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Nuclear shape transitions and elastic magnetic electron scattering
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Backward elastic electron scattering from odd-A nuclear targets is characterized by magnetic form factors
containing precise information on the nuclear structure. We study the sensitivity of the magnetic form factors to
structural effects related to the evolution and shape transitions in both isotopic and isotonic chains. Calculations
of magnetic form factors are performed in the plane-wave Born approximation. The nuclear structure is obtained
from a deformed self-consistent mean-field calculation based on a Skyrme HF + BCS formalism. Collective
effects are included in the cranking approximation, whereas nucleon-nucleon correlations are taken into account
in the coherent density fluctuation model. The evolution of the magnetic form factors is found to exhibit
signatures of shape transitions that show up in selected isotopic and isotonic chains involving both stable
and unstable nuclei. Several cases are identified as suitable candidates for showing such fingerprints of shape
transitions. A new generation of electron scattering experiments involving electron-radioactive beam colliders
will be available in the near future, leading to a renewed interest in this field.
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I. INTRODUCTION

Electron scattering from nuclei has been well established
in the past as a tool to provide detailed information on nuclear
charge and current distributions [1–4]. It is well known that
the weakness of the electromagnetic interaction relative to the
nuclear force, as well as its accurate quantum electrodynamics
description, result in electron scattering being a suitable and
powerful tool to study nuclear charge distributions and radii,
transition probabilities, momentum distributions, and spectro-
scopic factors from elastic, inelastic, and quasielastic channels
[5–7].

Electron scattering can be also used as an additional tool to
complement the information obtained from other probes. This
could be the case of magnetic dipole (M1) excitations in nu-
clei, where it is well known that complementary information is
obtained when using different electromagnetic (γ , γ ′), (e, e′)
or hadronic (p, p′) probes [8,9]. Electron scattering may also
be used as a tool to investigate weak processes, such as
parity-violating electron scattering [10–12] or other processes
involving neutrinos [13,14].

Although charge scattering is in most cases the domi-
nant contribution to the cross section, electrons also interact
with the nuclear electromagnetic current distributions, whose
contributions can be isolated with proper choices of the
kinematical conditions of the process. The experimental ob-
servation of the electric and magnetic form factors provides
information on the convection and magnetization currents
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within the nucleus. In particular, elastic magnetic electron
scattering provides fine details of the nuclear ground-state
current and magnetization distributions [15–17].

Contrary to the case of charge scattering, where all the
protons contribute coherently to the nuclear response, the
magnetic scattering response in odd-A nuclei depends to a
large extent on the single-particle properties of the valence
nucleon wave function, whereas the collective aspects give
minor contributions in most cases, but may play an important
role in modulating the single-particle contributions. In addi-
tion, magnetic electron scattering may provide information on
both protons and neutrons on an equal footing, since their in-
trinsic magnetic moments are similar in magnitude. Similarly
to the case of charge scattering, magnetic scattering has been
studied in stable nuclei from different theoretical frameworks
[15], including shell model [18–21], relativistic mean field
[22], and deformed mean-field models [16,23–31].

In a previous work [29], we showed that the plane-wave
Born approximation (PWBA) together with a self-consistent
deformed Skyrme HF + BCS formalism for the nuclear struc-
ture calculation are able to reproduce the experimental form
factors of both spherical and deformed stable nuclei. There-
fore, we have at hand a reliable procedure to address the
study of unstable nuclei and to predict the magnetic form
factors of nuclei not yet measured. Based on this method,
we plan in this work to study the sensitivity of the magnetic
form factors against structural changes of the nucleus. The
best scenario for this study involves chains of odd-A isotopes
with odd Z or chains of odd-A isotones with odd N , whose
ground-state spin/parity (Iπ ), determined by the unpaired nu-
cleon, only changes if the structure of the nucleus is changed.
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Therefore, we look first for experimental fingerprints of struc-
tural changes and identify some candidates where this study
could be of particular interest. The structural change will be
related to a shape transition along the chain [32,33].

The study of isotopic or isotonic chains involves in gen-
eral unstable nuclei. One criterion for our selection of the
chains to be studied is based on the eventual feasibility of
electron scattering experiments from the nuclei in the chain.
Therefore, we focus on the unstable nuclei that are close to
stability, in addition to the stable ones. The experimental diffi-
culties found when dealing with unstable targets have limited
the present knowledge to stable nuclei, but it is expected
that the new generation of electron-ion colliders at radioac-
tive nuclear beam facilities [34] will overcome some of the
technical difficulties. This is the case of ELISe (FAIR-GSI)
[35] and SCRIT (RIKEN) [36]. The conceptual design and
the scientific challenges of the electron-ion collider ELISe
(Electron-Ion Scattering in a Storage Ring) can be found in
Ref. [37]. In SCRIT (Self-Confining Radioactive Ion Target)
a circulating beam of electrons scatters off ions stored in
a trap [38,39]. In this facility, an elastic electron scattering
experiment on 132Xe has already been performed [40], demon-
strating its feasibility. Electron scattering on unstable nuclei
could be a tool to study the evolution of the charge distri-
butions in isotopic chains and therefore, to test theoretical
models aiming to predict nuclear charge distributions. Exam-
ples of these studies can be found in Refs. [41–46].

The structure of this article is the following. In Sec. II we
present the theoretical framework and basic expressions to
calculate the magnetic form factors in deformed nuclei. We
also introduce the spherical limit of these calculations, as well
as the effects of short-range correlations in this limit. Sec-
tion III contains the results obtained. The latter are given, first
for static moments and then for the magnetic form factors in
the isotopic and isotonic chains selected. Section IV contains
the conclusions of the work.

