interface, but toast is not effective
enough to do this. The Pop-up and Multimodal have similar
effectiveness due to different reasons. Pop-up is based on
something people want to avoid, while Multimodal is a
real reminder acting only in case it is needed. Counters is
proof that gamification techniques can give good results (an
increase of 6% in this case) with very little computational
burden and annoyance for the user.

Fig. 7 summarizes the main aspects evaluated in the post-
task questionnaire. As for the subjective frequency with
which the trigger reminds the user to use the remembered
option, there is statistical significance in favor of Multimodal
(M) over Counters (C): M µ=5.13, σ=1.37; C µ=2.93,
σ=1.65; t(15)=2.79, p=0.014. This means that users feel
that Counters is much more sibylline. Pop-up (P) and
Muntimodal tie in this aspect, but not about the trigger
usage frequency, i.e., how frequently users use an option
because the trigger remembered them to do it: P µ=3.60,
σ=1.25; M µ=5.00, σ=1.37; t(15)=−2.19, p=0.046. This
means that users recognize that Multimodal is more effective
in modifying their behavior even though they consider both
Pop-up and Multimodal to be equally frequent. Regarding an-
noyance, Multimodal is considered to be more annoying than
Counters: M µ=3.80, σ=1.72; C µ=2.13, σ=1.36; t(15)=2.45,
p=0.028. Pop-up has even worse valuation. Finally, Counters
also shows a significant increase over Pop-up in terms of task
concentration, but not over Multimodal: P µ=4, 87, σ=1.02;
C µ=6.07, σ=0.68; t(15)=−2.17, p=0.048.

As we did in the acceptability study, we also asked
the volunteers to choose between the two triggers they

Fig. 8. Comparison of triggers. T=Toast, P=Pop-up, M=Multimodal,
C=Counters. One point each time a trigger is selected for each aspect. 0.5
for both triggers in case of draw. Number of draws in parentheses. Each row
indicates the result of comparing the selected trigger with all other triggers.
The maximum score is 5.0 since each of the 30 volunteers performed only
1 of the 6 possible combinations of 2 triggers.

had used (or draw) with respect to the above parameters.
Fig. 8 shows user preferences. In general, they consider
that the most effective trigger is Multimodal, that Pop-up
and Multimodal are equally intrusive and that Pop-up is the
most annoying. This indicates that intrusiveness is seen as a
positive quality in the case of Multimodal. Finally, Counters
is also considered the best to facilitate keeping focused on
the task.

In general, the conclusion is that if it is needed to make
sure that the user will behave in a specific way at a specific
time, the most effective way is to use a multimodal trigger,
that is, something that interacts in multiple ways with the
user. However, care must be taken to ensure that the user does
not become fatigued or the result may be the opposite of what
is expected. If sustained behavior is needed, gamification
techniques seem to show more promising results.

C. Human-robot collaborative search experiments

It is time to use the full version of the interface shown in
Fig. 3 - Top applying the knowledge gained in the previous
experiments to perform the same task, but between a human
and a robot as depicted in Fig. 4 - Center4.

We added to the previous version the ability to tell the
robot where it is expected to go with a ’Robot goal’ option.
We also created a ’Replan’ button to request two new plans,
one for the robot and one for the human, once the user has
updated all the data they wish to use. The possibility of
including the person’s intention through the HRI interface
(with both ’My goal’ and/or ’Robot goal’ messages) allows
the emergence of different types of relationships: master-
slave with the person as master if they tell the robot what to
do or as slave if they allow the robot to make the decisions to
optimize the search. The peer-to-peer relationships can also
appear if the person indicates their own goals and lets the
robot adapt as it wishes. More details about the robot planner
can be found in [18].

The robot includes a Lidar and a depth camera for navi-
gation purposes. In addition, the Lidar is used to track the
user whenever the user is in sight and within 20 m of the
robot [19]. This reduces the inconvenience on the user of
continually indicating its pose. However, when the tracker

4Human-Robot search: https://youtu.be/nuEECzNKcEI



TABLE III
HUMAN-ROBOT EXPERIMENTAL RESULTS RELATED WITH HRI USAGE

Parameter Mean Std. Dev.
Tracked time [%] 49,16 14.52
No. tracker re-coupling 5,538 2,578
’My pose’ TBM <10 s [%] 77.14 –
’My pose’ TBM <11 s [%] 85.71 –

loses the user (due to occlusions), the user will have to start
indicating its position until it is in sight of the robot again. To
achieve this, we have implemented a double trigger. Firstly,
the color of the icon changes from green to red to visually
indicate that the robot is not tracking the user (similar to
Toast) and, secondly, the same Multimodal trigger explained
above vibrates the mobile phone if more than 10 s have
passed since the last update of the user’s pose.

Table III shows that with these modifications we have
achieved that the robot can track the user up to almost half of
the time. This is because it manages to relocate the user more
than 5 times per experiment thanks to the user’s indication
of where it is when the robot is not watching it. As for
the TBM when the user is not being tracked, 77% of the
messages have been sent before the 10 s threshold. This is
higher than shown in Table I for complete experiments, but
lower than the same measurement in Table II for Multimodal
trigger. The explanation is that in this case, people do not
know when the robot is going to lose their track so they tend
to focus on the task and use the vibration to know when it is
necessary to start sending their position. Because of this, if
we look at the effectiveness of the trigger one second after
it is activated, it goes up to almost 86%. In other words, we
could move the trigger threshold to 9 s to achieve the desired
effect at the end of the 10 s we had set as a limit.

V. CONCLUSIONS

We have developed an interface that can function as an
HRI interface using a gadget that almost all of us carry in
our pocket such as a mobile phone. We have conducted a
user study to verify that this interface is acceptable to the
user and that it can improve communication in collaborative
search tasks. Anticipating the need for the user to use our
interface in a specific way, we have developed and tested
different methods to encourage the desired behavior. Finally,
we have applied all of the above to improve the performance
of a robot in human-robot collaborative search tasks.

One possibility for future work, is the creation of a web
version of our interface. This would allow it not to depend
on the specific hardware or the Operating System of each
device, making it universally available. The disadvantage
of this version would be that it would not have access
to the sensors built into mobile phones (accelerometers,
gyroscopes, cameras...). The use of these sensors also opens
up a myriad of future possibilities to, for example in our
case, automate the collection of the user’s location.
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