II. THEORETICAL FORMALISM

A. Electron scattering form factors

The basic aspects of the formalism of electron scattering
from deformed nuclei that we follow in this work was in-
troduced earlier [16,24]. The work in Ref. [24] demonstrated
for the first time that deformation has to be included in the
theoretical description to reproduce the experimental data for
the deformed nucleus 181Ta. Since then, the method has been
applied to different cases [25–29], where the sensitivities of
the results to different approximations concerning nuclear
structure and reaction mechanism were studied. In particular,
it has been shown that the magnetic form factors of deformed
nuclei may differ considerably from those of spherical nuclei
[29]. Here, we briefly summarize this formalism. Following
the notation of Ref. [16], the general cross section for ultra-
relativistic electron scattering for transitions from the nuclear
ground state (Ii) to final states (I f ) in PWBA and for unpolar-
ized projectiles and unoriented targets, is given by

dσ

d�

∣∣∣∣
Ii→I f

= 4πσM f −1
rec [VL|FL|2 + VT |FT |2], (1)

in terms of the Mott cross section

σM =
[

α cos(θ/2)

2εi sin2(θ/2)

]2

, (2)

and a recoil factor frec. The cross section is separated into
longitudinal (L) and transverse (T) parts, weighted with dif-
ferent kinematical factors. The dependence on the electron
kinematics is given by the L and T Rosenbluth factors,

VL = (Q2/q2)2, VT = tan2(θ/2) − (Q2/2q2), (3)

where the kinematical variables are defined so that an incident
electron with four-momentum kiμ = (εi, ki ) is scattered from
the nucleus through an angle θ to four-momentum k f μ =
(ε f , k f ) by exchanging a virtual photon with four-momentum
Q = (ω, q).

Whereas the longitudinal form factors receive coherent
contributions from all the charged nucleons, the transverse
form factors are basically single-particle observables that de-
pend mostly on the properties of the unpaired nucleon in the
outermost shell. Hence, the longitudinal contribution (charge
scattering) is dominant in most cases and the transverse con-
tribution can only be disentangled using special kinematical
conditions. In particular, backward scattering (θ = 180◦) is
commonly used to measure FT .

The dependence on the nuclear structure is contained in the
q-dependent longitudinal and transverse form factors, which
are written in terms of Coulomb (C), transverse electric (E),
and transverse magnetic (M) multipoles,

|FL|2 =
∑
λ�0

|FCλ|2, |FT |2 =
∑
λ�1

[|F Mλ|2 + |F Eλ|2], (4)

which are defined as the reduced matrix elements of the mul-
tipole operators T̂ σλ between initial and final nuclear states

|F σλ|2 = |〈I f ||T̂ σλ(q)||Ii〉|2
2Ii + 1

. (5)

For elastic scattering, parity and time reversal invariance
imply that only even Coulomb and odd transverse magnetic
multipoles contribute. Then, at θ = 180◦ only odd magnetic
multipoles survive in PWBA,

|FT (q)|2 =
∑

λ=odd

|F Mλ|2. (6)

The magnetic multipole operators are defined as

T̂ Mλ
μ (q) = iλ

∫
dr jλ(qr)Yμ

λλ(�r ) · Ĵ(r), (7)

where Ĵ(r) is the current density operator that contains both
convection and magnetization components arising from the
motion and from the intrinsic magnetic moments of the nu-
cleons, respectively.

Center of mass and finite nucleon size corrections are in-
cluded in the calculations. For the center of mass correction
we use the usual factor obtained in the harmonic-oscillator
approximation, fc.m. = exp (q2A−2/3/4). In the magnetiza-
tion currents, we use bare nucleon magnetic moments,
μ

p
s = 2.793 μN , μn

s = −1.913 μN , corrected with dipole form
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factors [47]. In the convection currents, we use bare orbital
g-factors, gp

� = 1 and gn
� = 0, scaled by q-dependent form

factors given by a sum of monopoles parametrized in Ref. [47]
for the proton and by the difference of two Gaussians [48] for
the neutron.

The effects of Coulomb distortion could be evaluated quan-
titatively in the distorted-wave Born approximation (DWBA)
with a phase-shift calculation [49]. Nevertheless, neglecting
the Coulomb distortion offers clear advantages for the analysis
and interpretation of experimental data on magnetic scatter-
ing and PWBA is commonly used. In PWBA the connection
between data and the underlying physical quantities is more
transparent and calculations are simplified. The most impor-
tant effect of Coulomb distortion is accounted for by using
an effective momentum transfer. The general procedure is to
convert the experimental form factors into plane-wave form
factors that can be directly compared with PWBA calcula-
tions, as was done in Ref. [15].

B. Mean field and form factors in a deformed formalism

The ground state of an axially symmetric deformed nucleus
is characterized by its angular momentum I , its projection
along the symmetry axis k, and parity π . Initial and final states
are the same for elastic scattering (Ikπ ).

The magnetic multipole form factors F Mλ can be written
in terms of intrinsic form factors FMλ weighted by angu-
lar momentum dependent coefficients. To lowest order in an
expansion in powers of the total angular momentum, the in-
trinsic multipoles depend only on the intrinsic structure of the
ground-state band [16]. The transition multipoles in Eq. (6)
for the elastic case I f = Ii = k can be written as

F Mλ
∣∣
def = 〈kkλ0 |kk〉FMλ

k + 〈k –k λ 2k|kk〉FMλ
2k

+
√

λ(λ + 1)

2
〈kkλ0|kk〉FMλ

R . (8)

As we can see from the expression above, the magnetic form
factors in odd-A nuclei receive two types of contributions,
single-particle (FMλ

k ,FMλ
2k ) and collective (FMλ

R ). The single-
particle multipoles depend only on the single-particle intrinsic
wave function of the odd nucleon if the even-even core is
time-reversal invariant, as we assume in this work. They are
different from zero only for k �= 0 bands and are given by

FMλ
k = 〈φk|T̂ Mλ

0 |φk〉, (9)

FMλ
2k = 〈φk|T̂ Mλ

2k |φk̄〉 + δk,1/2
a√
2
FMλ

R . (10)

T̂ Mλ
μ is the μ component of the Mλ tensor operator (see Eq. (7)

and Ref. [2]). φk and φk̄ are the intrinsic wave functions of
the odd nucleon and its time reversed, respectively, and a =
〈φk| j+|φk̄〉 is the decoupling parameter for k = 1/2 bands.

FMλ
R are the magnetic multipoles of the collective ro-

tational current (rotational multipoles) that depend on the
nuclear rotational model used to describe the band [16]. These
contributions were studied [26,27] by using different micro-
scopic and macroscopic models, concluding that they are, in
general, small compared to single-particle contributions. They

are only expected to be relevant in the M1 multipoles at low q
and do not differ much from one rotational model to another.
Thus, we opted here for the cranking model, that produces
better moments of inertia.

The nuclear structure is described within a self-consistent
axially symmetric deformed HF + BCS formalism. The wave
function for the i single-particle state is written in terms of the
spin components φ+

i and φ−
i as [50]

φi(R, σ ) = φ+
i (r, z) exp(i�−ϕ)χ+(σ )

+φ−
i (r, z) exp(i�+ϕ)χ−(σ ). (11)

The variables r, z, and ϕ are the cylindrical coordinates
of the radius-vector R. χ±(σ ) are the spin wave functions
and �± = �i ± 1/2 � 0, where �i is the projection along
the symmetry axis of the total angular momentum, and it
characterizes the single-particle Hartree-Fock solutions for
axially symmetric deformed nuclei, together with parity πi.

The wave functions φi are expanded into eigenfunctions
ψα (R, σ ) of an axially deformed harmonic oscillator potential
using eleven major shells,

φi(R, σ ) =
∑

α

Ci
αψα (R, σ ), (12)

with α = {nr, nz,�,�}. All the results presented in this work
correspond to the Skyrme interaction SLy4 [51], which has
been thoroughly tested on many nuclear properties along the
full nuclear chart.

In the present work, the mean field of the odd-A nucleus
is generated within the equal filling approximation (EFA),
a prescription used in self-consistent mean-field calculations
for odd-A nuclei that preserves time-reversal invariance. In
this approximation half of the unpaired nucleon sits in a
given orbital and the other half in the time-reversed partner.
The odd nucleon orbital, characterized by �i = k and πi, is
chosen among those around the Fermi level, according to the
experimental ground-state spin and parity values. It is worth
mentioning that with this choice of spin and parity we obtain
the minimum of the energy in most cases. In the few cases
where the minimum corresponds to a different spin and parity,
these assignments are found experimentally very close to the
ground states.

The explicit expressions for all the intrinsic form factors
in Eqs. (9) and (10) in terms of these wave functions can be
found in Refs. [16,24]. Expressions for the intrinsic rotational
multipoles FMλ

R can be also found in Ref. [16] for different
microscopic and macroscopic models.

Nuclei with quadrupole deformation parameters |βp| �
0.06 are considered in this work as spherical and the spherical
limit of the present deformed formalism is applied to them.
In Tables I and II these cases are identified with the label
“sph” in the column for quadrupole deformations. Thus, for
these nuclei we first constrain the deformed calculation to zero
deformation. In the spherical limit there are no collective mag-
netic multipoles (FMλ

R = 0) and the form factors are related to
the deformed ones by

F Mλ|sph limit = [
ηλ

j

]−1
F Mλ|def , (13)

014303-3



B. HERNÁNDEZ et al. PHYSICAL REVIEW C 103, 014303 (2021)

TABLE I. Experimental spin/parity (Iπ ) and half-life (T1/2), calculated and measured charge root-mean-square radii (rc,th and rc,exp [57] in
fm), calculated quadrupole deformation (βp), calculated and measured spectroscopic electric quadrupole moment (Qlab,th and Qlab,exp [58] in
barns), and calculated (in spherical limit and deformed) and measured magnetic moments (μth,sph, μth,def , μexp [58] in [μN ]) in isotopic chains
with Z = 9, 13, 23, 25, 53, and 55.

Nucleus Iπ T1/2 rc,th rc,exp βp Qlab,th Qlab,exp μth,sph μth,def μexp

17F 5/2+ 64.49 s 2.8497 – sph sph 0.058(4) +4.793 – +4.7213(3)
19F 1/2+ stable 2.8591 2.8976(25) +0.193 0 – +4.793 +2.275 +2.628868(8)
21F 5/2+ 4.158 s 2.8460 – −0.121 −0.038 – +4.793 3.730 3.93(5)
25Al 5/2+ 7.183 s 3.1317 – +0.303 +0.166 – +4.793 +3.795 3.6455(12)
27Al 5/2+ stable 3.0948 3.0610(31) +0.200 +0.107 +0.1466(10) +4.793 +3.768 +3.6415069(7)
29Al 5/2+ 6.56 min 3.0934 – +0.128 +0.069 – +4.793 +3.743 –
49V 7/2− 330 d 3.6201 – sph sph – +5.793 – 4.47(5)
51V 7/2− stable 3.6222 3.6002(22) sph sph −0.043(5) +5.793 – +5.1487057(2)
53V 7/2− 1.543 min 3.6388 – sph sph – +5.793 – –
51Mn 5/2− 46.2 min 3.7235 3.7026(212) +0.244 +0.367 – +5.793 +3.591 3.5683(13)
53Mn 7/2− 3.7 × 106 yr 3.6897 3.6662(76) sph sph – +5.793 – 5.024(7)
55Mn 5/2− stable 3.7316 3.7057(22) +0.212 +0.321 +0.33(1) +5.793 +3.532 +3.46871790(9)
125I 5/2+ 59.4 d 4.7507 – −0.148 −0.779 −0.776(17) +1.717 +3.219 2.821(5)
127I 5/2+ stable 4.7596 4.7500(81) −0.137 −0.725 −0.710(10) +1.717 +3.259 +2.81327(8)
129I 7/2+ 1.6 × 107 yr 4.7545 – sph sph −0.498(7) +1.717 – +2.6210(3)
131Cs 5/2+ 9.689 d 4.8085 4.8026(47) −0.134 −0.751 −0.575(6) +1.717 +2.043 +3.53(2)
133Cs 7/2+ stable 4.8069 4.8041(46) sph sph −0.00355(4) +1.717 – +2.58205(3)
135Cs 7/2+ 2.3 × 106 yr 4.8107 4.8067(47) sph sph +0.050(2) +1.717 – +2.7324(2)

with F Mλ|def as in Eq. (8) and ηλ
j given by [29]

ηλ
j = 〈 j jλ0| j j〉2

[
1 + δλ,2 j

〈 j – j λ 2 j| j j〉2

〈 j jλ0| j j〉2

]
. (14)

It was found in Ref. [29] that the results from a standard
spherical formalism agree perfectly with the results obtained
in the spherical limit of the present deformed formalism.

C. Correlation effects in the spherical limit

Many experimental nuclear data show sizable effects of
nucleon-nucleon (NN) correlations that cannot be accounted
for within mean-field approximations [52,53]. However, the
single-particle picture can be recovered with methods involv-
ing NN correlations by using the natural orbital representation
[54] of the one-body density matrix (OBDM). The natural

orbitals and occupation numbers are obtained by diagonaliz-
ing the OBDM solving the equation∫

dr′ρ(r, r′)ψα (r′) = nαψα (r), (15)

where ψα (r) are the natural orbitals and nα are the natural
occupation numbers.

In the present work, we include correlations within the
Coherent Density Fluctuation Model (CDFM) [52,53,55,56].
The OBDM in this model has the form

ρ(r, r′) =
∫

|F (x)|2ρx(r, r′)dx, (16)

where

ρx(r, r′) = 3ρ0(x)
j1(kF (x)|r − r′|)

kF (x)|r − r′| �

(
x − |r + r′|

2

)
, (17)

TABLE II. Same as in Table I, but for isotonic chains with N = 9, 11, 25, and 57.

Nucleus Iπ T1/2 rc,th rc,exp [57] βp Qlab,th Qlab,exp [58] μth,sph μth,def μexp [58]

15C 1/2+ 2.449 s 2.5764 – +0.122 0 – −1.913 −1.361 1.720(9)
17O 5/2+ stable 2.7476 2.6932(75) sph sph −0.02578 −1.913 – −1.89379(9)
19Ne 1/2+ 17.22 s 2.9543 3.0082(40) +0.189 0 – −1.913 −1.521 −1.88542(8)
19O 5/2+ 26.88 s 2.7445 – sph sph 0.0037(4) −1.913 – 1.53195(7)
21Ne 3/2+ stable 2.9582 2.9695(33) +0.276 +0.058 +0.103(8) −1.913 −0.718 −0.661797(5)
23Mg 3/2+ 11.317 s 3.1136 – +0.398 +0.112 0.125(5) −1.913 −0.732 0.5364(3)
45Ca 7/2− 162.61 d 3.4973 3.4944(21) sph sph +0.046(14) −1.913 – −1.3274(14)
47Ti 5/2− stable 3.6072 3.5962(19) +0.185 +0.230 +0.30(2) −1.913 −0.816 −0.78848(1)
49Cr 5/2− 42.3 min 3.6932 – +0.260 +0.369 – −1.913 −0.841 0.476(3)
99Mo 1/2+ 65.976 h 4.3769 – sph 0 – +1.488 – 0.375(3)
101Ru 5/2+ stable 4.4486 4.4606(20) +0.148 +0.565 +0.46(2) +1.488 −0.921 −0.719(6)
103Pd 5/2+ 16.991 d 4.4936 – +0.161 +0.656 – +1.488 −0.799 –
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with

ρ0(x) = 3A

4πx3
, kF (x) =

(
3π2

2
ρ0(x)

)1/3

. (18)

The weight function |F (x)|2 in Eq. (16) in the case of mono-
tonically decreasing density distributions can be obtained
from the density as

|F (x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

. (19)

The effect of these correlations has been studied in previ-
ous works [29,53], showing that they shift the tails of the form
factors to higher momentum transfer, improving the agree-
ment with experiment. We have included these correlations
in the calculations on the magnetic form factors in spherical
nuclei. Although not shown here, we have also calculated the
correlations on the spherical limit of the deformed nuclei,
finding a similar effect in the tails of the magnetic form
factors. As we shall see, this effect does not change the clear
differences observed in the profiles of the form factors from
different Iπ and deformations that manifest themselves mainly
at low momentum transfer.

III. RESULTS AND DISCUSSION

In this section we study several isotopic and isotonic chains
that have been chosen according to the criteria discussed
above. We first consider vanadium and aluminum isotopes
as examples of the general expected behavior within isotopic
chains with a fixed number of odd protons and a variable
number of even neutrons. In principle, one expects to have the
same spin and parity for all the members of the chain, as well
as a similar deformation, which in our case is spherical for
vanadium and prolate for aluminum isotopes. As we shall see,
the profiles of the calculated magnetic form factors are quite
similar as well. However, the isotopic chains of fluorine, man-
ganese, iodine, and cesium under study here are characterized
by a change in the angular momentum of the ground states
related to a shape transition. The corresponding magnetic
form factors also exhibit a great sensitivity to these structural
changes. The isotonic chains with N = 9, 11, 25, and 57 are
also chosen as examples with angular momentum changes and
the magnetic form factors show also very different profiles.

A. Static moments

Tables I and II show theoretical and experimental ground-
state properties of the considered isotopic and isotonic chains,
respectively. Namely, spins and parities, half-lives, charge
root-mean-square radii rc, quadrupole proton deformations
βp, spectroscopic electric quadrupole moments Qlab, and mag-
netic moments μ. The results are compared with experimental
data from Ref. [57] for radii and from Ref. [58] for quadrupole
and magnetic moments. Note that the lack of a sign in the
experimental Q and μ means that it is still undetermined.

The relationship between the intrinsic quadrupole moment
Q0 and the quadrupole deformation parameter βp is given by

Q0 =
√

5

π
Ze

〈
r2

p

〉
βp, (20)

where 〈r2
p〉 is the proton mean-square radius. The measured

quadrupole moment Qlab is related to the intrinsic quadrupole
moment Q0 by

Qlab = 3k2 − I (I + 1)

(I + 1)(2I + 3)
eQ0. (21)

The measured electric quadrupole moments in the tables cor-
respond to ground states I = k. Note that in the cases I = k =
1/2, Qlab = 0.

The magnetic moments in the deformed case μth,def are
obtained from the expression,

μI = gRI + k2

I + 1
[gk − gR

+ δk,1/2(2I + 1)(−1)I+1/2
√

2g2k], (22)

where gR is approximated by Z/A and gk , g2k are defined in
Ref. [16]. We also show for comparison the Schmidt values
μth,sph obtained in the spherical limit.

Similarly to the cases studied in Ref. [29], we find here that
the discrepancies between the calculated and the measured
rc are just of a few per thousand in most cases. Only in
the lightest nuclei the errors are somewhat larger, but always
below two percent. In the case of the isotopic chains we can
see that the charge radii increase slightly as the number of
neutrons increase. This is a general trend expected from the
tendency of protons to overlap maximally with neutrons and
thus spreading the spatial distribution of the latter (see, e.g.,
Ref. [42]). This general trend is nevertheless altered by local
effects related to deformation. A clear example of this peculiar
behavior can be seen in the manganese isotopes, where the
shape changes from prolate in 51Mn to spherical in the magic
(N = 28) 53Mn, and again to prolate in 55Mn. This structural
change makes the charge radii decrease from 51Mn to 53Mn
and increase from 53Mn to 55Mn. In the case of the isotonic
chains, as compared with the isotopic chains, we observe a
more dramatic increase of the charge radii as the number of
protons increases. This is expected as the protons occupy outer
orbitals.

The quadrupole moments are calculated for the deformed
nuclei and compared with the measured Qlab. They agree in
sign and magnitude.

Concerning magnetic moments, we show the Schmidt val-
ues as well as the values from Eq. (22) in the deformed cases.
We see that the Schmidt values reproduce reasonably well
the magnetic moments of spherical nuclei, whereas for the
deformed nuclei there is a clear improvement of the agreement
with experiment using the deformed formalism.

B. Form factors in isotopic chains

In the case of even-Z and odd-N isotopes the spin and
parity of the ground state, which depend on the odd-neutron
state, change from isotope to isotope. Therefore, we expect
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rather different form factors as we move in an isotopic chain
of this kind. On the contrary, in the case of even-N and
odd-Z isotopes that we study in this work, the spin/parity of
the ground state remain unchanged as long as there are no
critical changes in the nuclear structure. The magnetic form
factors of these isotopes are expected to be similar because
they are mainly determined by the wave function of the odd
proton, that does not change much. Therefore, changes in the
spin/parity of the isotopes in these chains become signatures
of structural transitions induced by the collective effect of the
different number of neutrons on the odd-proton wave function.
As it will be shown here, these effects can also be studied
through the magnetic form factors.

The spherical limit defined earlier is applied to those nuclei
with very small βp values. This limit involves a spherical
constraint of the mean-field calculation, a redefinition of the
multipole form factors given by Eq. (13), and the removal of
collective contributions FMλ

R from rotations of the core.
In the following figures for the isotopic chains under study

in this work, we show in the top panels (a) a comparison of the
total magnetic form factors corresponding to the three nuclei
considered in each chain. In the lower panels (b), (c), and (d)
we show, for each member of the chain, the total magnetic
form factor decomposed into the contributing multipolarities.
In the case of spherical nuclei we include the results of the
CDFM calculations in the total magnetic form factor.

1. Vanadium isotopes

In Fig. 1 we show the magnetic form factors in isotopes
of vanadium (Z = 23), 49,51,53V. They are examples of three
spherical isotopes with the same observed ground-state spins
and parities (see Table I). They are Iπ = 7/2− odd-A and
odd-Z nuclei, where the valence proton sits in the f7/2 shell.
Because of the similar nuclear structure in the three isotopes,
the magnetic form factors in Fig. 1 are quite similar and
therefore this chain is an example of the expected behavior
of odd-Z even-N isotopes. Figures 1(b), 1(c) and 1(d) show
the multipole decomposition of the total magnetic form fac-
tors, where the lowest multipole (M1) determines the low-q
behavior of the magnetic form factors, whereas the highest
multipole, M7 in this case, determines the large-q tails. The
other multipoles contribute in different degrees to the interme-
diate region of momentum transfer. This is generally true for
all the cases under study. The experimental data on 51V from
Refs. [15,59,60] are well reproduced by the calculations.

Nucleon-nucleon correlations included in the CDFM ap-
proach are shown in the three spherical isotopes. They
influence the form factor beyond q = 2 fm−1 and the main ef-
fect is to increase the form factor at high momentum transfer.
The agreement with experiment in the case of 51V is clearly
improved by these correlations.

2. Aluminum isotopes

In Fig. 2 we show the magnetic form factors in isotopes
of aluminum (Z = 13), 25,27,29Al. The three isotopes are
found experimentally to have Iπ = 5/2+ in their ground states
with the odd proton occupying the d5/2 shell in the spheri-
cal limit. In the deformed model the odd proton occupies a
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FIG. 1. Total magnetic form factors for the Z = 23 isotopes
49,51,53V (a) and their decomposition into the contributing multipoles
for 49V (b), 51V (c), and 53V (d). CDFM calculations are shown for
the spherical cases. Data are taken from Refs. [15,59,60].

kπ = 5/2+ prolate state or a kπ = 1/2+ oblate state. Because
the former is energetically favored in the three isotopes, our
description corresponds to a prolate shape with the odd pro-
ton in a Nilsson-like state with asymptotic quantum numbers
[202]5/2. The three isotopes have a similar deformation (see
Table I) and the magnetic form factors are practically indis-
tinguishable. Thus, adding couples of neutrons in this isotopic
chain does not change the structure of the odd-proton state.
This chain is another example of the expected behavior of
odd-Z even-N isotopes, but in this case for deformed nuclei.
The multipole decomposition shows that the multipole M1
determines the behavior below q=1 fm−1 and the multipole
M5 determines the behavior beyond, whereas the intermediate
multipole M3 is irrelevant.

Experimental data for 27Al from Refs. [15,61,62] are well
reproduced, except in the high-q region where the data are
underestimated due to the lack of short-range correlations.

3. Fluorine isotopes

The case of fluorine isotopes (Z = 9), 17,19,21F, is different
and much more interesting from a nuclear structure point of
view. Experimentally, the ground states of 17F and 21F have
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FIG. 2. Same as described in the caption of Fig. 1, but for the
Z = 13 isotopes 25,27,29Al. Data are taken from Refs. [15,61,62].

Iπ = 5/2+, but 19F has Iπ = 1/2+. In a simple Nilsson dia-
gram one can see that the odd proton sits on the d5/2 spherical
shell either on the orbital kπ = 5/2+ in the oblate region or
on the orbital kπ = 1/2+ in the prolate region. Since a prolate
configuration is favored energetically in 19F, the odd proton is
expected to occupy the Nilsson orbital [220]1/2. However, the
oblate shape is preferred in 21F, and the odd proton occupies
in this case the Nilsson orbital [202]5/2.

In the top panel of Fig. 3 we can see the total magnetic
form factors of the three isotopes together. A clear difference
can be observed among them related to the effect of deforma-
tion between the spherical 17F and the deformed 19,21F, but
also related to the different angular momentum of the ground
states that gives rise to different multipole contributions. In
panels (b), (c), and (d) we can see separately the multipole
contributions in the cases of 17F, 19F, and 21F, respectively.
The data in 19F are from Refs. [63,64]. The only multipole
is M1 and exhibits a three-peaked structure in this region of
momentum transfer, which seems to be also the case with the
data.

The different Iπ of the ground states observed as we move
in the isotopic chain indicates a structural change. In the de-
formed picture this effect is associated with a shape transition
from spherical (5/2+) in 17F to prolate (1/2+) in 19F and
to oblate (5/2+) in 21F. Thus, the neutron environment of
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FIG. 3. Same as described in the caption of Fig. 1, but for the
Z = 9 isotopes 17,19,21F. Data are taken from Refs. [63,64].

the three isotopes, N = 8, 10, 12, determines the state where
the odd proton sits. The self-consistent deformations in these
isotopes can be seen in Table I. This structural change is trans-
lated into the magnetic form factor, which is indeed sensitive
to the odd-proton state. The result is that in 17F and 21F, the
multipoles M3 and especially M5 contribute by filling the
high-q region and a two-peaked structure is obtained, rather
different to the profile of the 19F isotope that exhibits a three-
peaked structure.

The configurations with 1/2+ and 5/2+ in the three iso-
topes are indeed quite close in energy, competing to each
other for being ground states. It is worth noting that experi-
mentally, a 5/2+ excited state is observed in 19F at an energy
E = 197 keV. Similarly, 1/2+ excited states are observed
in both 17F and 21F at energies E = 495 keV and E = 280
keV, respectively. These features point at a shape coexistence
between spherical, oblate, and prolate configurations or to a
mixture of them. Given the sensitivity of the magnetic form
factors to the details of the odd-proton wave function, elastic
scattering experiments could be used to gain information on
these properties.

Pure single-particle results produce already a good agree-
ment with experiment in the first peak of 19F. Core
contributions may not be very reliable in such a light nu-
cleus, but we have included them in the rigid rotor model
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that improves slightly the agreement with experiment. Our
calculations reproduce the structure of three peaks of the form
factor measured although the third peak is underestimated.
However, the nucleon-nucleon correlations calculated in the
spherical nucleus 17F that increase the form factors beyond
q = 2 fm−1 suggest that a similar effect would be expected
in the deformed nucleus 19F improving the agreement with
experiment in the region of the third peak.

4. Manganese isotopes

The case of manganese isotopes (Z = 25), 51,53,55Mn, is
also an interesting example of a shape transition, which is
already anticipated by the change in the angular momentum
of their ground states, namely, 5/2− in 51Mn, 7/2− in 53Mn,
and 5/2− in 55Mn. This change is related to a shape transition
from prolate in 51Mn to spherical in 53Mn (associated to the
magic number N = 28) and again to prolate in 55Mn, as can
be seen in Table I. The odd proton occupies the spherical
shell f7/2, while the prolate configurations in 51Mn and 55Mn
correspond to a Nilsson-like state with asymptotic quantum
numbers [312]5/2.

Low-lying 7/2− excited states are observed experimen-
tally in 51Mn and 55Mn at E = 237 keV and E = 126 keV,
respectively. A 5/2− excited states is also found in 53Mn at
E = 378 keV, showing again a competition between different
configurations.

In Fig. 4(a) we can see the total magnetic form factors
of the three isotopes, where a very clear difference between
the spherical (7/2−) 53Mn isotope and the prolate deformed
(5/2−) 51,55Mn isotopes is observed. Whereas the deformed
isotopes 51,55Mn show a first peak at q = 0.4 fm−1 and a
second peak, one order of magnitude smaller, centered at
q = 1.2 fm−1. The spherical isotope 53Mn shows a small peak
at q = 0.4 fm−1 followed by a plateau-like structure up to
about q = 2 fm−1. Therefore, this is a very clear example of
a structural change to which the magnetic scattering will be
extremely sensitive.

The CDFM calculation on the spherical isotope 53Mn
shows again an increase of the tails of the form factors at high
momentum transfer.

5. Iodine isotopes

The magnetic form factors of iodine isotopes (Z = 53)
125,127,129I are plotted in Fig. 5. The measured angular mo-
menta are 5/2+ in 125I, 5/2+ in 127I, and 7/2+ in 129I. This
change is related to a shape transition from oblate in 125,127I to
spherical in 129I, as can be seen in Table I. Excited states 7/2+
in 125I, 7/2+ in 127I, and 5/2+ in 129I are also found at energies
E = 114 keV, E = 58 keV, and E = 28 keV, respectively. The
odd proton occupies the spherical shell g7/2 in 129I, while it
occupies the Nilsson oblate state [413]5/2 in 125,127I.

The magnetic form factor in 129I shows a smoother pro-
file than the form factors of 125,127I, which is caused by the
enhancement of the intermediate multipoles in the spherical
case. CDFM results are shown in 129I, but they are very similar
to the mean-field results.
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FIG. 4. Same as described in the caption of Fig. 1, but for the
Z = 25 isotopes 51,53,55Mn.

6. Cesium isotopes

The magnetic form factors of cesium isotopes (Z = 55)
131,133,135Cs are plotted in Fig. 6. The experimental angular
momentum and spin assignments of the ground states are
5/2+ in 131Cs, 7/2+ in 133Cs, and 7/2+ in 135Cs. This change
is related to a shape transition from oblate in 131Cs to spherical
in 133,135Cs, as can be seen in Table I. The spherical shell is
now g7/2 and the oblate Nilsson state is [402]5/2.

A low-lying excited state 7/2+ appears at E = 79 keV in
131Cs, while 5/2+ excited states appear at E = 81 keV and
E = 250 keV in 133Cs and 135Cs, respectively.

Similarly to the previous case, Fig. 6 shows a clear dif-
ference between the magnetic form factors of the spherical
and deformed cases. The form factor in 131Cs shows a clear
three-peaked structure, while the form factor in the spherical
isotopes 133,135Cs is rather smooth because of the enhance-
ment of the intermediate multipoles. As in the case of iodine,
the CDFM calculations show little effect on cesium isotopes.

C. Form factors in isotonic chains

We consider now several odd-N and even-Z isotonic
chains, which are characterized by a change in the spin/parity
of their ground states. Namely, we study the following chains:
(i) N = 9 with 15C, 17O, and 19Ne, (ii) N = 11 with 19O, 21Ne,
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FIG. 5. Same as described in the caption of Fig. 1, but for the
Z = 53 isotopesr 125,127,129I.

and 23Mg, (iii) N = 25 with 45Ca, 47Ti, and 49Cr, and (iv)
N = 57 with 99Mo, 101Ru, and 103Pd.

As we shall see, the differences in the magnetic form fac-
tors in a given chain are in general larger between deformed
isotones with the same Iπ than between deformed isotopes
with the same Iπ . This is due to the convection current
changes induced by the different number of protons in the
members of an isotonic chain.

1. N = 9 isotones

We show in Fig. 7 the chain of N = 9 isotones given by
15C, 17O, and 19Ne. The measured spin/parities are 1/2+ in
15C, 5/2+ in 17O, and 1/2+ in 19Ne. This change is related
to a shape transition from a prolate deformation in 15C to a
spherical shape in 17O (related to the Z = 8 magic number),
and to a prolate shape again in 19Ne, as can be seen in Table I.

The odd neutron sits naturally in the d5/2 shell in the
spherical nucleus 17O, but in the deformed isotones 15C and
19Ne the odd neutron sits in the asymptotic orbital [220]1/2.
It is also worth noting that 1/2+ excited states are found ex-
perimentally in 17O at E = 871 keV, and 5/2+ excited states
are found in 15C and 19Ne at E = 740 keV and E = 238 keV,
respectively.

Figure 7 shows a large difference between the magnetic
form factors of these isotones. Whereas differences between
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FIG. 6. Same as described in the caption of Fig. 1, but for the
Z = 55 isotopes 131,133,135Cs.

the deformed nuclei 15C and 19Ne, which are mainly due to
the different contributions from the Z = 6 and Z = 10 cores,
are not very significant, the difference with respect to the
spherical nucleus 17O are dramatic and a clear signature of a
shape transition. The difference between the form factors for
these spherical or deformed isotones is more than one order
of magnitude beyond q = 1 fm−1.

Our results reproduce very reasonably the measured mag-
netic form factor in 17O [15,65], especially when correlations
calculated within the CDFM are included, that improve the
agreement at high momentum transfer. It will be very interest-
ing to check against experiment the predictions for the form
factors of those isotones.

2. N = 11 isotones

Figure 8 contains the results for the N = 11 isotones, 19O,
21Ne, and 23Mg. In this chain the ground state of 19O is again
spherical (5/2+), related to the Z = 8 magic number. The odd
neutron belongs to the spherical d5/2 shell. However, both iso-
tones 21Ne and 23Mg are 3/2+ prolate states with asymptotic
quantum numbers [211]3/2. There is a 3/2+ excited state in
19O at E = 96 keV, and a 5/2+ excited state in 21Ne as well
as in 23Mg at E = 351 keV and at E = 451 keV, respectively.

Similarly to the case of the N = 9 chain, the comparison
of the form factors in Fig. 8 shows that the shape transition
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FIG. 7. Same as described in the caption of Fig. 1, but for
the N = 9 isotones 15C, 17O, and 19Ne. Data are taken from
Refs. [15,65].

produce quite different form factors that could be easily dis-
tinguished experimentally.

3. N = 25 isotones

The next example we consider is the isotonic chain N =
25, including the spherical nucleus 45Ca (Z = 40), and the
prolate isotones 47Ti and 49Cr. 45Ca has a 7/2− ground state
that corresponds to the f7/2 spherical shell. 47Ti and 49Cr have
5/2− with the odd neutron in the [312]5/2 state.

A 5/2− excited state is found in 45Ca at E = 174 keV.
Low-lying 7/2− excited state are found in 47Ti and 49Cr at
E = 159 keV and E = 272 keV, respectively.

Similarly to the previous cases for N = 9 and N = 11, the
profile of the spherical nucleus in Fig. 9 is very different
from the profiles of the deformed isotones. This is a clear
signature of a structural change that will be worth exploring
experimentally.

4. N = 57 isotones

Finally, we study the N = 57 isotones, 99Mo, 101Ru, and
103Pd, where the shape changes from spherical 1/2+ in 99Mo
to prolate 5/2+ in 101Ru and 103Pd, as can be seen in Table I.
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FIG. 8. Same as described in the caption of Fig. 1, but for the
N = 11 isotones 19O, 21Ne, and 23Mg.

Experimentally, a 5/2+ excited state is found at E = 98 keV
in 99Mo and 1/2+ excited states are found at E = 325 keV
and E = 504 keV in 101Ru and 103Pd, respectively. In the
spherical case the odd neutron occupies the 3s1/2 shell, while
in the prolate case the 5/2+ states [413]5/2 appear from the
degeneracy breaking of d5/2 and g7/2 shells.

The form factors in Fig. 10 exhibit significant differences
between the spherical and deformed cases, although a three-
peaked structure is observed in the three isotones.

IV. CONCLUSIONS

We have studied the sensitivity of the magnetic form fac-
tors, that could be measured in elastic electron scattering,
to structural changes of the nucleus. We focus on odd-
Z and even-N isotopic chains, as well as on even-Z and
odd-N isotonic chains, looking for changes in the experi-
mental ground-state spins and parities within a given chain.
Nuclear structure calculations based on self-consistent de-
formed HF + BCS calculations with Skyrme forces have
shown that the changes of spin/parity are related to shape
transitions.

We have considered first the chains of odd-A vanadium
(49,51,53V) and aluminum (25,27,29Al) isotopes as examples of
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FIG. 9. Same as described in the caption of Fig. 1, but for the
N = 25 isotones 45Ca, 47Ti, and 49Cr.

spherical and deformed nuclei where the ground-state spin
and parity is the same in all the members of the chain.
This is the expected behavior when the nuclear structure in
general and the odd-proton wave function in particular does
not change significantly with the addition of an even number
of neutrons. We have shown that the magnetic form factors
of the isotopes within these chains are basically the same.
After these two examples we studied isotopic chains of flu-
orine (17,19,21F), manganese (51,53,55Mn), iodine (125,127,129I),
and cesium (131,133,135Cs), as well as isotonic chains with
N = 9 (15C, 17O, 19Ne), N = 11 (19O, 21Ne, 23Mg), N = 25
(45Ca, 47Ti, 49Cr), and N = 57 (99Mo, 101Ru, 103Pd). In all
of these chains the ground-state spins and parities change
within the chain. The corresponding nuclear structure calcu-
lations demonstrate the correlation between a change of the
ground-state spin and parity and a shape transition within the
chain. The results of the calculations of the elastic magnetic
form factors exhibit quite different profiles for different de-
formations that could be interpreted as signatures of shape
transitions.

Comparison with experiment in the few stable nuclei where
this information is available (see also Ref. [29]) demonstrates
the ability of the method to reproduce the data, especially at
low momentum transfer and even at higher values beyond
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FIG. 10. Same as described in the caption of Fig. 1, but for the
N = 57 isotones 99Mo, 101Ru, and 103Pd.

2 fm−1 when short-range correlations are included. These
nucleon-nucleon correlations, taken into account by the
CDFM method, shift the tails of the form factors at higher
momentum transfer. This comparison is also needed to trust
the predictions for unstable nuclei, where no data are available
yet.

It would be very interesting to check experimentally the
predictions for the magnetic form factors for the isotopic and
isotonic chains analyzed here, which have been found to show
a shape transition. The present theoretical study is timely, as
new experimental electron-scattering facilities are expected to
deal soon with unstable nuclei.
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